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Abstract. We consider the Cauchy problem related to the partial differential equation

Lu ≡ ∆xu+ h(u)∂yu− ∂tu = f(·, u),
where (x, y, t) ∈ R

N × R × ]0, T [, which arises in mathematical finance and in the theory of
diffusion processes. We study the regularity of solutions regarding L as a perturbation of an operator
of Kolmogorov type. We prove the existence of local classical solutions and give some sufficient
conditions for global existence.
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1. Introduction. In this paper we study the Cauchy problem

Lu = f(·, u) in ST ≡ R
N+1 × ]0, T [,(1.1)

u(·, 0) = g in R
N+1,(1.2)

where L is the nonlinear operator defined by

Lu = ∆xu+ h(u)∂yu− ∂tu,(1.3)

(x, y, t) = z denotes the point in R
N × R × R, and ∆x is the Laplace operator acting

in the variable x ∈ R
N . We assume that f, g, and h are globally Lipschitz continuous

functions.
One of the main features of operator (1.3) is the strong degeneracy of its char-

acteristic form due to the lack of diffusion in the y-direction, so that (1.1)–(1.2) may
include the Cauchy problem for the Burgers equation, when h(u) = u, g = g(y), and
f ≡ 0. On the other hand, L can be considered as nonlinear version of the operator

K = ∆x + x1∂y − ∂t,(1.4)

which was introduced by Kolmogorov [17] and has been extensively studied by Kuptsov
[12] and Lanconelli and Polidoro [14]. Among the known results of K, we recall that
every solution to Ku = 0 is smooth; thus we may expect some regularity properties
also for the solutions to (1.1).

Problem (1.1)–(1.2) arises in mathematical finance as well as in the study of
nonlinear physical phenomena such as the combined effects of diffusion and convection
of matter.
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Escobedo, Vazquez, and Zuazua [8] prove that there exists a unique distributional
solution to (1.1)–(1.2) satisfying an entropy condition that generalizes the one by
Kruzhkov [11]. This solution is characterized in the vanishing viscosity sense; i.e.,
it is the limit of a sequence of classical solutions to Cauchy problems related to the
regularized operator

Lεu = ∆xu+ ε
2∂2
yu+ h(u)∂yu− ∂tu.(1.5)

Vol’pert and Hudjaev [19] prove similar existence and uniqueness results in a space
of bounded variation functions whose spatial derivatives are square integrable with
respect to (w.r.t.) a suitable weight. In this framework, it is natural to consider
bounded and integrable initial data g and nonlinearities of the form h(u) = up−1 for
p ∈ ]1, N+2

N+1 [.
Our paper is mainly motivated by the theory of agents’ decisions under risk,

arising in mathematical finance. The problem is the representation of agents’ pref-
erences over consumption processes. Antonelli, Barucci, and Mancino [1] propose
a utility functional that takes into account aspects of decision making such as the
agents’ habit formation, which is described as a smoothed average of past consump-
tion and expected utility. In that model the processes utility and habit are described
by a system of backward-forward stochastic differential equations. The solution of
such a system, as a function of consumption and time, satisfies the Cauchy problem
(1.1)–(1.2). Our regularity assumption on f, g, h is required by the financial model,
since these functions appear in the backward-forward system as Lipschitz continuous
coefficients.

In the paper by Antonelli and Pascucci [2] an existence result, in the case N = 1,
is proved by probabilistic techniques that exploit the properties of the solutions to the
system of backward-forward stochastic differential equations related to (1.1)–(1.2). In
[2], the existence of a viscosity solution, in the sense of [7], is proved. The solution is
defined in a suitably small strip R

2 × [0, T ] and satisfies the following conditions:
|u(x, y, t)− u(x′, y′, t)| ≤ c0(|x− x′|+ |y − y′|),
|u(x, y, t)− u(x, y, t′)| ≤ c0(1 + |(x, y)|)|t− t′| 12

(1.6)

for every (x, y), (x′, y′) ∈ R
2, t, t′ ∈ [0, T ], where c0 is a positive constant that depends

on the Lipschitz constants of f, g, and h. Concerning the regularity of u, we remark
that the results by Caffarelli and Cabré [3] and Wang [20, 21] do not apply to our
operator.

