PROGRAMMA (E NOTE) DI MATEMATICA APPLICATA (ALL'ARCHITETTURA)

Corso di Laurea in ARCHITETTURA A.A. 2011/2012 (Alberto PARMEGGIANI)

Indice

1		hiami di Algebra Lineare	1
	1.1	Classificazione delle coniche a centro di \mathbb{R}^2]
2	Geo	ometria delle curve di \mathbb{R}^3	2
	2.1	Curve parametrizzate ad arco	2
	2.2	Formule per le curve non necessariamente parametrizzate ad arco	4
	2.3	Curve Bézier	
3	Geometria delle superfici di \mathbb{R}^3		
	3.1	La prima forma fondamentale	7
	3.2	Curvatura normale e curvatura geodetica di una curva di S	8
	3.3	La seconda forma fondamentale	
	3.4	Curvatura di Gauss e Curvatura Media	12
	3.5	Teoremi importanti	13
	3.6	Superfici di rotazione	
	3.7	Superfici rigate	
	3.8	Superfici sviluppabili	17
	3.9	Parametrizzazioni di alcune superfici notevoli	18

Avvertenza: Tutte le funzioni qui considerate sono *sufficientemente differenziabili*, cioè esse sono continue insieme alle loro derivate (ordinarie o parziali) fino ad un ordine sufficiente a giustificare rigorosamente tutte le definizioni e le formule date nel seguito (tale ordine di derivazione sarà sempre almeno 3).

1 Richiami di Algebra Lineare

Si veda anche il programma relativo al Corso di Istituzioni di Matematiche I, a.a. 2002/2003, nella pagina web http://www.dm.unibo.it/~parmeggi.

1.1 Classificazione delle coniche a centro di \mathbb{R}^2

Data la forma quadratica $Q(x_1,x_2):=\langle A\left[\begin{array}{c}x_1\\x_2\end{array}\right],\left[\begin{array}{c}x_1\\x_2\end{array}\right]\rangle+c,$ dove $A\neq 0$ è una matrice simmetrica e $c\in\mathbb{R},$ la conica a centro di \mathbb{R}^2 di equazione $Q(x_1,x_2)=0$ è un insieme del tipo

$$C = \{(x_1, x_2) \in \mathbb{R}^2; \ Q(x_1, x_2) = 0\}.$$

La classificazione euclidea di C dice che si può sempre trovare una rotazione degli assi <math>R tale che nelle nuove coordinate (y_1,y_2) , legate alle (x_1,x_2) tramite la relazione $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = tR \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, l'insieme C è descritto da

$$C = \{(y_1, y_2) \in \mathbb{R}^2; \ \lambda_1 y_1^2 + \lambda_2 y_2^2 + c = 0\},$$

dove $\lambda_1 \leq \lambda_2$ sono gli autovalori di A. Si hanno le seguenti possibilità:

- Se $0 < \lambda_1 \le \lambda_2$ e c < 0, oppure se $\lambda_1 \le \lambda_2 < 0$ e c > 0, allora C è un'ellisse;
- Se $0 < \lambda_1 \le \lambda_2$ e c > 0, oppure se $\lambda_1 \le \lambda_2 < 0$ e c < 0, allora $C = \emptyset$;
- Se $0 < \lambda_1 \le \lambda_2$ e c = 0, oppure se $\lambda_1 \le \lambda_2 < 0$ e c = 0, allora $C = \{(0,0)\}$;
- Se $\lambda_1 = 0 < \lambda_2$ e c < 0, oppure se $\lambda_1 < \lambda_2 = 0$ e c > 0, allora C è l'unione di una coppia di rette parallele;
- Se $\lambda_1 = 0 < \lambda_2$ e c = 0, allora C è l'asse y_1 ;
- $Se \lambda_1 < \lambda_2 = 0 \ e \ c = 0$, allora $C \ \dot{e} \ \mathbf{l'asse} \ y_2$;
- Se λ_1 e λ_2 hanno segno discorde e $c \neq 0$, allora C è un'iperbole;
- Se λ_1 e λ_2 hanno segno discorde e c = 0, allora C è l'unione di una coppia di rette che si intersecano nell'origine.

2 Geometria delle curve di \mathbb{R}^3

Le curve sono funzioni sufficientemente differenziabili $\gamma\colon I\subset\mathbb{R}\longrightarrow\mathbb{R}^3$, dove I è un intervallo. Una curva si dice semplice quando $\gamma(t_1)\neq\gamma(t_2)$ per ogni scelta di $t_1,t_2\in I$ con almeno uno tra t_1 e t_2 interno ad I. Una curva $\gamma\colon [a,b]\longrightarrow\mathbb{R}^3$ si dice chiusa se $\gamma(a)=\gamma(b)$. La velocità di una curva è il vettore $\frac{d\gamma}{dt}=\gamma'$. Una curva $\gamma\colon I\longrightarrow\mathbb{R}^3$ si dice regolare quando $\|\gamma'(t)\|\neq 0$ per ogni $t\in I$. Due curve $\gamma_j\colon I_j\longrightarrow\mathbb{R}^3, j=1,2,$ si dicono **equivalenti** quando esiste un cambiamento di parametro $p\colon I_1\ni t\longmapsto p(t)=\tilde t\in I_2,$ continuo con derivata continua sempre $\neq 0$ su I_1 , tale che $\gamma_1(t)=(\gamma_2\circ p)(t);$ in particolare si ha che $\gamma_1(I_1)=\gamma_2(I_2)$. Ascissa curvilinea (detta anche lunghezza d arco): essa è data dalla relazione $s(t)=\int_{t_0}^t \|\gamma'(\tau)\|\,d\tau$. Data la curva $\psi\colon s\longmapsto \psi(s), s$ ascissa curvilinea, si denoterà sempre con $\dot\psi=\frac{d\psi}{ds}$ la sua velocità. Ogni curva regolare γ è sempre equivalente surva sur

2.1 Curve parametrizzate ad arco

Sia $\gamma: I \ni s \longmapsto \gamma(s) \in \mathbb{R}^3$ parametrizzata ad arco e biregolare (cioè $\ddot{\gamma} \neq 0$ su tutto I).

• Triedro fondamentale di Frénet nel punto $\gamma(s_0)$:

$$T(s_0) = \dot{\gamma}(s_0), \quad N(s_0) = \frac{\dot{T}(s_0)}{\|\dot{T}(s_0)\|}, \quad B(s_0) = T(s_0) \times N(s_0).$$

• Curvatura $k(s_0)$ e Torsione $\tau(s_0)$ nel punto $\gamma(s_0)$:

$$k(s) = \|\dot{T}(s_0)\|, \quad \tau(s) = \langle \dot{B}(s_0), N(s_0) \rangle.$$

• Formule di Frénet:

$$\begin{cases}
\dot{T}(s) &= k(s)N(s) \\
\dot{N}(s) &= -k(s)T(s) & -\tau(s)B(s) \\
\dot{B}(s) &= \tau(s)N(s).
\end{cases}$$

• Equazioni cartesiane del piano **rettificante** della curva (cioè il piano delle direzioni $\{T, B\}$) nel punto $\gamma(s_0)$:

$$\left\langle N(s_0), \left[\begin{array}{c} x \\ y \\ z \end{array} \right] - \gamma(s_0) \right\rangle = 0.$$

• Equazioni cartesiane del piano **normale** della curva (cioè il piano delle direzioni $\{N, B\}$) nel punto $\gamma(s_0)$:

$$\left\langle T(s_0), \left[\begin{array}{c} x \\ y \\ z \end{array} \right] - \gamma(s_0) \right\rangle = 0.$$

• Equazioni cartesiane del piano **osculatore** della curva (cioè il piano delle direzioni $\{T, N\}$) nel punto $\gamma(s_0)$:

$$\left\langle B(s_0), \begin{bmatrix} x \\ y \\ z \end{bmatrix} - \gamma(s_0) \right\rangle = 0.$$

• Equazione parametrica della circonferenza **osculatrice** $C(\gamma; s_0)$ della curva nel punto $\gamma(s_0)$:

$$C(\gamma; s_0) = \left\{ \gamma(s_0) + \frac{1}{k(s_0)} N(s_0) + \frac{1}{k(s_0)} \left((\cos \theta) T(s_0) + (\sin \theta) N(s_0) \right); \ \theta \in [0, 2\pi] \right\}.$$

- Osservazione. Se k(s) = 0, per tutti gli $s \in I$, allora γ è un segmento di retta.
- Se k(s) è una costante $\neq 0$ (quindi > 0) e $\tau(s) = 0$ per tutti gli $s \in I$ allora γ è un arco di circonferenza.

