REMARKS AND CORRECTIONS TO

INTRODUCTION TO THE SPECTRAL THEORY OF NON-COMMUTATIVE HARMONIC OSCILLATORS

COE LECTURE NOTE VOL.8, KYUSHU UNIVERSITY

BY ALBERTO PARMEGGIANI

- Page 12, line 8 below formula (2.2.1): $Ker(H^* \pm i) = \{0\}$ (in fact, $Im(H \mp i) = L^2(\mathbb{R})$).
- Page 17, definition of confined symbols: With $B_{X_0,r}^g = \{X; g_{X_0}(X X_0) < r^2\}$, following Bony and Lerner [2] we say that $a \in C^{\infty}(\mathbb{R}^{2n})$ is a symbol of weight m confined to the ball $B_{X_0,r}^g$, and write $a \in Conf(m, g, X_0, r)$, if for all $k \in \mathbb{Z}_+$

 $\|a\|_{k,\operatorname{Conf}(m,g,X_0,r)} := \sup_{\ell \le k, \ X \in \mathbb{R}^{2n}} \frac{|a|_{\ell}^{g_{X_0}}(X)}{m(X_0)} \left(1 + g_{X_0}^{\sigma}(X - B_{X_0,r})\right)^{k/2} < +\infty,$

where $g_Y^{\sigma}(X-B) = \inf_{Z \in B} g_Y^{\sigma}(X-Z)$. Hence the space of symbols confined to the ball $B_{X_0,r}^g$ coincides with $\mathcal{S}(\mathbb{R}^{2n})$ endowed with the seminorms (1). Any given $\varphi \in C_0^{\infty}(B_{X_0,r}^g)$ is automatically confined to the ball $B_{X_0,r}^g$.

• Page 19, Formula (3.1.5):

$$c(X) = \pi^{-2n} \iint e^{-2i\sigma(X-Y,X-Z)} a(Y) b(Z) dY dZ =$$

$$=\pi^{-2n} \iint e^{-2i\sigma(T,Z)} a(X+T)b(X+Z)dTdZ = e^{i\sigma(D_X;D_Y)/2}(a(X)b(Y))\big|_{X=Y},$$

- Page 31, Remark 3.2.10: I have used here the notation ${}^{co}a$ for the cofactor matrix of a, that is the matrix whose entries are the cofactors of ${}^{t}a$. Hence ${}^{co}a a = a {}^{co}a = \det a$.
- Page 40, inner-product of B^s : $(u, v)_s := (\Lambda^s u, \Lambda^s v)_0$.
- Page 49, line 6 of the proof of Lemma 3.3.13: dist should be intended here as

$$\inf_{\substack{\zeta \in \operatorname{Spec}(q_{\mu/2}(\omega))\\ \zeta' \in \operatorname{Spec}(-q_{\mu/2}(\omega))}} |\zeta - \zeta'| \ge c_0 > 0, \quad \forall \omega \in \mathbb{S}^{2n-1}.$$

- Page 50, Remark 3.3.15: One has to take $\mu = 2$.
- Page 61, line 5 of the proof of Lemma 4.3.3: $\alpha \in \mathbb{Z}_{+}^{n}$.
- Page 61, line -5 of the proof of Lemma 4.3.3: j > 1.

- Page 68, formula (5.2.1): the norm on the left-hand side of the inequality is $\|\varphi_j\|_{B^{\mu r}}^2$.
- Page 69, definition of D(f(A)): the condition is

$$\sum_{j\geq 1} |f(\lambda_j)|^2 |u_j|^2 < +\infty$$

- Page 80: Tr B_{-2j}(t) = β'_{-2j}(t) β''_{-2j}(t).
 Page 93, Formula for Res(ζ_A, s_j): the integration contour Γ should be replaced by γ .
- Page 93, Exercise 7.1.2: "Upone" should be replaced by "Upon".
- Page 94, statement of Thm. 7.2.1: the given statement is somewhat imprecise. Here is the correct statement of the meromorphic extension of the spectral zeta:

Theorem 7.2.1. There exist constants $c_{-2j,n}$, $0 \le j \le n-1$, and constants C_j , $j \ge n$, such that for any given integer $\nu \in \mathbb{Z}_+$ with $\nu \ge n, \, \zeta_A(s)$ is represented as

$$\zeta_A(s) = \frac{1}{\Gamma(s)} \Big[\sum_{j=0}^{n-1} \frac{c_{-2j,n}}{s-n+j} + \sum_{j=n}^{\nu} \frac{C_j}{s-n+j} + H_{\nu}(s) \Big], \quad \text{Re}\, s > -(\nu-n) - 1,$$

where $\Gamma(s)$ is the Euler gamma function, and H_{ν} is holomorphic in $\operatorname{Re} s > -(\nu - n) - 1$. Consequently, the spectral zeta function $\zeta_A(s)$ is meromorphic in the whole complex plane $\mathbb C$ with at most simple poles at s = n, n - 1, n - 2, ..., 1. In particular, when $n = 1, \zeta_A$ has only one simple pole at s = 1. One has (recall (6.3.12))

(7.2.2)

$$c_{-2j,n} = (2\pi)^{-n} \int_0^{+\infty} \int_{\mathbb{S}^{2n-1}} \operatorname{Tr} b_{-2j}(1,\rho\omega) \rho^{2n-1} d\rho d\omega, \quad 0 \le j \le n-1,$$

where the b_{-2i} are the terms in the symbol of the parametrix $U_A \in$ $OPS_{cl}(2,0)$ of Theorem 6.1.5, Remark 6.1.6 and (6.1.9),

$$U_A \sim \sum_{j \ge 0} B_{-2j}.$$

Moreover,

$$c_{0,n} = (2\pi)^{-n} \int_0^{+\infty} \int_{\mathbb{S}^{2n-1}} \text{Tr}(e^{-a_2(\rho\omega)}) \rho^{2n-1} d\rho d\omega$$

is the leading coefficient in the Weyl asymptotics for $N_A(\lambda)$ (see (6.3.14) and Theorem 6.3.1).

- Page 98, line -6: s = -k should be replaced by s = -j k.
- Page 99, formula (7.2.14): there is an extra summation in k. The correct formula reads as follows

$$Z_0(s) = \frac{1}{\Gamma(s)} \left[\sum_{j=0}^{\nu} \frac{c_{-2j,n}}{s-n+j} + \sum_{j,k=0}^{\nu} \frac{f_j^{(j+k)}(0)}{(j+k)!} \frac{1}{s+j+k} + \sum_{k=0}^{\nu} \frac{f_k^{(k)}(0)}{k!} \frac{1}{s+k} + \sum_{j=0}^{\nu} F_{j,\nu}(s) + F_{R,\nu}(s) + F_{\nu+1}(s) \right] =$$

REMARKS AND CORRECTIONS TO INTRODUCTION TO THE SPECTRAL THEORYOF NON-COMM

(7.2.15)
$$= \frac{1}{\Gamma(s)} \left[\sum_{j=0}^{n-1} \frac{c_{-2j,n}}{s-n+j} + \sum_{j=n}^{\nu} \frac{C_j}{s-n+j} + \tilde{H}_{\nu}(s) \right],$$

- Page 101, line 2: the factor e^{-tA} in front of the term R(0) is missing.
- Page 111, lines -8,-9: one sets

$$[u_1,\ldots,u_{n-1}]^{\perp} := \operatorname{Span}(u_1,\ldots,u_{n-1})^{\perp} \cap D(Q)$$

the elements in the domain D(Q) of Q which are orthogonal to the subspace spanned by the vectors u_1, \ldots, u_{n-1} .

- Page 120, line 1 below formula (9.1.4): $a \in S_0^k(m^{\mu}; M_N)$.
- Page 126, bottom line: r_{N0+1} ∈ S₀⁰(m^{-µ}; M_N).
 Page 140, line -6: one clearly has h^{-k1} instead of h^{-3k0}, in the inequality.
- Page 184, line 3 of the proof: $\xi(\theta) = \sqrt{2} \rho_{\pm}(\theta) \cos \theta$.
- Page 201, Hypothesis (H5'): $c_0 > 0$ should be replaced by $c_0 \in \mathbb{R}$.
- Page 203, line -2: c_1 should be replaced by c_0 .