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Abstract

We consider the Cauchy problem for the nonlinear degenerate equation in RN+1

div(A∇u) + u(b · ∇u)− ∂tu = f(·, u),

where A ≥ 0 is a constant symmetric matrix and ker(A) is generated by b. We prove the
existence of a local viscosity solution u and we study the interior regularity of u in the
framework of Hörmander type operators.

1 Introduction

We consider the Cauchy problem for the nonlinear convection-diffusion equation

div(A∇u) + u(b · ∇u)− ∂tu = f(·, u), in ST ≡ RN×]0, T [, (1.1)

with initial datum
u(·, 0) = g, in RN . (1.2)

We assume that f, g are globally Lipschitz continuous functions. Moreover we assume that
the matrix A is constant, symmetric and positive semidefinite. The convection direction b is
constant and generates ker(A).

Equations of form (1.1) were studied by Escobedo, Vazquez and Zuazua [11] in order to
describe the asymptotic behaviour as t → ∞ of solutions to a related parabolic equation with
complete diffusion. We remark that, without loss of generality, by performing a suitable change of
variables we may assume that A is diagonal so that b points along a coordinate axis, for instance
b = eN . Then it is convenient to denote a point in RN by (x, y) with x = (x1, . . . , xN−1) and
y ∈ R. Hence (1.1) becomes

Lu ≡ 4xu + u∂yu− ∂tu = f(·, u), in ST , (1.3)

where 4x denotes the Laplace operator acting in the x variables.
Equation (1.3) also arises in mathematical finance, when studying agents’ decisions under

risk. The classical approach for this financial problem is based on the representation of agents’
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preferences in the framework of the utility theory and various models have been proposed, aiming
to taking into account many aspects of the dynamics of the economy. Epstein and Zin in [10]
propose a utility functional which is the solution of a backward stochastic differential equation.
Recently Antonelli, Barucci and Mancino [1] propose a more sophisticated utility functional that
considers some other aspects of decision making, such as the agents’ habit formation, which is
described as a smoothed average of past consumption and expected utility. In that model the
couple of processes utility and habit is described by a system of backward-forward stochastic
differential equations. In [1] is proved that there exists a unique solution u of such system, that
satisfies some suitable initial and final conditions, and which is a viscosity solution, in the sense
of the User’s guide [9] of Cauchy problem (1.3)-(1.2). Moreover, in [1] it is proved that the
solution u is defined in a suitably small interval of time [0, T [ and satisfies

|u(x, y, t)− u(x′, y′, t)| ≤ c0(|x− x′|+ |y − y′|),
|u(x, y, t)− u(x, y, t′)| ≤ c0(1 + |(x, y)|)|t− t′| 12 ,

(1.4)

for every (x, y), (x′, y′) ∈ RN , t, t′ ∈ [0, T ], where c0 is a positive constant that depends on the
Lipschitz constants of f and g.

Related problems also arise in stochastic control theory. For instance, the value function v
of a suitable control problem is a semiconcave solution of the following Cauchy problem

∂xxv +
1
2
(
∂yu

)2 − ∂tv = ϕ, in R2×]0, T [,

v(·, 0) = ψ, in R2,

for some continuous functions ϕ and ψ (cf. [12]). Note that the function u = ∂yv is, at least
formally, a solution of a Cauchy problem like (1.3)-(1.2), even if it is only a locally bounded
function.

In this paper we are interested in the existence and interior regularity of local solutions to
the Cauchy problem (1.3)-(1.2). Our main results are stated in the next section.

Acknowledgments. The existence Theorem 2.1 is proved independently in a joint work with
Antonelli [2] and in [22] in collaboration with Polidoro. The interior regularity problem is studied
in [7], [8] with Citti and Polidoro in dimension three, and in [21] in the general case.

2 Main results

Our aim is to find a functional space where this problem is well posed. The main difficulty is
the mixed parabolic-hyperbolic feature of equation (1.3) due to the lack of diffusion in the y-
direction, so that it may include the Burgers’ equation, when f ≡ 0 and g = g(y). We explicitly
note that the nonlinearity in (1.3) is not monotone, then a standard comparison principle does
not hold and, as a consequence, the uniqueness of the solution is not guaranteed. This fact
also affects the existence of the solution. Indeed, when using the classical Bernstein’s method,
a maximum principle for the operator Lv + v2 (that occurs when we differentiate both sides of
(1.3) w.r.t. y) is required. Yet also more sophisticated versions of that method (cf. Barles [3])
do not seem to work in our setting. On the other hand, in the space of functions characterized



by conditions (1.4) the operator L in (1.3) does satisfy a comparison principle. Then we are able
to prove the existence of strong solution of the Cauchy problemfor small times. More precisely,
we have

Theorem 2.1 Let f, g globally Lipschitz continuous. If T > 0 is suitably small, then there
exists a unique function u, verifying estimates (1.4) on ST = RN × [0, T ] and assuming the
initial datum g, such that

u ∈ H1
loc(ST ), 4xu ∈ L2

loc(ST ),

and equation (1.3) is satisfied a.e.