• Se $k(s_0), \tau(s_0) \neq 0$, la **sfera osculatrice** della curva nel punto $\gamma(s_0)$ è la sfera il cui centro $c(s_0)$ e raggio $r(s_0)$ sono rispettivamente

$$c(s_0) = \gamma(s_0) + \frac{1}{k(s_0)}N(s_0) + \frac{\dot{k}(s_0)}{\tau(s_0)k(s_0)^2}B(s_0), \quad r(s_0) = \frac{1}{k(s_0)^2} + \left(\frac{\dot{k}(s_0)}{\tau(s_0)k(s_0)^2}\right)^2.$$

• Se $k(s), \tau(s) \neq 0$ per tutti gli $s \in I$, allora la curva γ è contenuta in una sfera (e quindi nella sua sfera osculatrice) se e solo se vale la relazione

$$\frac{\tau(s)}{k(s)} = \frac{d}{ds} \left(\frac{\dot{k}(s)}{\tau(s)k(s)^2} \right), \quad \forall s \in I.$$

• Fissato $s_0 \in I$, ed interno ad I, la formula di Taylor per s vicino ad s_0 dà

$$\gamma(s) = \gamma(s_0) + \dot{\gamma}(s_0)(s - s_0) + \frac{1}{2}\ddot{\gamma}(s_0)(s - s_0)^2 + \frac{1}{6}\frac{d^3\gamma}{ds^3}(s_0)(s - s_0)^3 + o((s - s_0)^3).$$

Usando le equazioni di Frénet in $\gamma(s_0)$ si ottiene allora che le curve proiezioni della curva $s \mapsto \gamma(s)$ sui piani rettificante, osculatore e normale in $\gamma(s_0)$ sono date, per s vicino ad s_0 , rispettivamente dalle curve

• sul piano rettificante (T, B):

$$s \longmapsto \left(\langle \gamma(s_0), T(s_0) \rangle + (s - s_0), \langle \gamma(s_0), B(s_0) \rangle - \frac{1}{6} k(s_0) \tau(s_0) (s - s_0)^3 \right);$$

• sul piano osculatore (T, N):

$$s \longmapsto \left(\langle \gamma(s_0), T(s_0) \rangle + (s - s_0), \langle \gamma(s_0), N(s_0) \rangle + \frac{1}{2}k(s_0)(s - s_0)^2 \right);$$

• sul piano normale (N, B):

$$s \longmapsto \left(\langle \gamma(s_0), N(s_0) \rangle + \frac{1}{2} k(s_0)(s - s_0)^2, \langle \gamma(s_0), B(s_0) \rangle - \frac{1}{6} k(s_0) \tau(s_0)(s - s_0)^3 \right).$$

• Il Teorema di Frénet: Dato $s \in I$, intervallo aperto di \mathbb{R} , e date le funzioni sufficientemente differenziabili $k \colon I \ni s \longmapsto k(s) \in (0, +\infty)$ e $\tau \colon I \ni s \longmapsto \tau(s) \in \mathbb{R}$, esiste $\gamma \colon I \longrightarrow \mathbb{R}^3$, curva regolare, per la quale s è il parametro d'arco, k è la curvatura e τ è la torsione. Tale curva è unica a meno di rototraslazioni dello spazio \mathbb{R}^3 in sè.

2.2 Formule per le curve non necessariamente parametrizzate ad arco

Le formule per il triedro fondamentale, la curvatura e la torsione in un punto $\gamma(t_0)$ per curve per le quali t non è la lunghezza d'arco sono (ponendo $s_0 = s(t_0)$)

$$T(s_0) = \frac{\gamma'(t_0)}{\|\gamma'(t_0)\|}, \quad B(s_0) = \frac{\gamma'(t_0) \times \gamma''(t_0)}{\|\gamma'(t_0) \times \gamma''(t_0)\|}, \quad N(s_0) = B(s_0) \times T(s_0),$$

$$k(s_0) = \tilde{k}(t_0) = \frac{\|\gamma'(t_0) \times \gamma''(t_0)\|}{\|\gamma'(t_0)\|^3},$$

$$\tau(s_0) = \tilde{\tau}(t_0) = \frac{\langle \gamma'''(t_0), \gamma''(t_0) \times \gamma'(t_0) \rangle}{\|\gamma'(t_0) \times \gamma''(t_0)\|^2} = -\frac{\langle \gamma'''(t_0), \gamma'(t_0) \times \gamma''(t_0) \rangle}{\|\gamma'(t_0) \times \gamma''(t_0)\|^2}.$$

2.3 Curve Bézier

- Poligono di controllo: è un insieme $\{P_0,\ldots,P_n\}$ di n+1 punti (distinti) di \mathbb{R}^3 ;
- algoritmo di construzione delle curve Bézier: dato il poligono di controllo $\{P_0, \dots, P_n\}$ e dato $t_0 \in [0, 1]$, il punto $\gamma(t_0)$ della curva Bézier viene costruito nel modo seguente

[Passo 1] per k = 0, ..., n si pone $P_k^{(0)}(t_0) = P_k$ (punti di prima generazione)

[Passo 2] per j = 1, ..., n si costruisce ricorsivamente la generazione j-esima a partire dalla generazione j - 1-esima tramite la formula

$$P_k^{(j)}(t_0) = (1 - t_0)P_{k-1}^{(j-1)}(t_0) + t_0P_k^{(j-1)}(t_0), \quad k = j, \dots, n$$

[Passo 3] si pone $\gamma(t_0) = P_n^{(n)}$.

Facendo variare t_0 in [0,1] si ottiene l'intera curva $\gamma \colon [0,1] \longrightarrow \mathbb{R}^3$ associata al poligono di controllo dato:

• forma analitica delle curve Bézier: dato il poligono di controllo $\{P_0, \ldots, P_n\} \subset \mathbb{R}^3$, la curva Bézier $\gamma \colon [0,1] \longrightarrow \mathbb{R}^3$ ad esso associata è data da

$$\gamma(t) = \sum_{k=0}^{n} P_k \frac{n!}{k!(n-k)!} t^k (1-t)^{n-k} = \sum_{k=0}^{n} P_k \binom{n}{k} t^k (1-t)^{n-k};$$

- la curva Bézier associata al poligono di controllo $\{P_0, \ldots, P_n\}$ è contenuta nell'inviluppo convesso di tale poligono;
- poiché

$$\gamma'(t) = \sum_{k=0}^{n} P_k \binom{n}{k} \left(kt^{k-1} (1-t)^{n-k} - (n-k)t^k (1-t)^{n-k-1} \right) =,$$

si ha in particolare che

$$\gamma'(0) = n(P_1 - P_0), \text{ e } \gamma'(1) = n(P_n - P_{n-1}),$$

cioè $\gamma'(0)$ è tangente al primo lato del poligono di controllo e $\gamma'(1)$ tangente all'ultimo lato del poligono di controllo;

• formule per le derivate successive in termini del poligono di riferimento: avendo definito le funzioni ("miscelatrici" di Bernstein) $\theta_{k,m} \colon [0,1] \longrightarrow \mathbb{R}, \ k,m \in \mathbb{Z}_+$ con $k \leq m$, tramite la formula

$$\theta_{k,m}(t) := \frac{m!}{k!(m-k)!} t^k (1-t)^{m-k},$$

si ha

$$\gamma^{(j)}(t) = \sum_{k=0}^{n-j} Q_{j,k} \theta_{k,n-j}(t)$$

(quindi $\gamma^{(j)}(t) = 0$ per tutti i $j \ge n + 1$), dove

$$\begin{cases} Q_{0,k} = P_k, \\ Q_{j,k} = (n-j+1) \Big(Q_{j-1,k+1} - Q_{j-1,k} \Big), \ 1 \le j \le n. \end{cases}$$

3 Geometria delle superfici di \mathbb{R}^3

Nel seguito D è un sottoinsieme aperto e connesso (un dominio) di \mathbb{R}^2 che possiamo pensare essere o un rettangolo aperto della forma $(a,b)\times(c,d)$ oppure un cerchio della forma $\{(u,v)\in\mathbb{R}^2;\ (u-u_0)^2+(v-v_0)^2< r^2\}$. Con \overline{D} si denoterà la **chiusura** (topologica) di D. Quindi $\overline{D}=[a,b]\times[c,d]$ nel primo caso, $\overline{D}=\{(u,v)\in\mathbb{R}^2;\ (u-u_0)^2+(v-v_0)^2\leq r^2\}$ nel secondo. Quando $D=\mathbb{R}^2$ allora $\overline{D}=\mathbb{R}^2$, e quando $D=(0,+\infty)\times(a,b)$ allora $\overline{D}=[0,+\infty)\times[a,b]$.

- Una superficie regolare dello spazio è un insieme $S \subset \mathbb{R}^3$ per il quale esiste una funzione sufficientemente differenziabile, chiamata (una) parametrizzazione di $S, \varphi \colon D \ni (u,v) \longmapsto \varphi(u,v) \in \mathbb{R}^3$, tale che
 - φ è iniettiva su D, cioè $\varphi(u_1, v_1) = \varphi(u_2, v_2)$ implica $u_1 = u_2$ e $v_1 = v_2$;
 - vale

$$\frac{\partial \varphi}{\partial u}(u,v) \times \frac{\partial \varphi}{\partial v}(u,v) \neq 0, \ \forall (u,v) \in D$$

(questa condizione assicura che i vettori $\frac{\partial \varphi}{\partial u}(u,v)$ e $\frac{\partial \varphi}{\partial v}(u,v)$ siano linearmente indipendenti per ogni $(u,v) \in D$);

- $vale \varphi(D) = S$.
- Due superfici regolari $S_1, S_2 \subset \mathbb{R}^3$, parametrizzate da $\varphi_j \colon D_j \longrightarrow \mathbb{R}^3$, j = 1, 2, rispettivamente, si dicono essere **equivalenti** se esiste una funzione sufficientemente differenziabile ed invertibile con inversa sufficientemente differenziabile (cioè un diffeomorfismo), chiamato **cambiamento di parametri**, $f \colon D_1 \ni (u,v) \longmapsto f(u,v) = (f_1(u,v), f_2(u,v)) = (u',v') \in D_2$, tale che $\varphi_1(u,v) = (\varphi_2 \circ f)(u,v)$. Si ha in particolare che $S_1 = S_2$.
- Si dice inoltre che una funzione sufficientemente differenziabile $\varphi \colon D \longrightarrow \mathbb{R}^3$ è una superficie parametrizzata (in particolare non si richiede che φ sia iniettiva). I punti $p = \varphi(u,v)$ di $S = \varphi(D)$ nei quali $\frac{\partial \varphi}{\partial u}(u,v) \times \frac{\partial \varphi}{\partial v}(u,v) \neq 0$ si dicono punti regolari di S, si dicono punti singolari altrimenti.
- Osservazione. Assumeremo tacitamente nel seguito che le parametrizzazioni considerate possano essere estese su tutto \overline{D} come funzioni continue, insieme a tutte le loro derivate parziali di ordine sufficientemente grande.