In this paper we prove the existence of a classical solution u to problem (1.1)–
(1.2) by combining the analysis on Lie groups with the standard techniques for the
Cauchy problem related to degenerate parabolic equations. We say that u is a classical
solution if ∂xjxku, j, k = 1, . . . , N, the directional derivative

z �−→ Y u(z) =
∂u

∂νz
(z), ν(z) = (0, h(u(z)),−1),

are continuous functions, and (1.1)–(1.2) are verified at every point. Our main result
is the following.

Theorem 1.1. There exists a positive T and a unique function u ∈ C(ST ),
verifying estimates (1.6) on ST , which is a classical solution to (1.1)–(1.2).

We stress that the regularity stated above is natural for the problem under con-
sideration. Indeed, although Y u is the sum of the more simple terms h(u)∂yu and
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∂tu, it is not true in general that they are continuous functions. Further regularity
properties of solutions can be obtained under additional conditions. For instance,
in [5, 6] in collaboration with Citti, we considered the nonlinear equation in three
variables,

∂xxu+ u∂yu− ∂tu = 0,(1.7)

which is a special case of (1.1). Assuming a hypothesis formally analogous to the
classical Hörmander condition, we proved that the viscosity solution u of (1.7) con-
structed in [2] actually is a C∞ classical solution.

In this paper we give a direct proof of the existence of a classical solution to
the Cauchy problem (1.1)–(1.2) by using analytical methods. The regularity part in
Theorem 1.1 is based on a modification of the classical freezing method, introduced
by Citti in [4] for the study of the Levi equation. More precisely, for any z̄ ∈ ST , we
approximate L by the linear operator

Lz̄ = ∆x + (h(u(z̄)) + x1 − x̄1) ∂y − ∂t,(1.8)

and we represent a solution u in terms of its fundamental solution. Note that up to
a straightforward change of coordinates, Lz̄ is the Kolmogorov operator (1.4), and
hence an explicit expression of the fundamental solution of Lz̄ is available. Also note
that Lz̄ is a good approximation of L in the sense that, by (1.6), we have

|Lu(z)− Lz̄u(z)| = |u(z)− u(z̄)− (x1 − x̄1)| |∂yu(z)| ≤ c0d(z̄, z),

where d(z̄, z) is the standard parabolic distance.
The existence part of Theorem 1.1 relies on the Bernstein technique. We explicitly

note that the nonlinearity in (1.3) is not monotone; therefore a maximum principle
for the operator Lv + h′(u)v2, which occurs when we differentiate both sides of (1.1)
w.r.t. y, does not hold unless we assume condition (1.6).

We end this introduction with a remark about the existence of global solutions.
We first note that the space of functions characterized by conditions (1.6) is, in some
sense, optimal for the existence of local classical solutions. Indeed the linear growth
of the initial data g does not allow, in general, solutions that are defined at every
time t > 0, as the following example given in [2] shows. Consider the problem (1.7),
with f ≡ 0 and g(x, y) = x + y: a direct computation shows that u(x, y, t) = x+y

1−t
is the unique solution to the problem and blows up as t → 1. This fact is expected
since, if u grows as a linear function, then its Cole–Hopf transformed function grows
as exp(y2), which is the critical case for the parabolic Cauchy problem. Next we give
a simple sufficient condition for the global existence of classical solutions.

Theorem 1.2. Let f, g, and h be globally Lipschitz continuous functions. Suppose
that g is nonincreasing w.r.t. y, that f is nondecreasing w.r.t. y, and that there exists
c0 ∈ ]0, c1] such that

c0(u− v) ≤ h(u)− h(v)(1.9)

for every u, v ∈ R. Then the Cauchy problem (1.1)–(1.2) has a solution u that is
defined in R

N+1 × R
+.