Let us remark that, in general, the linear growth of the initial datum g does not allow solutions
which are defined globally in t. Indeed, let us consider the following simple example: for N = 2,
take f ≡ 0 and g(x, y) = x + y. A direct computation shows that u(x, y, t) = x+y

1−t is the unique
solution to (1.3)-(1.2) and it blows up as t → 1.

Our main results regard the interior regularity of the strong solution u of Theorem 2.1. Since
L is a degenerate second order operator, the known results by Cabre e Caffarelli [5], Trudinger
[24], Bian e Dong [4], Wang [25] do not apply. Therefore we set the problem in the framework
of subelliptic operators on nilpotent Lie groups. We remark that L is an operator such that
the matrix of the coefficients of the second order derivatives is only positive semi-definite. As
one can expect, the solution u of the equation Lu = 0 is smooth in the directions in which the
matrix is non-degenerate, but not in other directions. Consider for example the operator

L1 ≡ ∂2
x + ∂2

y (2.1)

in the variables (x, y, t) ∈ R3. Every solution u of L1u = 0 is smooth with respect to the
variables x and y, but is not regular in the variable t. However, as Hörmander pointed out in
the celebrated paper [16], there are other “regularity directions” for the solution u, and these
directions are the ones of the commutators. For instance, let us consider the Kohn-Laplace
operator in R3:

L2 ≡ (∂x + 2y∂t)
2 + (∂y − 2x∂t)

2 . (2.2)

As before, there are only two directional derivatives, while the dimension of the space is three,
but in this case every solution of L2u = 0 is smooth, not only in the directions of the derivatives
X = ∂x + 2y∂t and Y = ∂y − 2x∂t, but also in the direction of their commutator

[X, Y ] = XY − Y X = −4∂t.

The operator considered above is a simple but meaningful example of the class studied by
Hörmander in [16]. Let X0, ..., Xp be a set of linear first order operators (i.e. vector fields)
defined as

Xj =
n∑

i=1

aij(x)∂xi j = 0, ..., p

where aij are smooth functions on some domain Ω ⊂ Rn and let also f ∈ C∞(Ω). Hörmander
proved in [16] that if u is a solution of the equation

p∑

i,j=1

XiXju + X0u = f, in Ω, (2.3)



and the Lie algebra generated by the vector fields X0, ..., Xp has rank n at every point of Ω,
then u ∈ C∞(Ω).

Hörmander’s result was the starting point of an extensive research aiming to investigate
the regularity properties of the operators in (2.3) and their links with some suitable Lie group
structures on Rn. The existence of a fundamental solution and of a control distance have been
established in [20], [23], [17]. Using these properties, a general theory of the regularity both in
Sobolev spaces and in spaces of Hölder continuous functions has been settled down in [13], [14],
[23] and [18].

Aiming to use the linear theory for the study of our problem we can try to consider the
“linearized” operator

Lu = 4x + u∂y − ∂t,

where u is considered as a coefficient, but we immediately realize that the smoothness of the
coefficients aij is a fundamental assumption in the previous papers and, in our problem, we
cannot assume that the coefficient u of the equation is C∞, since the smoothness of the solution
u is exactly the goal of our study.

Actually, in all the papers cited above it is crucial that the vector fields Xj are regular at
least as it is sufficient to obtain, by commutation, n linearly independent vector fields at every
point of Rn. For the first time, Franchi and Lanconelli [15] studied the properties of a control
distance related to a family of non regular vector fields, aiming to adapt the classical Moser’s
iteration scheme to prove the Hölder regularity of weak solutions of an equation of the form

n∑

i,j=1

αij(x)∂xixj ,

where the matrix (αij(x)) is positive semi-definite for every x ∈ Rn. Franchi e Lanconelli assume
that the operator is “elliptic” w.r.t. a family X1, ..., Xp of Lipschitz continuous vector fields, in
the sense that

1
λ

p∑

j=1

〈Xj(x), ξ〉2 ≤ 〈A(x)ξ, ξ〉 ≤ λ

p∑

j=1

〈Xj(x), ξ〉2,

for some positive constant λ. This class of operators includes, for instance, in R2

∂2
x + |x|2α∂2

y ,

where α is a positive constant. We stress that a general theory for operators with non-smooth
coefficients is not available.