Data la superficie regolare S e dato il punto $p = \varphi(u_0, v_0) \in S$,

• il **piano tangente (la superficie** S) in p è il sottospazio vettoriale bidimensionale di \mathbb{R}^3 (passante quindi per l'origine) definito da

$$T_p S = \left\{ w = \alpha \frac{\partial \varphi}{\partial u}(u_0, v_0) + \beta \frac{\partial \varphi}{\partial v}(u_0, v_0) \in \mathbb{R}^3; \ \alpha, \beta \in \mathbb{R} \right\};$$

• il piano tangente affine in p è il piano passante per p e parallelo a T_pS , e cioè

$$p + T_p S = \{ \varphi(u_0, v_0) + w; \ w \in T_p S \}.$$

• Si ha quindi che il piano tangente affine $p+T_pS$ in $p=\varphi(u_0,v_0)$ ha equazione cartesiana

$$\left\langle \frac{\partial \varphi}{\partial u}(u_0, v_0) \times \frac{\partial \varphi}{\partial v}(u_0, v_0), \begin{bmatrix} x \\ y \\ z \end{bmatrix} - \varphi(u_0, v_0) \right\rangle = 0.$$

Data la superficie regolare S,

• definiamo il campo vettoriale normale ad S essere il campo vettoriale

$$\nu_{\varphi} \colon (u,v) \longmapsto \frac{\frac{\partial \varphi}{\partial u}(u,v) \times \frac{\partial \varphi}{\partial v}(u,v)}{\left\| \frac{\partial \varphi}{\partial u}(u,v) \times \frac{\partial \varphi}{\partial v}(u,v) \right\|}, \ (u,v) \in D$$

(si noti che l'altra scelta possibile è $\nu_{\varphi} = -\left(\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v}\right) / \left\|\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v}\right\|$);

• se $\varphi_j \colon D_j \longrightarrow S$ sono due possibili parametrizzazioni di S (con $f \colon (u,v) \longmapsto (u',v')$ cambiamento di parametri) allora, indicati con ν_{φ_j} , j=1,2, i rispettivi campi normali, si ha la seguente legge di trasformazione

$$\nu_{\varphi_1}(u,v) = \frac{\det J_f(u,v)}{|\det J_f(u,v)|} \nu_{\varphi_2}(u',v'), \quad (u',v') = f(u,v),$$

dove det J_f è il determinante della matrice jacobiana di f, $J_f = \begin{bmatrix} \frac{\partial f_1}{\partial u} & \frac{\partial f_1}{\partial v} \\ \frac{\partial f_2}{\partial u} & \frac{\partial f_2}{\partial v} \end{bmatrix}$;

• se si considerano quindi solo i cambiamenti di parametri f che abbiano det $J_f > 0$ si può definire la funzione

$$\nu \colon S \longrightarrow \mathbb{S}^2, \ \nu(p) = \nu_{\varphi}(u, v),$$

dove $p = \varphi(u, v)$ e \mathbb{S}^2 è la sfera di centro l'origine e raggio 1 di \mathbb{R}^3 . Tale funzione è chiamata **mappa di Gauss**.

• Una superficie regolare S la cui mappa di Gauss ν risulta essere **continua su tutta** S si dice superficie orientabile. (Il nastro di Möbius non è orientabile.)

Dato il punto $p = \varphi(u_0, v_0)$ della superficie regolare S, l'applicazione

$$i_{\varphi,p} \colon T_p S \ni w = w_1 \frac{\partial \varphi}{\partial u}(u_0, v_0) + w_2 \frac{\partial \varphi}{\partial v}(u_0, v_0) \longmapsto \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \in \mathbb{R}^2,$$

è un isomorphismo di spazi vettoriali. Ciò vuol dire che $i_{\varphi,p}$ è lineare, cioè $i_{\varphi,p}(\alpha w + \beta w') = \alpha i_{\varphi,p}(w) + \beta i_{\varphi,p}(w')$ per ogni $w,w' \in T_pS$ e per ogni $\alpha,\beta \in \mathbb{R}$, e che $i_{\varphi,p}$ è invertibile con inversa anch'essa lineare. Identificheremo quindi il vettore $w \in T_pS$ con il vettore $\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \in \mathbb{R}^2$. Nel seguito $\langle \cdot, \cdot \rangle_{\mathbb{R}^2}$ indicherà il prodotto scalare (euclideo) di \mathbb{R}^2 mentre quello di \mathbb{R}^3 rimarrà indicato con $\langle \cdot, \cdot \rangle$.

3.1 La prima forma fondamentale

Sia data la superficie regolare S e sia dato il punto $p = \varphi(u_0, v_0) \in S$, e siano

$$w = w_1 \frac{\partial \varphi}{\partial u}(u_0, v_0) + w_2 \frac{\partial \varphi}{\partial v}(u_0, v_0), \ w' = w_1' \frac{\partial \varphi}{\partial u}(u_0, v_0) + w_2' \frac{\partial \varphi}{\partial v}(u_0, v_0),$$

due vettori di T_pS . Quindi

$$w=\mathsf{i}_{\varphi,p}^{-1}(\left[\begin{array}{c}w_1\\w_2\end{array}\right]),\quad w'=\mathsf{i}_{\varphi,p}^{-1}(\left[\begin{array}{c}w_1'\\w_2'\end{array}\right]).$$

• Si definiscono le funzioni di (u, v)

$$E = \left\| \frac{\partial \varphi}{\partial u} \right\|^2, \ G = \left\| \frac{\partial \varphi}{\partial v} \right\|^2, \ F = \left\langle \frac{\partial \varphi}{\partial u}, \frac{\partial \varphi}{\partial v} \right\rangle.$$

• La prima forma fondamentale di S in p è la forma quadratica $I_p(w, w)$, $w \in T_pS$, dove $I_p: T_pS \times T_pS \longrightarrow \mathbb{R}$ è la mappa bilineare (cioè simmetrica e lineare nel primo e nel secondo argomento) definita da

$$\mathsf{I}_p(w,w') = \langle w,w' \rangle = \left\langle \left[\begin{array}{cc} E(u_0,v_0) & F(u_0,v_0) \\ F(u_0,v_0) & G(u_0,v_0) \end{array} \right] \left[\begin{array}{c} w_1 \\ w_2 \end{array} \right], \left[\begin{array}{c} w_1' \\ w_2' \end{array} \right] \right\rangle_{\mathbb{R}^2}, \quad \forall w,w' \in T_pS,$$

dove

$$w = \mathbf{i}_{\varphi,p}^{-1}(\left[\begin{array}{c} w_1 \\ w_2 \end{array}\right]), \quad w' = \mathbf{i}_{\varphi,p}^{-1}(\left[\begin{array}{c} w_1' \\ w_2' \end{array}\right]).$$

(La matrice che definisce I_p è quella indotta dall'isomorfismo $i_{\varphi,p}$).

• Dalla relazione $\|w \times w'\|^2 = \|w\|^2 \|w'\|^2 - \langle w, w' \rangle^2$, si ottiene

$$EG - F^2 = \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right\|^2 > 0$$

(per ipotesi).

- I_p è definita positiva, cioè $I_p(w, w) \ge 0$ per ogni $w \in T_pS$ e $I_p(w, w) = 0$ se e solo se w = 0; ciò equivale a dire che per la relativa matrice si ha $EG F^2 > 0$ (essendo E > 0 per costruzione).
- Quindi I_p è un prodotto scalare su ogni T_pS , chiamato anche prodotto scalare intrinseco di S in p o metrica Riemanniana di S in p. Si può perciò definire $\sqrt{I_p(w,w)}$ essere la lunghezza **intrinseca** del vettore tangente $w \in T_pS$.
- Se φ_j , j=1,2, sono parametrizzazioni equivalenti di S, cioè $\varphi_1=\varphi_2\circ f$, con f cambiamento di parametri, allora

$$\begin{bmatrix} E_{\varphi_1} & F_{\varphi_1} \\ F_{\varphi_1} & G_{\varphi_1} \end{bmatrix} = {}^tJ_f \begin{bmatrix} E_{\varphi_2} & F_{\varphi_2} \\ F_{\varphi_2} & G_{\varphi_2} \end{bmatrix} J_f.$$

In particolare, con $p = \varphi_1(u_0, v_0) = \varphi_2(u'_0, v'_0)$, la l_p non dipende dalla parametrizzazione scelta φ_j .

• Se $T=\varphi(K)\subset S,\,K$ un sottoinsieme chiuso e limitato di D, allora si definisce area della porzione T di superficie l'integrale

$$Area(T) = \iint_K \sqrt{EG - F^2} \, du \, dv.$$

L'area non dipende dalla parametrizzazione scelta.