This paper is organized as follows. In section 2 we prove Theorem 1.1, and in
section 3 we prove the existence of a viscosity solution of (1.1)–(1.2). Section 4 is
devoted to the proof of Theorem 1.2.
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2. Classical solutions. In this section we prove Theorem 1.1. We first state an
existence and uniqueness result of a strong solution u to problem (1.1)–(1.2). And
then we prove that u is a solution in the classical sense. We say that a continuous
function u is a strong solution to (1.1)–(1.2) if u ∈ H1

loc(ST ), ∂xjxku ∈ L2
loc(ST ),

j, k = 1, . . . , N , it satisfies equation (1.1) a.e., and it assumes the initial datum g.
Theorem 2.1. If T is suitably small, there exists a unique strong solution of

(1.1)–(1.2) verifying estimates (1.6) on ST .
The proof of Theorem 2.1 is postponed to section 3. We remark that in the above

statement, we consider the term

Y u = h(u)∂yu− ∂tu
as a sum of weak derivatives. Here we aim to prove that Y u is a continuous function
and that it coincides with the directional derivative w.r.t. the vector νz = (0, h(u),−1),
namely,

Y (u(z)) =
∂u

∂νz
(z) ∀z ∈ ST .(2.1)

In what follows, when we consider a function F that depends on many variables, to
avoid any ambiguity we shall systematically write the directional derivative introduced
in (2.1) as

Y (z)F (·, ζ) = ∂F (·, ζ)
∂νz

(z).

Our technique is inspired by the recent paper [6], where, in collaboration with Citti,
we developed some ideas for a general study of a nonlinear equation of the form (1.4).
We recall the following lemma, which has been proved in Lemma 3.1 of [6], for the
Cauchy problem (1.7). We state the lemma for the operator (1.3) and omit the proof,
since it is analogous to the one given in [6].

Lemma 2.2. Let v be a continuous function defined in ST . Assume that its weak
derivatives vy, vt ∈ L2

loc and that the limit

lim
δ→0

v(z + δνz)− v(z)
δ

exists and is uniform w.r.t. z in compact subsets of ST . Then

∂v

∂νz
(z) = (h(u)∂yv − ∂tv)(z) a.e. z ∈ ST .

We next prove Theorem 1.1 by using a representation formula of the strong so-
lution u in terms of the fundamental solution of the operator Lz̄ introduced in (1.8).
We define the first order operators (vector fields)

Xj = ∂xj , j = 1, . . . , N, Yz̄ = (h(u(z̄)) + x1 − x̄1) ∂y − ∂t.(2.2)

Thus we can rewrite the operator Lz̄ in the standard form

Lz̄ =

N∑
j=1

X2
j + Yz̄.(2.3)
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Let us recall some preliminary facts about real analysis on nilpotent Lie groups.
More details about this topic can be found in [15] and [18]. We define on R

N+2 the
composition law

θ ⊕ θ′ =
(
θ1 + θ

′
1, . . . , θN + θ

′
N , θN+1 + θ

′
N+1, θN+2 + θ

′
N+2 +

1

2
(θ1θ

′
N+1 − θN+1θ

′
1)

)
and the dilations group

δλ(θ) = (λθ1, . . . , λθN , λ
2θN+1, λ

3θN+2), λ > 0.

We remark that G = (RN+2,⊕) is a nilpotent stratified Lie group which, in the
case N = 1, coincides with the standard Heisenberg group. Since the Jacobian Jδλ
equals λN+5, the homogeneous dimension of G w.r.t. (δλ)λ>0 is the natural number
Q = N + 5. A norm which is homogeneous w.r.t. this dilations group is given by

‖θ‖ = (|θ1|6 + · · ·+ |θN |6 + |θN+1|3 + |θN+2|2
) 1

6 .

Let ∇z̄ = (X1, . . . , XN , Yz̄, ∂y) be the gradient naturally associated to Lz̄ and
consider any z ∈ R

N+2. The exponential map

Ez̄(θ, z) = exp(〈θ,∇z̄〉)(z)
is a global diffeomorphism and induces a Lie group structure on R

N+2 whose product
is defined by

ζ ◦ z = Ez̄
((
E−1
z̄ (ζ, 0)⊕ E−1

z̄ (z, 0)
)
, 0
)
,

and it can be explicitly computed as

ζ ◦ z = (x+ ξ, y + η − tξ1, t+ τ).
Moreover, a control distance dz̄ in (R

N+2, ◦) is defined by
dz̄(z, ζ) = ‖E−1

z̄

(
ζ−1 ◦ z, 0) ‖

=

(
|x− ξ|6 + |t− τ |3 +

∣∣∣∣y − η + (t− τ)(h(u(z̄)) + x1 − ξ1 − 2x̄1

2

)∣∣∣∣2
) 1

6

,(2.4)

where ζ−1 is the inverse in the group law “◦”. We denote by Γz̄(z, ζ) the fundamental
solution of Lz̄ with pole in ζ and evaluated at z. We refer to [12, 14, 13, 9] for known
results about Γz̄. The following bound holds:

Γz̄(z, ζ) = Γz̄(ζ
−1 ◦ z, 0) ≤ cdz̄(z, ζ)−Q+2,(2.5)

where the constant c continuously depends on z̄. We are now in a position to prove
Theorem 1.1.

Proof of Theorem 1.1. By Theorem 2.1 there exists a unique strong solution of
(1.1)–(1.2) verifying (1.6) in ST for T suitably small. In order to prove that u is a
classical solution, we represent it in terms of the fundamental solution Γz̄:

(uϕ)(z) =

∫
ST

Γz̄(z, ζ) (U1,z̄(ζ)− U2,z̄(ζ)) dζ ≡ I1(z)− I2(z)(2.6)
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for every ϕ ∈ C∞
0 (ST ), where

U1,z̄ = ϕf(·, u) + uLz̄ϕ+ 2〈∇xu,∇xϕ〉,
U2,z̄ =(h(u)− h(u(z̄))− (x1 − x̄1)) ∂yuϕ

are bounded functions with compact support. Therefore it is straightforward to prove
that uϕ ∈ C1+α

dz̄
, α ∈ ]0, 1[, where Ck+αdz̄

denotes the space of Hölder continuous
functions w.r.t. the control distance dz̄. In particular, by choosing ϕ ≡ 1 in a compact
neighborhood K of z̄, we have that

Xju(z) =

∫
Xj(z)Γz̄(·, ζ) (U1,z̄(ζ)− U2,z̄(ζ)) dζ, z ∈ K, j = 1, . . . , N,

and

|Xju(z)−Xju(ζ)| ≤ cdz̄(z, ζ)α ∀z, ζ ∈ K, α ∈ ]0, 1[.(2.7)

This proves the Hölder continuity of the first order derivatives of u. Let us now
consider the second order derivatives XjXhu, j, k,= 1, . . . , N , and Y u.

We next prove the existence of the directional derivative Y u(z̄) by studying sep-
arately the terms I1, I2. Since Y is the unique nonlinear vector field to be considered,
the proof of our result for the derivatives XjXhu is simpler and will be omitted.

The term I2. We set

J(z̄) =

∫
ST

Y (z̄)Γz̄(·, ζ)U2,z̄(ζ)dζ.

We remark that J is well defined and continuous since, by (1.6), we have

|U2,z̄(ζ)| ≤ c dz̄(z̄, ζ).(2.8)

We denote by χ ∈ C∞([0,+∞[, [0, 1]) a cut-off function such that

χ(s) = 0 for 0 ≤ s ≤ 1

2
, χ(s) = 1 for s ≥ 1,

and we set

I2,δ(z) =

∫
ST

Γz̄(z, ζ)χ

(
dz̄(z̄, ζ)

c̄ δ
1
2

)
U2,z̄(ζ)dζ, c̄, δ > 0.

In what follows we shall assume dz̄(z̄, z) ≤ δ 1
2 ; then by the triangular inequality

dz̄(z̄, ζ) ≤ c (dz̄(z̄, z) + dz̄(z, ζ)) ,(2.9)

we can choose c̄ suitably large so that

χ

(
dz̄(z̄, ζ)

c̄ δ
1
2

)
= 0 if dz̄(z, ζ) < δ

1
2 ,

and, as a consequence, I2,δ is smooth for any δ > 0. We claim that

sup
dz̄(z̄,z)≤δ 1

2

|I2,δ(z)− I2(z)| ≤ c δ 3
2 ,(2.10)

sup
dz̄(z̄,z)≤δ 1

2

|Yz̄I2,δ(z)− J(z̄)| ≤ c δ 1
2 | log(δ)|(2.11)
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for some positive constant c. We postpone the proof of (2.10)–(2.11) to the end.
Let us now compute the derivative ∂I2∂νz̄ (z̄). For every positive δ we have∣∣∣∣I2(z̄ + δνz̄)− I2(z̄)δ