Here we employ a technique introduced by Citti in [6] where the author considers the regu-
larity of the solutions to the following equation of prescribed Levi curvature

Lu ≡ uxx + uyy +
u2

x + u2
y

1 + u2
t

utt + 2
uy − uxut

1 + u2
t

uxt − 2
ux + uyut

1 + u2
t

uyt = k

(
1 + u2

t + u2
x + u2

y

)3/2

1 + u2
t

,

in the variables (x, y, t) ∈ R3. In [6] it is pointed out that the principal part of the above operator
can be written in the form (2.3)

Lu = X2u + Y 2u



in terms of the nonlinear vector fields

X = ∂x +
uy − uxut

1 + u2
t

∂t, Y = ∂y − ux + uyut

1 + u2
t

∂t.

Then, based on the notion of “intrinsic” Taylor expansion of the coefficients of the operator, a
modification of the freezing method used by Rothschild and Stein in [23] is developed.

Analogously, we remark that, by letting

Xj = ∂xj , j = 1, ..., N − 1 and X0 = u∂y − ∂t,

then L in (1.3) can be formally represented as

L =
N−1∑

j=1

X2
j + X0. (2.4)

Since the commutator of Xj and X0 is

[Xj , X0] = (∂xju)∂y,

the Hörmander condition is satisfied if

∂xju(x, y, t) 6= 0, (2.5)

for every (x, y, t), for some index j. Note that the regularity of the solution u in Theorem 2.1 is
stated in condition (1.4), then ∂xju is defined almost everywhere and the above condition has
to be considered only formally. Then we first state a regularity result for classical solutions to
(1.3).

Theorem 2.2 Let Ω be an open set in RN+1 and u a classical solution of (1.3) on Ω with
f ∈ C∞. If (2.5) holds, then u ∈ C∞(Ω).

If we do not require any assumption on the commutators (in particular, if we do not require
anymore condition (2.5)) then the Lie algebra associated to the operator is completely unknown.
However we consider L as a subelliptic operator with respect to some tentative Lie groups. This
allows us to prove the existence of the derivatives ∂xjxju and X0u, defined as the directional
derivative with respect to the vector νz = (0, u(z),−1) at the point z = (x, y, t)

X0u(z) ≡ ∂u

∂νz
(z) = lim

h→0

u(z + hνz)− u(z)
h

. (2.6)

Then we have

Theorem 2.3 The strong solution u to (1.3) in Theorem 2.1 is a classical solution in the sense
that ∂xjxju, j = 1, ..., N − 1, and X0u are continuous functions and the equation is satisfied at
every point.

This result is quite reasonable, since without assuming the Hörmander condition we are able
to prove the regularity of u only in the directions of the vector fields. Note that, although the
derivative ∂u

∂νz
can be obtained as a sum of more simple terms

∂u

∂νz
= u∂yu− ∂tu

it is not true in general that the terms u∂yu and ∂tu are continuous. Also note that, at this point,
the Hörmander condition (2.5) is meaningful since Xju are defined and continuous functions.



3 Existence

The proof of Theorem 2.1 is based on some estimates which can be obtained by adapting the
classical Bernstein’s method. We consider the regularized Cauchy-Dirichlet problem in a cylinder

Lε
vu ≡ 4xu + ε2∂yyu + v∂yu− ∂tu = f(·, v), in QT = B×]0, T [, (3.1)

u = g, in ∂pQT . (3.2)

where ε > 0, B is a ball in RN and ∂pQT denotes the “parabolic” boundary of QT defined as
(B × {0})∪ (∂B × [0, T ]). By a standard density argument we may assume that f, g ∈ C∞∩Lip.
We fix a positive constant c1 such that, for (x, y, t, v) ∈ QT , it holds

c1 ≥ max{Lipschitz constants of f, g},
|g(x, y)| ≤ c1

√
1 + |(x, y)|2, |f(x, y, t, v)| ≤ c1

√
1 + |(x, y, t, v)|2.