3.2 Curvatura normale e curvatura geodetica di una curva di S

Sia S una superficie regolare. Una curva regolare $\gamma \colon I \longrightarrow \mathbb{R}^3$ è **contenuta** in S (oppure è **su** S) se $\gamma(I) \subset S$. Scriveremo $\varphi \colon I \longrightarrow S$. In questo caso si può vedere che, almeno vicino ad ogni t_0 arbitrariamente fissato nella parte interna di I, $\gamma(t) = \varphi(u(t), v(t))$, dove $t \longmapsto (u(t), v(t))$ è una curva regolare (piana) contenuta in D. Si ha che γ è parametrizzata ad arco se e solo se $\|\gamma'\| = 1$, e poiché $\gamma'(s) \in T_{\gamma(s)}S$ ciò equivale a dire $I_{\gamma(s)}(\dot{\gamma}(s), \dot{\gamma}(s)) = 1$.

Sia $\gamma: I \longrightarrow S$ parametrizzata ad arco.

• Si definisce vettore normale intrinseco di γ in S nel punto $\gamma(s)$ il vettore

$$N_S(s) = \nu(\gamma(s)) \times T(s).$$

• Si definisce curvatura geodetica di γ in $\gamma(s)$

$$k_q(s) = \langle \ddot{\gamma}(s), N_S(s) \rangle = \det \left[\ddot{\gamma}(s) | \nu(\gamma(s)) | T(s) \right].$$

• Si definisce curvatura normale di γ in $\gamma(s)$

$$k_n(s) = \langle \ddot{\gamma}(s), \nu(\gamma(s)) \rangle.$$

• Siccome $\dot{\gamma}(s) = T(s)$ e quindi $\ddot{\gamma}(s) = \dot{T}(s) = k(s)N(s)$, essendo i vettori T(s) e $N_S(s)$ una base ortonormale di $T_{\gamma(s)}S$, si ottiene la relazione

$$k(s)N(s) = k_q(s)N_S(s) + k_n(s)\nu(\gamma(s)),$$

da cui

$$k(s) = \sqrt{k_n(s)^2 + k_g(s)^2}.$$

In particolare si ha anche che

$$k_n(s) = k(s) \cos \Big(\operatorname{angolo}(N(s), \nu(\gamma(s)) \Big).$$

• Poiché ogni curva regolare $\gamma \colon I \longrightarrow S$ può essere riparametrizzata ad arco, la curvatura geodetica di una curva regolare qualsiasi (cioè non necessariamente parametrizzata ad arco), è la curvatura geodetica della curva equivalente a γ parametrizzata ad arco. In particolare si ha, per la curvatura geodetica in ogni punto $\gamma(t)$, la formula

$$k_g = \frac{1}{\|\gamma'(t)\|^3} \langle \gamma''(t), \nu(\gamma(t)) \times \gamma'(t) \rangle = \frac{1}{\|\gamma'(t)\|^3} \det[\gamma''(t)|\nu(\gamma(t))|\gamma'(t)].$$

La formula si verifica facilmente nella maniera seguente. Ricordando che

$$v_1 \times (v_2 \times v_3) = \langle v_1, v_3 \rangle v_2 - \langle v_1, v_2 \rangle v_3, \quad \forall v_1, v_2, v_3 \in \mathbb{R}^3,$$

che

$$T = \frac{\gamma'}{\|\gamma'\|}, \ N_S = \nu \times \frac{\gamma'}{\|\gamma'\|}, \ B = \frac{\gamma' \times \gamma''}{\|\gamma' \times \gamma''\|}, \ k = \frac{\|\gamma' \times \gamma''\|}{\|\gamma'\|^3},$$

e quindi che

$$N = B \times T = \frac{-1}{\|\gamma'\| \|\gamma' \times \gamma''\|} \Big(\langle \gamma', \gamma'' \rangle \gamma' - \|\gamma'\|^2 \gamma'' \Big),$$

la formula segue dalla definizione

$$k_a = \langle kN, \nu \times T \rangle.$$

• Una curva regolare $\gamma \colon I \longrightarrow S$ si dice essere una geodetica di S se $k_g = 0$ in tutti i punti $\gamma(t), t \in I$.

Le geodetiche hanno la proprietà di essere le curve di lunghezza minima tra due punti arbitrari $p_0, p_1 \in S$, ma "abbastanza vicini" relativamente alla distanza sulla superficie

$$\operatorname{dist}_{S}(p_{0}, p_{1}) = \inf_{\gamma \in \mathcal{C}_{S}(p_{0}, p_{1})} \operatorname{lunghezza}(\gamma),$$

dove $C_S(p_0, p_1)$ denota l'insieme delle curve regolari $\gamma \colon [a, b] \longrightarrow S$ tali che $\gamma(a) = p_0$ e $\gamma(b) = p_1$, e lunghezza $(\gamma) = \int_a^b \|\gamma'(t)\| dt$.

- Quindi tutte le rette contenute nella superificie sono geodetiche della superficie, poiché
 k = 0 ⇒ k_q = 0.
- La condizione di geodeticità significa che il piano osculatore **vettoriale** della curva (cioè il traslato per l'origine, parallelo al piano osculatore) contiene, **in ogni punto** $\gamma(t)$ della curva, il vettore normale ν , essendo in questo caso $k = |k_n|$, e quindi, essendo $kN = k_n\nu$, nei punti della curva risulta $N = \pm \nu$.
- Risulta allora immediato dal punto precedente che i cerchi massimi su una sfera sono curve geodetiche, e sono tutte e le sole curve geodetiche della superficie della sfera.

3.3 La seconda forma fondamentale

Sia S regolare, $p = \varphi(u_0, v_0) \in S$, e siano $w, w' \in T_pS$.

• Si definiscono le funzioni di (u, v)

$$\begin{split} \mathbf{e} &= \left\langle \frac{\partial^2 \varphi}{\partial u^2}, \nu \right\rangle = \frac{1}{\sqrt{EG - F^2}} \det \left[\frac{\partial^2 \varphi}{\partial u^2} \middle| \frac{\partial \varphi}{\partial u} \middle| \frac{\partial \varphi}{\partial v} \right], \\ \mathbf{g} &= \left\langle \frac{\partial^2 \varphi}{\partial v^2}, \nu \right\rangle = \frac{1}{\sqrt{EG - F^2}} \det \left[\frac{\partial^2 \varphi}{\partial v^2} \middle| \frac{\partial \varphi}{\partial u} \middle| \frac{\partial \varphi}{\partial v} \right], \\ \mathbf{f} &= \left\langle \frac{\partial^2 \varphi}{\partial u \partial v}, \nu \right\rangle = \frac{1}{\sqrt{EG - F^2}} \det \left[\frac{\partial^2 \varphi}{\partial u \partial v} \middle| \frac{\partial \varphi}{\partial u} \middle| \frac{\partial \varphi}{\partial v} \right]. \end{split}$$

(Dati i vettori w, w', w'' di \mathbb{R}^3 , si indica con [w|w'|w''] la matrice 3×3 le cui colonne sono i vettori w, w' e w'', rispettivamente.)

• La seconda forma fondamentale di S in p è la forma quadratica $\Pi_p(w, w)$, $w \in T_pS$, dove $\Pi_p \colon T_pS \times T_pS \longrightarrow \mathbb{R}$ è la mappa bilineare definita da

$$\label{eq:final_p} \mathsf{II}_p(w,w') = \left\langle \left[\begin{array}{cc} \mathsf{e}(u_0,v_0) & \mathsf{f}(u_0,v_0) \\ \mathsf{f}(u_0,v_0) & \mathsf{g}(u_0,v_0) \end{array} \right] \left[\begin{array}{c} w_1 \\ w_2 \end{array} \right], \left[\begin{array}{c} w_1' \\ w_2' \end{array} \right] \right\rangle_{\mathbb{R}^2}, \quad \forall w,w' \in T_p S,$$

dove

$$w=\mathsf{i}_{\varphi,p}^{-1}(\left[\begin{array}{c}w_1\\w_2\end{array}\right]),\quad w'=\mathsf{i}_{\varphi,p}^{-1}(\left[\begin{array}{c}w_1'\\w_2'\end{array}\right]).$$

(La matrice che definisce Π_p è quella indotta dall'isomorfismo $i_{\varphi,p}$).

• Se φ_j , j = 1, 2, sono parametrizzazioni positivamente equivalenti di S, cioè $\varphi_1 = \varphi_2 \circ f$, con f cambiamento di parametri tale det $J_f > 0$, allora

$$\begin{bmatrix} \mathsf{e}_{\varphi_1} & \mathsf{f}_{\varphi_1} \\ \mathsf{f}_{\varphi_1} & \mathsf{g}_{\varphi_1} \end{bmatrix} = {}^t J_f \begin{bmatrix} \mathsf{e}_{\varphi_2} & \mathsf{f}_{\varphi_2} \\ \mathsf{f}_{\varphi_2} & \mathsf{g}_{\varphi_2} \end{bmatrix} J_f.$$

In particolare la Π_p dipende solamente dalla scelta di ν (e cioè dall'aver scelto $\nu_{\varphi} = \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} / \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right\|$ invece di $\nu_{\varphi} = -\left(\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right) / \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right\|$).