− J(z̄)
∣∣∣∣ ≤ ∣∣∣∣I2,δ(z̄ + δνz̄)− I2,δ(z̄)δ

− J(z̄)
∣∣∣∣

+

∣∣∣∣I2(z̄ + δνz̄)− I2,δ(z̄ + δνz̄)δ

∣∣∣∣+ ∣∣∣∣I2(z̄)− I2,δ(z̄)δ

∣∣∣∣ .
We first note that, using the expression (2.4), we find dz̄(z̄, z̄ + δνz̄) = δ

1
2 . Thus, by

(2.10) and by the mean value theorem, there exists a δ0 ∈ ]0, δ[ such that∣∣∣∣I2(z̄ + δνz̄)− I2(z̄)δ
− J(z̄)

∣∣∣∣ ≤ |(h(u(z̄))∂yI2,δ − ∂tI2,δ) (z̄ + δ0νz̄)− J(z̄)|+ cδ 1
2

= |Yz̄I2,δ(z̄ + δ0νz̄)− J(z̄)|+ cδ 1
2 ≤ c δ 1

2 | log δ|,

where the last inequality follows from (2.11). Therefore we have

∂I2
∂νz

(z) = J(z),

and, by Lemma 2.2, we get (2.1).

We are left with the proof of (2.10)–(2.11). We assume dz̄(z̄, z) ≤ δ 1
2 . By (2.8)

and (2.5), we have

|I2,δ(z)− I2(z)| ≤ c
∫
dz̄(z,ζ)<δ

1
2

dz̄(z, ζ)
−Q+2dz̄(z̄, ζ)dζ

(since, by (2.9), dz̄(z̄, ζ) < cδ
1
2 , and by using the homogeneous polar coordinates)

≤ δ
1
2

∫
�<δ

1
2

1−Q+2+Q−1d1 = cδ
3
2 .

This proves (2.10). Next we recall the following estimate which immediately follows
by the mean value theorem:

|Yz̄(z)Γz̄(·, ζ)− Yz̄(z̄)Γz̄(·, ζ)| ≤ cdz̄(z̄, z)dz̄(z̄, ζ)−Q−1(2.12)

for dz̄(z̄, ζ) ≥ c̄dz̄(z̄, z). Then we have

|Yz̄I2,δ(z)− J(z̄)| ≤
∫

|Yz̄(z)Γz̄(·, ζ)− Yz̄(z̄)Γz̄(·, ζ)|χ
(
dz̄(z̄, ζ)

c̄ δ
1
2

)
|U2,z̄(ζ)|dζ

+

∫
dz̄(z̄,ζ)<δ

1
2

|Yz̄(z̄)Γz̄(·, ζ)U2,z̄(ζ)|dζ

(by (2.12) and since the second term can be estimated as before)

≤ cδ 1
2

∫
dz̄(z̄,ζ)>c̄δ

1
2

dz̄(z̄, ζ)
−Q−1|U2,z̄(ζ)|dζ + cδ 1

2 = cδ
1
2 | log(δ)|.

This concludes the proof of (2.11).
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The term I1. Let G(z, ζ) = g(ζ
−1 ◦ z), where g is a smooth function. A direct

computation gives

Yz̄(z)G(·, ζ) = Rz̄(ζ)G(z, ·),(2.13)

where

Rz̄(ζ) = −Yz̄(ζ)− (x1 − ξ1)∂η
(see [16, p. 295] for a general statement of this result). We aim to prove that

Y (z̄)I1 =

∫
Ω

Y (z̄)Γz̄(·, ζ) (U1,z̄(ζ)− U1,z̄(z̄)) dζ + U1,z̄(z̄)

∫
∂Ω

Γz̄(z̄, ζ)〈Rz̄(ζ), ν(ζ)〉dσ,
(2.14)

where ν is the outer normal to the set Ω = supp(ϕ), for which we assume that the
divergence theorem holds. By (2.5), the homogeneity of the fundamental solution,
and the Hölder continuity of U1,z̄, the function