(3.3)

Given α ∈]0, 1[, we assume that the coefficient v in (3.1)-(3.2) belongs to C1+α(QT ), the Hölder
space w.r.t. to the parabolic distance d((x, y, t), (x′, y′, t′)) = |x−x′|+|y−y′|+|t−t′| 12 . Moreover
we assume that v satisfies in QT the estimates

|v(x, y, t)| ≤ 2c1

√
1 + |(x, y)|2, (3.4)

|∂xiv| ≤ 2c1, i = 1, . . . , N − 1, |∂yv| ≤ 2c1. (3.5)

The following proposition is the key step in the proof of Theorem 2.1 which then follows by the
Schauder’s fixed point theorem and passing at limit as ε goes to zero.

Proposition 3.1 There exists T > 0 such that, under the above assumptions, every classical
solution of (3.1)-(3.2) verifies the ε-uniform estimates (3.4), (3.5).

Proof Let u be a classical solution of (3.1)-(3.2). We prove estimate (3.4) for u by applying
the maximum principle to the functions H ± u where H is defined as follows

H(x, y, t) = (c1 + µt)
√

1 + |(x, y)|2

and µ is to be suitably fixed. Keeping in mind (3.3) and (3.4), is easily verified that

Lε
vH(x, y, t) ≤ (1 + ε2)(c1 + µT )√

1 + |(x, y)|2 + ((c1 + µT ) c1 − µ)
√

1 + |(x, y)|2 ≤ −|f(x, y, t, v(x, y, t))|,

if µ, 1
T are suitably large. On the other hand, by (3.3), H|∂pQT

≥ |g|. Therefore, by the maximum
principle, we infer that H ± u ≥ 0 on QT , that is

|u| ≤ H ≤ 2c1

√
1 + |(x, y)|2, if T ≤ c1

µ
.



Next we prove the estimate for the y-derivative of u. We differentiate equation (3.1) w.r.t. the
variable y and then multiply it by e−2λt∂yu. Denoting ω =

(
e−λt∂yu

)2, we obtain

Lε
vω = e−2λtLε

v(∂yu)2 + 2λω

= 2
(
e−2λt

(
|∇x∂yu|2 + ε2(∂yyu)2 + ∂yu (∂yf + ∂vf∂yv)

)
+ λω

)

≥ 2
(
e−2λt∂yu (∂yf + ∂vf∂yv) + λω

)
. (3.6)

Hence, by setting w = ω − c2
1, we get from (3.6)

Lε
vw ≥ 2

√
ω

(− |∂yf | − |∂yv∂vf |+ λ
√

ω
)

(by (3.3), (3.5) and by the elementary inequality
√

ω ≥
√

2
2

(
c1 + sgn(w)

√
|w|

)
)

≥
√

2ω
(
c1

(
λ− 2

√
2c1 −

√
2
)

+ λsgn(w)
√
|w|

)

(for λ = λ(c1) suitable large)
≥ c

√
ω|w|sgn(w), (3.7)

for some positive constant c = c(c1). By contradiction, we want to prove that w ≤ 0 in QT . It
will follow that

|∂yu| ≤ c1e
λt

which implies (3.6) if T = T (c1) > 0 is sufficiently small. Let z0 be the maximum of w on QT .
If w(z0) > 0, then z0 ∈ QT \ ∂pQT , since by construction w ≤ 0 on ∂pQT . This leads to a
contradiction since, by (3.7)

0 ≥ Lε
vw(z0) ≥ c

√
ω(z0)w(z0) > 0.

By a similar technique, we prove estimate (3.5) of the x-derivatives of u. We set

ω =
(
e−λt∂xk

u
)2

, w = ω − c2
1.

Differentiating equation (3.1) w.r.t. xk and multiplying it by e−2λt∂xk
u, we get

Lε
vw = e−2λtLε

v(∂xk
u)2 + 2λω = 2

(
e−2λt∂xk

u (∂xk
f + ∂xk

v∂vf) + λω
)

(by (3.3),(3.5), and the estimate of ∂yu just proved)

≥
√

2ω
(
c1

(
λ−

√
2− 2

√
2c1 − 4

√
2c2

1

)
+ λsgn(w)

√
|w|

)

(if λ = λ(c1) is suitable large)
≥ c

√
ω|w|sgn(w),

for some positive constant c which depends only on c1. As before, we infer that w ≤ 0 which
yields (3.5). ¤



4 Regularity

Theorems 2.2 and 2.3 rely on some representation formulas for u and its derivatives in terms of
the fundamental solution of a frozen operator.