• Se $\gamma: s \longmapsto \gamma(s) \in S$ è parametrizzata ad arco, cioè $\mathsf{L}_{\gamma(s)}(\dot{\gamma}(s), \dot{\gamma}(s)) = 1$, allora

$$\Pi_{\gamma(s)}(\dot{\gamma}(s),\dot{\gamma}(s)) = k_n(s).$$

Si noti allora che in generale per una curva regolare $\gamma\colon t\longmapsto \gamma(t)\in S$, non necessariamente parametrizzata ad arco, la curvatura normale k_n della curva γ nel punto $p=\gamma(t_0)\in S$ è data dalla formula

$$k_n = \frac{\mathsf{II}_{\gamma(t_0)}(\gamma'(t_0), \gamma'(t_0))}{\mathsf{I}_{\gamma(t_0)}(\gamma'(t_0), \gamma'(t_0))}.$$

- Teorema. (Meusnier) Se $\gamma_j: s_j \mapsto \gamma_j(s_j) \in S$, s_j parametro d'arco relativo a γ_j , j = 1, 2 rispettivamente, sono curve tali che $\gamma_1(s_{1,0}) = \gamma_2(s_{2,0}) = p$ e $\dot{\gamma}_1(s_{1,0}) = \pm \dot{\gamma}_2(s_{2,0})$, allora $k_{n,\gamma_1}(s_{1,0}) = k_{n,\gamma_2}(s_{2,0})$.
- Poiché ogni curva regolare è riparametrizzabile ad ascissa d'arco, il teorema di Meusnier può essere anche enunciato dicendo che due curve regolari $\gamma_j \colon I_j \longrightarrow S, \ j=1,2, \ che$ passano per lo stesso punto $p \in S$ ed ivi hanno la stessa retta tangente, hanno in p la stessa curvatura normale.
- Il teorema di Meusnier permette di selezionare tra tutte le curve regolari su S passanti per un punto $p \in S$ le sezioni normali di S in p nella direzione $v \in T_pS$ (si ricordi che una direzione è un vettore diverso da zero). Esse sono curve ottenute intersecando S con il piano per p di direzioni $\nu(p)$ e v (vicino a p tali sezioni sono sempre curve regolari). La curvatura di una sezione normale è quindi il valore assoluto della rispettiva curvatura normale. Il teorema di Meusnier può essere quindi riformulato dicendo che il valore assoluto della curvatura normale nel punto $p = \gamma(t_0) \in S$ di una curva regolare γ su S passante per p eguaglia la curvatura in p della sezione normale di S in p nella direzione $\pm \gamma'(t_0)$. In particolare, il piano osculatore di una sezione normale di S in un punto p nella direzione $v \in T_pS$ coincide con il piano per p e direzioni $v \in \nu(p)$.
- Le curvature principali $k_{-}(p), k_{+}(p)$ di S in p sono

$$k_{-}(p) = \min_{w \in C_S(p)} \mathsf{II}_p(w, w), \quad k_{+}(p) = \max_{w \in C_S(p)} \mathsf{II}_p(w, w),$$

dove $C_S(p)$ è la conica a centro di T_pS definita da

$$C_S(p) = \{ w \in T_p S; \ \mathsf{I}_p(w, w) = 1 \}.$$

• La mappa di Weingarten (o operatore forma) di S in p è l'applicazione lineare

$$L_p: T_pS \longrightarrow T_pS$$

definita dalla relazione

$$\mathsf{II}_p(w, w') = \mathsf{I}_p(L_p w, w'), \quad \forall w, w' \in T_p S.$$

• La mappa di Weingarten L_p è simmetrica rispetto ad I_p , cioè

$$I_p(L_p w, w') = I_p(w, L_p w'), \quad \forall w, w' \in T_p S.$$

• La mappa di Weingarten L_p ammette la seguente rappresentazione matriciale L_p nella base di T_pS data da $\{\frac{\partial \varphi}{\partial u}(u_0, v_0), \frac{\partial \varphi}{\partial v}(u_0, v_0)\}$ (cioè la matrice L_p che definisce L_p è quella indotta dall'isomorfismo $\mathsf{i}_{\varphi,p}$):

$$\begin{split} \mathsf{L}_p &= \left[\begin{array}{ccc} E(u_0, v_0) & F(u_0, v_0) \\ F(u_0, v_0) & G(u_0, v_0) \end{array} \right]^{-1} \left[\begin{array}{ccc} \mathsf{e}(u_0, v_0) & \mathsf{f}(u_0, v_0) \\ \mathsf{f}(u_0, v_0) & \mathsf{g}(u_0, v_0) \end{array} \right] = \\ &= \frac{1}{E(u_0, v_0)G(u_0, v_0) - F(u_0, v_0)^2} \left[\begin{array}{ccc} G(u_0, v_0) & -F(u_0, v_0) \\ -F(u_0, v_0) & E(u_0, v_0) \end{array} \right] \left[\begin{array}{ccc} \mathsf{e}(u_0, v_0) & \mathsf{f}(u_0, v_0) \\ \mathsf{f}(u_0, v_0) & \mathsf{g}(u_0, v_0) \end{array} \right]. \end{split}$$

- Teorema. (Rodrigues) Le curvature principali $k_{\pm}(p)$ di S in p sono gli autovalori della matrice L_p . Denotati con $\tilde{w}_{\pm}(p) \in \mathbb{R}^2$ i rispettivi autovettori, i vettori $w_{\pm}(p) = \mathsf{i}_{\varphi,p}^{-1}(\tilde{w}_{\pm}(p)) \in T_pS \subset \mathbb{R}^3$ si chiamano direzioni principali, e possono essere sempre scelti ortonormali rispetto a I_p (sono automaticamente ortogonali rispetto a I_p quando $k_-(p) \neq k_+(p)$), cioè $\mathsf{I}_p(w_-(p), w_-(p)) = \mathsf{I}_p(w_+(p), w_+(p)) = 1$ e $\mathsf{I}_p(w_-(p), w_+(p)) = 0$. Si noti che quindi vale $L_pw_{\pm}(p) = k_{\pm}(p)w_{\pm}(p)$ e che i $w_{\pm}(p)$ sono ortonormali rispetto al prodotto scalare euclideo $\langle \cdot, \cdot \rangle$ di \mathbb{R}^3 .
- Se $\gamma: s \mapsto \gamma(s) \in S$ è una curva regolare parametrizzata ad arco sulla superficie S, e $p = \gamma(s_0)$, allora

$$T(s_0) = \mathsf{I}_p(T(s_0), w_-(p)) w_-(p) + \mathsf{I}_p(T(s_0), w_+(p)) w_+(p) = (\cos \alpha) w_-(p) + (\sin \alpha) w_+(p).$$

Si ottengono quindi, usando $L_p w_{\pm}(p) = k_{\pm}(p) w_{\pm}(p)$ e la bilinearità di Π_p , le seguenti formule di Eulero:

$$k_n(s_0) = \mathsf{II}_p(T(s_0), T(s_0)) = (\cos \alpha)^2 k_-(p) + (\sin \alpha)^2 k_+(p).$$

3.4 Curvatura di Gauss e Curvatura Media

Si definiscono le seguenti funzione su S, superficie regolare:

• La curvatura di Gauss: in ogni punto $p \in S$ essa è data da

$$K(p) = k_-(p)k_+(p) = \frac{\mathsf{eg} - \mathsf{f}^2}{EG - F^2} = \det(\mathsf{L_p}).$$

• La curvatura media: in ogni punto $p \in S$ essa è data da

$$H(p) = \frac{k_{-}(p) + k_{+}(p)}{2} = \frac{G\mathsf{e} + E\mathsf{g} - 2F\mathsf{f}}{2(EG - F^2)} = \frac{1}{2}\mathrm{Tr}(\mathsf{L_p}).$$

• Osservazione importante. Date K(p) e H(p), le curvature principali sono le soluzioni dell'equazione

$$\det(\mathsf{L}_\mathsf{p} - \lambda I) = \lambda^2 - \mathrm{Tr}(\mathsf{L}_\mathsf{p})\lambda + \det(\mathsf{L}_\mathsf{p}) = \lambda^2 - 2H(p)\lambda + K(p) = 0.$$

Quindi si ha

$$k_{\pm}(p) = H(p) \pm \sqrt{H(p)^2 - K(p)}.$$

- Ogni punto $p \in S$ è classificato nella seguente maniera:
 - $p \in \mathbf{ellittico} \ \mathrm{se} \ K(p) > 0$;
 - p è iperbolico se K(p) < 0;
 - $p \ \text{è} \ \mathbf{parabolico} \ \text{se} \ K(p) = 0 \ \text{e} \ H(p) \neq 0;$
 - $p \ ensuremath{\mbox{e}} \ p \ ensuremath{\mbox{e}} \ p \ ensuremath{\mbox{o}} \ p \ ensuremath{\m$
 - p è un **ombelico** se $k_{-}(p) = k_{+}(p)$.
- Dato il punto $p = \varphi(u_0, v_0) \in S$, usando la funzione altezza di S relativamente a $T_p S$, definita da $h_S : (u, v) \longmapsto \langle \varphi(u, v) \varphi(u_0, v_0), \nu(p) \rangle = \mathsf{pr}_{\nu(p)} \big(\varphi(u, v) \varphi(u_0, v_0) \big)$, si vedono le seguenti cose:
 - se K(p) > 0 allora c'è un intorno del punto p in \mathbb{R}^3 nel quale tutti i punti di S giacciono dalla **stessa parte** rispetto al piano tangente affine $p + T_pS$;
 - se K(p) < 0 allora c'è un intorno del punto p in \mathbb{R}^3 nel quale i punti di S si distribuiscono da **ambo le parti** rispetto al piano tangente affine $p + T_p S$.
- Vale la cosa seguente: se tutti i punti di S sono ombelichi, allora S è contenuta in una sfera o in un piano.
- Sia $p = \varphi(u_0, v_0) \in S$. Il paraboloide osculatore di S in $p = \varphi(u_0, v_0)$ è il paraboloide dello spazio $\mathbb{R}^3_{(u,v,h_S)}$ di equazione

$$h_S = \frac{1}{2} \left\langle \left[\begin{array}{cc} \mathsf{e}(u_0, v_0) & \mathsf{f}(u_0, v_0) \\ \mathsf{f}(u_0, v_0) & \mathsf{g}(u_0, v_0) \end{array} \right] \left[\begin{array}{c} u \\ v \end{array} \right], \left[\begin{array}{c} u \\ v \end{array} \right] \right\rangle_{\mathbb{R}^2}.$$

• Osservazione importante. I concetti di prima e seconda forma fondamentale, mappe di Gauss e Weingarten, curvature normali, geodetiche e principali, curvatura di Gauss e curvatura media si estendono anche al caso di superfici parametrizzate (cioè non necessariamente regolari) purché si restringa l'attenzione ai soli punti regolari.