V (z) =

∫
Ω

Y (z)Γz̄(·, ζ) (U1,z̄(ζ)− U1,z(z)) dζ + U1,z̄(z)

∫
∂Ω

Γz̄(z, ζ)〈Rz̄(ζ), ν(ζ)〉dσ(ζ)
(2.15)

is well defined. Let K be a compact subset of Ω. We set, for δ > 0,

I1,δ(z) =

∫
Ω

Γz̄(z, ζ)χ

(
dz̄(z, ζ)

δ

)
U1,z̄(ζ)dζ,

where χ is the cut-off function previously introduced. We choose δ suitably small so
that

χ

(
dz̄(z, ζ)

δ

)
= 1(2.16)

for any z ∈ K, ζ ∈ ∂Ω. Clearly I1,δ is a smooth function, and differentiating we get

Yz̄(z)I1,δ =

∫
Ω

Yz̄(z)

(
Γz̄(·, ζ)χ

(
dz̄(·, ζ)
δ

))
(U1,z̄(ζ)− U1,z̄(z)) dζ

+ U1,z̄(z)

∫
Ω

Yz̄(z)

(
Γz̄(·, ζ)χ

(
dz̄(·, ζ)
δ

))
dζ.(2.17)

By (2.13) and the divergence theorem, we have∫
Ω

Yz̄(z)

(
Γz̄(·, ζ)χ

(
dz̄(·, ζ)
δ

))
dζ =

∫
Ω

Rz̄(ζ)

(
Γz̄(z, ·)χ

(
dz̄(z, ·)
δ

))
dζ

=

∫
∂Ω

Γz̄(z, ζ)χ

(
dz̄(z, ζ)

δ

)
〈Rz̄(ζ), ν(ζ)〉dσ(ζ).(2.18)

Then, by (2.18) and (2.16), the last terms in (2.17) and (2.15) are equal. Hence we
get

|V (z)− Yz̄(z)I1,δ|

=

∣∣∣∣∣
∫
δz̄(z,ζ)≤δ

Yz̄(z)

(
Γz̄(·, ζ)

(
1− χ

(
dz̄(·, ζ)
δ

)))
(U1,z̄(ζ)− U1,z̄(z)) dζ

∣∣∣∣∣
≤ C

∫
δz̄(z,ζ)≤δ

(
dz̄(z, ζ)

−Q + Γz̄(z, ζ)
dz̄(z, ζ)

−1

δ

)
dz̄(z, ζ)

αdζ ≤ Cδα.
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Since the constant C continuously depends on z̄, we have that Yz̄(z)I1,δ converges to
V as δ → 0 uniformly on K. Since I1,δ converges to I1 we get (2.14). This completes
the proof of Theorem 1.1.

3. A priori estimates. In this section we prove Theorem 2.1 by using a modifi-
cation of the classical Bernstein method. Here we adopt the notation of [10, Chap. 3],
which we briefly recall for the reader’s convenience. Given a bounded domain Ω in
R
N+2 and α ∈ ]0, 1[, Cα(Ω) denotes the space of Hölder continuous functions w.r.t.
the parabolic distance

d(z, z′) ≡ |x− x′|+ |y − y′|+ |t− t′| 12 ,

i.e., the family of all functions u on Ω for which

|u|Ωα = |u|α = |u|0 + sup
Ω

|u(z)− u(z′)|
d(z, z′)α

<∞,

where |u|Ω0 = |u|0 = supΩ |u|. The spaces of Hölder continuous functions Ck+α, k ∈ N,
are defined straightforwardly. We set

Br = {(x, y) ∈ R
N × R | |(x, y)| < r}, Sr,T = Br × ]0, T [, T, r > 0.(3.1)

The “parabolic” boundary of the cylinder Sr,T is defined by

∂pSr,T = (Br × {0}) ∪ (∂Br × [0, T ]) .(3.2)

Given two points z, z′ ∈ Sr,T in (3.1), we denote by dz the distance from z to the
parabolic boundary ∂pSr,T (cf. (3.2)), and dzz′ = min{dz, dz′}. We set

|u|Sr,T
α = |u|α = |u|0 + sup

Sr,T

dαzz′
|u(z)− u(z′)|
d(z, z′)α

.