The freezing method is a well-known technique, classically used to study the regularity of
solutions to linear parabolic equations. In this case, the associated frozen operator is simply
obtained by evaluating the coefficients at a fixed point. This new operator is, up to a linear
change of coordinates, the heat operator and its fundamental solution can be considered as a
parametrix of the fundamental solution of the non-constant coefficients operator. A much more
difficult argument was used to prove the existence of a fundamental solution for Hörmander type
operators (2.3). Indeed the frozen vector fields

Xi,x0 =
n∑

i=1

aij(x0)∂xj i = 0, · · · , p

commute, and the generated Lie algebra has dimension, in general, less than n. In this case the
operator

p∑

i=1

X2
i,x0

−X0,x0 (4.1)

is not hypoelliptic, and it has not a fundamental solution. Folland and Stein [14] first pointed
out that the model operators in this case are operators of the form (2.3) such that the Lie algebra
generated by X0, ..., Xp is nilpotent and stratified. Later on Rothschild and Stein introduced
in [23] an abstract and very general version of the freezing method. The choice of the frozen
vector fields Xi,x0 is made in such a way that their generated Lie algebra has, at low orders,
the same structure as Lie(X0, ..., Xp). With this choice of vector fields, the operator in (4.1)
is hypoelliptic and its fundamental solution Γx0 is a parametrix for (2.3). As said above, we
employ here a modification of this technique, introduced by Citti in [6].

We define a frozen operator in terms of the notion of “intrinsic” Taylor expansion of the
coefficients. We first consider L as a linearized operator

Lu =
N−1∑

j=1

X2
j + X0,

where Xj = ∂xj and X0 = u∂y − ∂t. Then we let, for every z0 = (x0, y0, t0) ∈ RN+1,

Lz0 =
N−1∑

j=1

X2
j + X0,z0 , (4.2)

where X0,z0 ≡
(
u(z0) + (x− x0) · ∇xu(z0)

)
∂y − ∂t. Under the assumptions of Theorem 2.2, this

choice ensures that the frozen operator Lz0 is a nilpotent Hörmander type operator, it has a
fundamental solution Γz0 and an associated control distance dz0 . For simplicity we assume that
f does not depend on u. We represent the solution u in terms of Γz0 :

u(z) =
∫

Γz0(z, ζ)Lz0u(ζ)dζ =
∫

Γz0(z, ζ)f(ζ)dζ +
∫

Γz0(z, ζ)Kz0(z, ζ)dζ,



where
Kz0(z, ζ) ≡ (

Lu − Lz0

)
u(ζ) =

(
u(ζ)− u(z0)− (ξ − x0) · ∇xu(z0)

)
∂yu(ζ).

Since Lu is a second order operator, we have to consider the term X0,z0u as a second order
derivative, whereas Xj is a first order derivative. As a consequence, the first order Taylor
polynomial of u, with initial point at z0, is given by

P 1
z0

u(z) = u(z0) + (x− x0) · ∇xu(z0).

Now, by (1.4), ∂yu is bounded so, when u ∈ C1,α, we have

Kz0(z, ζ) = O
(
d(z0, ζ)1+α

)
as d(z0, ζ) → 0.

By choosing z0 = z, this estimate allows us to differentiate up to 3 times the above representation
formula under the integral sign:

D3u(z0) =
∫

DΓz0(z0, ζ)D2f(ζ)dζ +
∫

D3Γz0(z0, ζ)Kz0(z0, ζ)dζ

and conclude that u ∈ C3,α. A rather delicate argument, based on the use of some high order
difference quotients allows us to iterate this argument and conclude the proof of Theorem 2.2.

The proof of Theorem 2.3 follows the same lines, but there is another difficulty. Indeed,
without the assumption of the Hörmander condition (2.5), the frozen operator Lz0 may not
have a fundamental solution. In this case, it is convenient to approximate X0 by the vector field

X̃0,z0 = (u(z0) + (x− x0)1) ∂y − ∂t,

where x1 denotes the first component of the vector x. Then the operator

L̃z0 =
N−1∑

j=1

X2
j + X̃0,z0

does not depend on ∇xu(z0) and it is hypoelliptic. Note that, with respect to X0,z0 , this vector
field gives a less close approximation for X0, since

X0u(z)− X̃0,z0u(z) =
(
u(z)− u(z0)− (x− x0)1

)
∂yu(z) = O

(
d(z0, z)

)
,

as d(z0, z) → 0, however it is sufficiently accurate to prove Theorem 2.2.
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