3.5 Teoremi importanti

• **Teorema.** (Prima parte del Teorema fondamentale della teoria delle superfici, di Bonnet) Date le superfici regolari S_j , di parametrizzazioni rispettive $\varphi_j \colon D \longrightarrow \mathbb{R}^3$, j=1,2 (stesso insieme D) si supponga che, avendo scelto (come sempre) $\nu_{\varphi_j} = \frac{\partial \varphi_j}{\partial u} \times \frac{\partial \varphi_j}{\partial v} / \left\| \frac{\partial \varphi_j}{\partial u} \times \frac{\partial \varphi_j}{\partial v} \right\|, j=1,2$, si abbia

$$\left[\begin{array}{ccc} E_{\varphi_1}(u,v) & F_{\varphi_1}(u,v) \\ F_{\varphi_1}(u,v) & G_{\varphi_1}(u,v) \end{array}\right] = \left[\begin{array}{ccc} E_{\varphi_2}(u,v) & F_{\varphi_2}(u,v) \\ F_{\varphi_2}(u,v) & G_{\varphi_2}(u,v) \end{array}\right],$$

e

$$\begin{bmatrix} \mathsf{e}_{\varphi_1}(u,v) & \mathsf{f}_{\varphi_1}(u,v) \\ \mathsf{f}_{\varphi_1}(u,v) & \mathsf{g}_{\varphi_1}(u,v) \end{bmatrix} = \begin{bmatrix} \mathsf{e}_{\varphi_2}(u,v) & \mathsf{f}_{\varphi_2}(u,v) \\ \mathsf{f}_{\varphi_2}(u,v) & \mathsf{g}_{\varphi_2}(u,v) \end{bmatrix},$$

per tutti gli $(u,v) \in D$. Allora esiste una rototraslazione R dello spazio \mathbb{R}^3 in sè tale che $\varphi_1 = R \circ \varphi_2$. In particolare $S_1 = R(S_2)$.

• Theorema Egregium. (Gauss) La curvatura di Gauss K è intrinseca, cioè dipende solamente dalla prima forma fondamentale.

Una delle dimostrazioni è data dalla seguente formula (dovuta a F.Brioschi)

$$K = \frac{1}{(EG - F^2)^2} \left[\left(\frac{\partial^2 F}{\partial u \partial v} - \frac{1}{2} \frac{\partial^2 E}{\partial v^2} - \frac{1}{2} \frac{\partial^2 G}{\partial u^2} \right) (EG - F^2) + \right.$$

$$+ \det \left[\begin{array}{ccc} 0 & \frac{1}{2} \frac{\partial E}{\partial u} & \frac{\partial F}{\partial u} - \frac{1}{2} \frac{\partial E}{\partial v} \\ \frac{\partial F}{\partial v} - \frac{1}{2} \frac{\partial G}{\partial u} & E & F \\ \frac{1}{2} \frac{\partial G}{\partial v} & F & G \end{array} \right] - \det \left[\begin{array}{ccc} 0 & \frac{1}{2} \frac{\partial E}{\partial v} & \frac{1}{2} \frac{\partial G}{\partial u} \\ \frac{1}{2} \frac{\partial E}{\partial v} & E & F \\ \frac{1}{2} \frac{\partial G}{\partial v} & F & G \end{array} \right].$$

3.6 Superfici di rotazione

Sia $I \subset \mathbb{R}$ un intervallo aperto, sia $I_0 \subset I$, con I = [a,b] se $a,b \in \mathbb{R}$ ovvero $(-\infty,b]$ o $[a,+\infty)$ se $a = -\infty$ o $b = +\infty$, rispettivamente. Siano $r,h\colon I \longrightarrow \mathbb{R}$ funzioni C^∞ , con $r(u) \geq 0$ per $u \in I$ e r(u) > 0 per $u \in I_0$, e tali che $r'(u)^2 + h'(u)^2 \neq 0$ per $u \in I$. Una superficie di rotazione è una superficie semplice e regolare di \mathbb{R}^3 ottenuta facendo ruotare la curva regolare, chiamata curva generatrice, $u \longmapsto (r(u), h(u)) \in [0, +\infty) \times \mathbb{R}$ (essa è regolare in quanto $(r')^2 + (h')^2 \neq 0$) del piano x, z intorno all'asse z. Si ottiene quindi una parametrizzazione

$$\varphi \colon (u,v) \longmapsto \varphi(u,v) = \Big(r(u)\cos v, r(u)\sin v, h(u) \Big), \quad (u,v) \in I_0 \times (0,2\pi).$$

In questo caso

$$\nu_{\varphi}(u,v) = \frac{1}{\sqrt{r'(u)^2 + h'(u)^2}} \begin{bmatrix} -h'(u)\cos v \\ -h'(u)\sin v \\ r'(u) \end{bmatrix},$$

e, relativamente alla base $\partial \varphi/\partial u$, $\partial \varphi/\partial v$, si hanno le formule:

• la matrice della prima forma fondamentale è

$$\left[\begin{array}{cc} r'(u)^2 + h'(u)^2 & 0\\ 0 & r(u)^2 \end{array}\right];$$

• la matrice della seconda forma fondamentale è

$$\begin{bmatrix} \frac{r'(u)h''(u) - h'(u)r''(u)}{\sqrt{r'(u)^2 + h'(u)^2}} & 0\\ 0 & \frac{r(u)h'(u)}{\sqrt{r'(u)^2 + h'(u)^2}} \end{bmatrix};$$

• la matrice della mappa di Weingarten è

$$\begin{bmatrix} \frac{r'(u)h''(u) - h'(u)r''(u)}{(r'(u)^2 + h'(u)^2)^{3/2}} & 0\\ 0 & \frac{h'(u)}{r(u)\sqrt{r'(u)^2 + h'(u)^2}} \end{bmatrix};$$

• si noti che se si pone

$$k_1 = k_1(u) := \frac{r'(u)h''(u) - h'(u)r''(u)}{(r'(u)^2 + h'(u)^2)^{3/2}},$$

allora $|k_1|$ è la curvatura della curva generatrice $u \longmapsto (r(u), h(u));$

• la curvatura di Gauss e la curvatura media sono date rispettivamente dalle funzioni

$$K = \frac{h'}{r} \frac{r'h'' - h'r''}{((r')^2 + (h')^2)^2}, \quad H = \frac{1}{2\sqrt{(r')^2 + (h')^2}} \left(\frac{r'h'' - h'r''}{(r')^2 + (h')^2} + \frac{h'}{r}\right).$$

- I meridiani, per esempio parametrizzati ad arco, $s \mapsto \gamma_{v_0}(s) = \varphi(u(s), v_0)$ (il parametro d'arco è definito dall'equazione differenziale $\dot{u}(s) = 1/\sqrt{r'(u(s))^2 + h'(u(s))^2}$), sono curve geodetiche: $k_g(s) = 0$.
- I paralleli, per esempio parametrizzati ad arco, $s \mapsto \gamma_{u_0}(s) = \varphi(u_0, v(s))$ (il parametro d'arco è definito dall'equazione differenziale $\dot{v}(s) = 1/r(u_0)$), sono **curve geodetiche** se e solo se $r'(u_0) = 0$, cioè se e solo se il relativo vettore velocità della curva generatrice è nella direzione dell'asse z quando $u = u_0$. Infatti si ha

$$k_g(s) = \frac{r'(u_0)}{r(u_0)\sqrt{r'(u_0)^2 + h'(u_0)^2}} = 0 \iff r'(u_0) = 0.$$

• Denfinizione. Data la superficie di rotazione S, definiamo S_c ("completamento" di S) la superficie ottenuta facendo ruotare la curva generatrice di un intero angolo 2π . Si ha quindi che S_c è ottenuta da S aggiungendo ad S il meridiano

$$C_0 := \{(r(u), 0, h(u)); u \in I_0\}.$$

• Il Teorema di Clairaut. Sia S una superficie di rotazione parametrizzata dalla mappa $\varphi \colon (u,v) \longmapsto \varphi(u,v) = (r(u)\cos v, r(u)u\sin v, h(u))$. Se una curva regolare $\psi \colon s \longmapsto \psi(s) = \varphi(u(s),v(s)) \in S$ (con s parametro d'arco di ψ) è una geodetica allora, detto $\theta(s) \in [0,\pi]$ l'angolo formato dalla curva ed il parallelo $v \longmapsto \varphi(u(s),v)$ nel punto $\psi(s) = \varphi(u(s),v(s)) \in S$, si ha

$$s \longmapsto r(u(s))\cos\theta(s) = \text{costante}.$$

3.7 Superfici rigate

Siano $\gamma \colon I \subset \mathbb{R} \longrightarrow \mathbb{R}^3$ una curva (non necessariamente regolare né semplice), e sia $X \colon I \longrightarrow \mathbb{R}^3$ un campo vettoriale, con $\|X(u)\| \neq 0$ per tutti gli $u \in I$. (Quando I = [a, b] e γ è **chiusa** si richiede qui che sia X(a) = X(b).)