The space of all functions u with finite norm |u|Sr,T
α is denoted by Cα(Sr,T ). The

spaces Ck+α of Hölder continuous functions of higher order are defined analogously.
We say that u ∈ Ck+α,loc(ST ) if u ∈ Ck+α(Sr,T ) for every r > 0.

We consider the Cauchy problem

Lεu = f(·, u) in ST ≡ R
N+1 × ]0, T [,(3.3)

u(·, 0) = g in R
N+1,(3.4)

where Lε, ε > 0, is the regularized operator in (1.5). We assume that the functions
f, g, h are globally Lipschitz continuous; then there exists a positive constant c1 such
that

c1 ≥ max{Lipschitz constants of f, g, h},
|h(v)| ≤ c1

√
1 + v2, |g(x, y)| ≤ c1

√
1 + |(x, y)|2,(3.5)

|f(x, y, t, v)| ≤ c1
√
1 + |(x, y, t, v)|2, (x, y, t, v) ∈ ST × R.

The following result holds.
Theorem 3.1. There exist two positive constants T, c that depend only on the

constant c1 in (3.5) such that for every ε > 0 and α ∈ ]0, 1[ the Cauchy problem
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(3.3)–(3.4) has a unique solution uε ∈ C2+α,loc (ST ) ∩ C
(
ST
)
verifying the following

ε-uniform estimates:

|uεxi |0, |uεy|0 ≤ 4c1, i = 1, . . . , N,(3.6)

|uε(x, y, t+ s)− uε(x, y, t)| ≤ c
√
1 + |(x, y)|2 |s| 12 ,(3.7)

|uε(x, y, t)| ≤ 2c1
√
1 + |(x, y, t)|2 ∀(x, y, t) ∈ ST .(3.8)

Before proving Theorem 3.1, we introduce some further notation. If χ = χ(x, y) ∈
C∞

0

(
R
N+1

)
is a cut-off function such that χ = 1 in B 1

2
and supp(χ) ⊂ B1, we set

χn(x, y) = χ
(x
n
,
y

n

)
, fn = fχn, gn(·, t) = gχn, hn(·, v) = h(v)χn, n ∈ N,

(3.9)

so that, by (3.5) and readjusting the constant c1 if necessary, we have

|∇χn|0 ≤ |∇χ|0
n
, |∇gn| ≤ c1,

|∇x,yfn(x, y, t, v)| ≤ |χn∇x,yf |+ c1 |∇χ|0
n

√
1 + n2 + T 2 + v2 ≤ c1

if |v|
n is bounded and t ∈ [0, T ].
Finally, fixing n ∈ N and ε > 0, we consider the linearized Cauchy–Dirichlet

problem

Lε,nv u ≡ ∆xu+ ε2uyy + hn(·, v)∂yu− ∂tu = fn(·, v) in Sn,T ,(3.10)

u = gn in ∂pSn,T .(3.11)

Given α ∈ ]0, 1[, we assume that the coefficient v in (3.10)–(3.11) belongs to the space
C1+α(Sn,T ) and satisfies the estimates

|v(x, y, t)| ≤ 2c1
√
1 + |(x, y)|2 in Sn,T ,(3.12)

|vxi |0 ≤ 4c1, i = 1, . . . , N,(3.13)

|vy|0 ≤ 4c1.(3.14)

Then a classical solution u ∈ C2+α (Sn,T ) to (3.10)–(3.11) exists by known results
(see, for example, [10, Chap. 3, Thm. 7], since hn(·, v), fn(·, v) ∈ C1+α (Sn,T ), gn ∈
C∞ (Sn,T ), and the compatibility condition Lε,nv gn = fn = 0 holds on ∂Bn. Once
we have given the following ε-uniform a priori estimates, the proof of Theorem 3.1 is
rather standard.

Lemma 3.2. Under the above assumptions, there exists T > 0 such that, for any
n ∈ N, every classical solution of (3.10)–(3.11) verifies (3.12)–(3.14).