Una superficie rigata è una superficie parametrizzata dalla funzione

$$\varphi \colon (u, v) \longmapsto \varphi(u, v) = \gamma(u) + vX(u), \quad (u, v) \in I \times \mathbb{R}.$$

La curva γ è chiamata una direttrice della superficie. La retta contenuta nella superficie passante per il punto $\varphi(u_0, v_0)$ è l'insieme $R(u_0) := \{\gamma(u_0) + vX(u_0); v \in \mathbb{R}\}$. Essa è chiamata una retta generatrice. La superficie si dice non cilindrica se $\|X'(u)\| \neq 0$ per tutti gli $u \in I$.

• Definizione. Diciamo che una superficie S di rotazione è rigata se lo è la superficie S_c .

Si hanno i seguenti esempi:

• Cono sopra la curva γ : presa γ regolare, fissato $P_0 \notin \gamma(I)$, si considera

$$\varphi \colon (u,v) \longmapsto \varphi(u,v) = \gamma(u) + v(P_0 - \gamma(u)), \quad u \in I, v \in \mathbb{R}.$$

• Cilindro sopra la curva γ : presa γ regolare, fissato il vettore (costante non nullo) $\vec{w} \in \mathbb{R}^3$, si considera

$$\varphi \colon (u, v) \longmapsto \varphi(u, v) = \gamma(u) + v\vec{w}, \quad u \in I, v \in \mathbb{R}.$$

• Iperboloide ad una falda: si prendono $a,b,c>0,\ \gamma\colon u\longmapsto (a\cos u,b\sin u,0),$ e

$$X: u \longmapsto \gamma'(u) + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = (-a \sin u, b \cos u, c).$$
 Allora

$$\varphi \colon (u,v) \longmapsto \varphi(u,v) = \Big(a(\cos u - v\sin u), b(\sin u + v\cos u), cv\Big), \quad u \in [0,2\pi], \ v \in \mathbb{R}.$$

L'equazione cartesiana è

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2} + 1.$$

• L'elicoide: si sceglie c>0 e si considera $X(u)=\begin{bmatrix}\cos u\\\sin u\\0\end{bmatrix}$. In questo caso γ è la curva $u\longmapsto (0,0,cu)$. Allora

$$\varphi \colon (u, v) \longmapsto \varphi(u, v) = (v \cos u, v \sin u, cu), \quad u, v \in \mathbb{R}.$$

• Il paraboloide iperbolico: presi a, b > 0, si considerano varie possibilità:

- si prende $\gamma \colon u \longmapsto (au, 0, u^2), X_{\pm} \colon u \longmapsto \begin{bmatrix} a \\ \pm b \\ 2u \end{bmatrix}, \text{ e } \varphi_{\pm} \colon (u, v) \longmapsto \varphi_{\pm}(u, v) = \gamma(u) + vX_{\pm}(u), u, v \in \mathbb{R};$
- si prende $\sigma_{\pm} \colon u \longmapsto (au, \pm bu, 0), Y_{\pm} \colon u \longmapsto \begin{bmatrix} a \\ \mp b \\ 4u \end{bmatrix}, \text{ e } \psi_{\pm} \colon (u, v) \longmapsto \psi_{\pm}(u, v) = \sigma_{\pm}(u) + vY_{\pm}(u), u, v \in \mathbb{R}.$

In tutti i casi l'equazione cartesiana è

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}.$$

16

• Per le superfici rigate si ha sempre

$$E = \|\gamma'(u) + vX'(u)\|^2, \ G = \|X(u)\|^2, \ F = \langle \gamma'(u) + vX'(u), X(u) \rangle,$$

per cui nei punti regolari (cioè i punti nei quali $EG - F^2 \neq 0$)

$$\mathbf{e} = \frac{\det\left[\gamma''(u) + vX''(u)\left|\gamma'(u) + vX'(u)\right|X(u)\right]}{\sqrt{EG - F^2}}, \quad \mathbf{g} = 0,$$

$$\mathsf{f} = \frac{\det \left[X'(u) \left| \gamma'(u) \right| X(u) \right]}{\sqrt{EG - F^2}}.$$

Perciò per le superfici rigate, nei punti regolari, vale sempre

$$K = -\frac{\mathsf{f}^2}{EG - F^2} = -\left(\frac{\det\left[X'(u)\left|\gamma'(u)\right|X(u)\right]}{EG - F^2}\right)^2 \le 0,$$

e le rette contenute nella superficie (cioè che "rigano" la superficie) sono geodetiche.

- Si ha che le uniche superfici di rotazione che sono anche rigate, ottenute facendo ruotare una retta dello spazio, sono quelle con K=0 e l'iperboloide ad una falda $\frac{x^2+y^2}{a^2}-\frac{z^2}{c^2}=1 \ quando \ K<0.$
- La superficie tangente, normale e binormale ad una curva: $\sin \gamma \colon I \ni s \longmapsto \gamma(s)$ una curva regolare e biregolare parametrizzata ad arco.
 - La superficie **tangente** è la superficie parametrizzata da

$$\varphi(s, v) = \gamma(s) + vT(s), \quad s \in I, \ v \in \mathbb{R}.$$

- La superficie **normale** è la superficie parametrizzata da

$$\varphi(s,v) = \gamma(s) + vN(s), \quad s \in I, \ v \in \mathbb{R}.$$

- La superficie binormale è la superficie parametrizzata da

$$\varphi(s,v) = \gamma(s) + vB(s), \quad s \in I, \ v \in \mathbb{R}.$$

È importante notare che la definizione si estende facilmente a curve non necessariamente parametrizzate ad arco.

• Il nastro di Möbius (non è orientabile): presi $R \ge 1$ e $0 < \varepsilon < R/2$, si considera

$$\varphi \colon [0,2\pi] \times (-\varepsilon,\varepsilon) \longmapsto \Big((R+v\sin\frac{u}{2})\sin u, (R-v\sin\frac{u}{2})\cos u, v\cos\frac{u}{2} \Big).$$

Pertanto la curva direttrice γ ed il campo di direzioni X sono dati, rispettivamente, da

$$\gamma(u) = (R \sin u, R \cos u, 0), \quad X(u) = (\sin \frac{u}{2} \sin u, -\sin \frac{u}{2} \cos u, \cos \frac{u}{2}).$$

3.8 Superfici sviluppabili

Una superficie rigata parametrizzata da $\varphi: (u, v) \longmapsto \varphi(u, v) = \gamma(u) + vX(u)$ (stesse notazioni della sezione precedente) con ||X|| = 1 si dice *sviluppabile* quando

$$\det \left[\gamma' \left| X' \right| X \right] = 0.$$

Nei punti regolari (cioè nei punti in cui $\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \neq 0$) si ha che

$$\mathsf{g}=0,\ \mathsf{f}=-\frac{\det\left[\gamma'\left|X'\right|X\right]}{\left\|\frac{\partial\varphi}{\partial u}\times\frac{\partial\varphi}{\partial v}\right\|}=0,$$

e quindi K=0 in tali punti. Di conseguenza per queste superfici nei punti regolari vale sempre

$$K = 0 \iff \det \left[\gamma' \left| X' \right| X \right] = 0.$$

Si hanno i fatti seguenti.

• Un utile criterio per riconoscere le superfici sviluppabili è dato dalla seguente proposizione.

Proposizione. Sia S una superficie rigata parametrizzata da $\varphi(u,v) = \gamma(u) + vX(u)$. Allora S è sviluppabile se e solo se, per ogni u, S ha lo stesso piano tangente (piano tangente vettoriale) in tutti i punti della retta generatrice R(u).

Proposizione. Sia s → γ(s) una curva (regolare e biregolare) parametrizzata ad arco.
 Allora la superficie tangente è sempre sviluppabile. Le superfici normale e binormale
 sono sviluppabili se e solo se la curva è planare.

Osservazione. La proposizione vale anche per curve non necessariamente parametrizzate ad arco.

- La direzione principale relativa alla curvatura principale 0 è $\frac{\partial \varphi}{\partial v} = X$. (In questo caso essa è anche di lunghezza 1.)
- **Teorema.** Una superficie rigata S è sviluppabile se e solo se una delle seguenti condizioni (equivalenti) è soddisfatta:
 - (i) K = 0;
 - (ii) La superficie è localmente isometrica ad un piano (cioè localmente diffeomorfa in modo da conservare la prima forma fondamentale), e le rette generatrici $\{vX(u); v \in \mathbb{R}\}$ rimangono direzioni principali.
- Osservazione. Se non si suppone che ||X|| = 1, ma solo che $||X|| \neq 0$, è ancora vero che K = 0 se e solo se det $[\gamma' |X'| X] = 0$ nei punti regolari. In questo caso però la direzione principale di lunghezza 1 relativa alla curvatura principale 0 è data da $\frac{1}{\|X\|} \frac{\partial \varphi}{\partial v} = \frac{X}{\|X\|}$.

3.9 Parametrizzazioni di alcune superfici notevoli

• Ellissoide: a, b, c > 0,

 $\varphi(u,v) = (a\sin u\cos v, b\sin u\sin v, c\cos u), \quad u \in (0,\pi), \ v \in (0,2\pi).$

L'equazione cartesiana è

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Nel caso in cui a=b la superficie è di rotazione con curvatura di Gauss

$$K = \frac{c^2}{(a^2 \cos^2 u + c^2 \sin^2 u)^2} > 0.$$

• Toro: $0 < r_1 < r_2$,

$$\varphi(u,v) = \Big((r_1 \cos u + r_2) \cos v, (r_1 \cos u + r_2) \sin v, r_1 \sin u \Big), \quad u, v \in (0, 2\pi).$$

L'equazione cartesiana è

$$\left(\sqrt{x^2 + y^2} - r_2\right)^2 + z^2 = r_1^2.$$

La curvatura di Gauss è

$$K = \frac{\cos u}{r_1(r_1\cos u + r_2)}.$$

• Cono: a, b, c > 0,

$$\varphi(u,v) = (au\cos v, bu\sin v, cu), \quad u \in \mathbb{R} \setminus \{0\}, \ v \in (0,2\pi).$$

L'equazione cartesiana è

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2},$$

e la curvatura di Gauss K = 0.

• Paraboloide ellittico: a, b > 0,

$$\varphi(u,v) = (au\cos v, bu\sin v, u^2), \quad u \in (0,+\infty), \quad v \in (0,2\pi).$$

L'equazione cartesiana è

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}.$$

Nel caso in cui a = b la superficie è di rotazione con curvature di Gauss

$$K = \frac{4}{(4u^2 + a^2)^2} > 0.$$

• Paraboloide iperbolico: c'è la parametrizzazione vista nella sezione relativa alle superfici rigate. Un'altra è la seguente. Con a, b > 0,

$$\varphi(u, v) = (au \cosh v, bu \sinh v, u^2), \quad u, v \in \mathbb{R}.$$

L'equazione cartesiana è

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}.$$

La curvatura di Gauss è K < 0.

• Elicoide: come già visto, con c > 0,

$$\varphi(u, v) = (v \cos u, v \sin u, cu), \quad u, v \in \mathbb{R}.$$

La curvatura di Gauss è facilmente calcolabile (utilizzando la formula per le superfici rigate) ed è

$$K = -\frac{c^2}{(c^2 + v^2)^2} < 0.$$

• Iperboloide ad una falda: c'è la parametrizzazione vista nella sezione relativa alle superfici rigate. Un'altra è la seguente. Con a, b, c > 0,

$$\varphi(u,v) = (a\cosh u\cos v, b\cosh u\sin v, c\sinh u), \quad u \in \mathbb{R}, \ v \in (0,2\pi).$$

L'equazione cartesiana è

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2} + 1.$$

Quando a = b la superficie è di rotazione con curvatura di Gauss

$$K = \frac{-c^2}{(a^2 \sinh^2 u + c^2 \cosh^2 u)^2} < 0.$$

• Iperboloide a due falde: a, b, c > 0,

$$\varphi_{\pm}(u,v) = (a \sinh u \cos v, b \sinh u \sin v, \pm c \cosh u), \quad u \in (0,+\infty), \quad v \in (0,2\pi),$$

dove φ_+ parametrizza la falda contenuta nel semipiano z > 0, mentre φ_- parametrizza la falda contenuta nel semipiano z < 0. L'equazione cartesiana è

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2} - 1.$$

Quando a=b la superficie è di rotazione con curvatura di Gauss

$$K = \frac{c^2}{(a^2 \cosh^2 u + c^2 \sinh^2 u)^2} > 0.$$

• Cilindro: a, b > 0,

$$\varphi(u,v) = (a\cos v, b\sin v, u), \quad u \in \mathbb{R}, \ v \in (0,2\pi).$$

L'equazione cartesiana è

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Quando a = b la superficie è di rotazione con curvatura di Gauss K = 0.

• Pseudosfera di Beltrami: a, b, c > 0,

$$\varphi(u,v) = \left(ae^{-u}\cos v, be^{-u}\sin v, c\int_0^u \sqrt{1 - e^{-2t}}dt\right), \quad u \in (0, +\infty), \ v \in (0, 2\pi).$$

Quando a = b la superficie è di rotazione con curvatura di Gauss

$$K = \frac{-c^2}{\left(a^2e^{-2u} + c^2(1 - e^{-2u})\right)^2} < 0.$$

Se a = b = c allora

$$K = -\frac{1}{a^2}$$
.

• Catenoide: a, b, c > 0,

$$\varphi(u,v) = (a\cosh u\cos v, b\cosh u\sin v, cu), \quad u \in \mathbb{R}, \ v \in (0,2\pi).$$

Quando a = b la superficie è di rotazione con curvatura di Gauss

$$K = \frac{-c^2}{(a^2 \sinh^2 u + c^2)^2} < 0.$$

• Sella di scimmia:

$$\varphi(u,v) = (u,v,u^3 - 3uv^2), \quad u,v \in \mathbb{R}.$$

Tutti i punti di questa superficie sono iperbolici, ad eccezione dell'origine, unico punto piano isolato.

• Grafici: data $f: D \longrightarrow \mathbb{R}$ una funzione infinitamente differenziabile, si considera

$$\varphi(u,v) = (u,v,f(u,v)), \quad (u,v) \in D.$$

Si ha

$$\nu_{\varphi}(u,v) = \frac{1}{\sqrt{1 + \left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2}} \begin{bmatrix} -\partial f/\partial u \\ -\partial f/\partial v \end{bmatrix},$$

e, nella base usuale $\partial \varphi / \partial u$, $\partial \varphi / \partial v$:

• la prima forma fondamentale è rappresentata dalla matrice

$$\begin{bmatrix} 1 + \left(\frac{\partial f}{\partial u}\right)^2 & \frac{\partial f}{\partial u}\frac{\partial f}{\partial v} \\ \frac{\partial f}{\partial u}\frac{\partial f}{\partial v} & 1 + \left(\frac{\partial f}{\partial v}\right)^2 \end{bmatrix}.$$

• la seconda forma fondamentale è rappresentata dalla matrice

$$\frac{1}{\sqrt{1+\left(\frac{\partial f}{\partial u}\right)^2+\left(\frac{\partial f}{\partial v}\right)^2}} \left[\begin{array}{cc} \frac{\partial^2 f}{\partial u^2} & \frac{\partial^2 f}{\partial u \partial v} \\ \frac{\partial^2 f}{\partial u \partial v} & \frac{\partial^2 f}{\partial v^2} \end{array} \right].$$

• la curvatura di Gauss è data da

$$K = \frac{\frac{\partial^2 f}{\partial u^2} \frac{\partial^2 f}{\partial v^2} - \left(\frac{\partial f}{\partial u} \frac{\partial f}{\partial v}\right)^2}{\left(1 + \left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2\right)^2}.$$

21

Testi di riferimento:

- [1] P.Albano e A.Parmeggiani, Elementi Introduttivi di Matematica. Cesena 2002.
- [2] Santiago Calatrava, Santiago Calatrava: Conversations with Students The MIT Lectures. Princeton Architectural Press 2002.
- [3] M.Emmer, Mathland. Dal mondo piatto alle ipersuperfici. Universale di Architettura, 143, 2003.
- [4] L.Molinari, Santiago Calatrava. 01 Biblioteca di Architettura, Skira 1998.
- [5] A. Parmeggiani, Il concetto di Forma in Matematica: il corso di Matematica Applicata, Architettura 3, Facoltà di Architettura dell'Università di Bologna, sede di Cesena 2002.
- [6] A.Parmeggiani, Note del corso di Matematica Applicata (all'Architettura), in fase di preparazione.
- [7] G.Pizzetti e A.M.Zorgno Trisciuoglio, Principi Statici e Forme Strutturali. UTET, 1980. (Capitolo III)
- [8] D.Schodek, Strutture. Patron Editore. Bologna 2004.
- [9] E.Sernesi, Geometria 2. Bollati Boringhieri, 2001.

Letture utili.

- [HC] D.Hilbert e S.Cohn-Vossen, Geometria Intuitiva. Bollati Boringhieri, 2001.
- [SC] N.Sala, G.Cappellato, Viaggio matematico nell'arte e nell'architettura (Presentazione di Mario Botta). Serie di Architettura FrancoAngeli 2003.
- [Ka] W.Kandkinsky, Punto Linea Superficie. Biblioteca Adelphi 16. Adelphi Edizioni, Milano, 2006.

Altri testi utili:

- [CRE] E.Cohen, R.F.Riesenfeld e G. Elber, Geometric Modeling with Splines An Introduction. A.K. Peters, 2001.
 - [dC] M.P.do Carmo, Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.
 - [F] W. Flugge, Stresses in Shells. Second edition. Springer Verlag, 1960.
 - [K] W.Kühnel, Differential Geometry (Curves-surfaces-manifolds). Student Mathematical Library, 16. Amer. Math. Soc., Providence, RI, 2002.
 - [S] D.J.Struik, Lectures on Classical Differential Geometry 2nd Edition. Dover, 1961.
 - [G] A.Gray, Modern differential geometry of curves and surfaces with mathematica. CRC Press, 1998.