Proof. Let u be a classical solution of (3.10)–(3.11). We prove estimate (3.12) for
u by applying the maximum principle to the functions H ± u, where H is defined as

H(x, y, t) = (c1 + µt)
√
1 + |(x, y)|2

and µ is to be suitably fixed. Keeping in mind (3.5) and (3.12), it is easily verified
that

Lε,nv H(x, y, t) ≤
(1 + ε2)(c1 + µT )√

1 + |(x, y)|2 + ((c1 + µT ) c1 − µ)
√
1 + |(x, y)|2

≤ − |fn(x, y, t, v(x, y, t))|
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if µ, 1
T are suitably large. On the other hand, by (3.5), H|∂pSn,T

≥ |gn|. Therefore,
by the maximum principle, we infer that

|u| ≤ H ≤ 2c1
√
1 + |(x, y)|2 if T ≤ c1

µ
.

Next we prove estimate (3.14) for the y-derivative of u. Our method is based
on the maximum principle. We start by proving a gradient estimate for u on the
parabolic boundary of Sn,T . Since u ∈ C2+α (Sn,T ), it is clear that ∇x,yu = ∇x,ygn
in Bn × {0}. In order to estimate ∇x,yu on ∂Bn × ]0, T [, we employ the classical
argument of the barrier functions on the cylinder Q ≡ Sn,T \ Sn

2 ,T
. More precisely,

given (x0, y0, t0) ∈ ∂Bn× ]0, T [, we set
w(x, y) = 4c1〈(x− x0, y − y0), ν〉,

where ν is the inner normal to Q at (x0, y0, t0). Then we have

Lε,nv (w ± u) = ±fn(·, v) = 0 in Q,

since fn and hn vanish on Q. On the other hand, it is straightforward to verify that
|u| ≤ w on ∂pQ. Therefore, by the maximum principle, we get |u| ≤ w and, in
particular,

|∇x,yu(x0, y0, t0)| ≤ |∇x,yw(x0, y0)| ≤ 4c1.(3.15)

Now we are in a position to prove estimate (3.14) for u. We differentiate equation

(3.10) w.r.t. the variable y and then multiply it by e−2λtuy. Denoting ω =
(
e−λtuy

)2
,

we obtain

Lεvω = e
−2λtLεvu

2
y + 2λω

= 2
(
e−2λt

(
|∇xuy|2 + ε2u2

yy + uy ((fn)y + (fn)vvy)
)
+ ω (λ− h′(v)vy)

)
≥ 2 (e−2λtuy ((fn)y + (fn)vvy) + ω (λ− h′(v)vy)

)
.(3.16)

Hence, by setting w = ω − (4c1)2, we get from (3.16)
Lεvw ≥ 2√ω (− |(fn)y| − |vy(fn)v|+

√
ω (λ− |h′vy|)

)
(by (3.5), (3.14), and by the elementary inequality

√
ω ≥

√
2

2 (4c1 + sgn(w)
√|w|))

≥
√
2ω
(√
2c1

(
2
√
2
(
λ− 4c21

)− 4c1 − 1)+ (λ− 4c21) sgn(w)√|w|
)

(for λ = λ(c1) suitably large)

≥ c
√
ω|w|sgn(w)(3.17)

for some positive constant c = c(c1). By contradiction, we want to prove that w ≤ 0
in Sn,T . It will follow that

|uy| ≤ c1eλt,
which implies (3.16) if T = T (c1) > 0 is sufficiently small. Let z0 be the maximum
of w on QT . If w(z0) > 0, then z0 ∈ Sn,T \ ∂pSn,T , since by (3.15) w ≤ 0 on ∂pSn,T .
This leads to a contradiction, since by (3.17)

0 ≥ Lεvw(z0) ≥ c
√
ω(z0)w(z0) > 0.
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This concludes the proof of (3.14). By a similar technique, we prove estimate (3.13)
of the x-derivatives of u:

|uxk |0 ≤ 4c1, k = 1, . . . , N.

We set

ω =
(
e−λtuxk

)2
, w = ω − (4c1)2.

Differentiating (3.10) w.r.t. xk and multiplying it by e
−2λtuxk , we get

Lεvw = e
−2λtLεvu

2
xk
+ 2λω

= 2
(
e−2λtuxk ((fn)xk + vxk ((fn)v − uyh′)) + λω

)
(by (3.5), (3.13), and estimate (3.14) of uy previously proved)

≥ c
√
ω|w|sgn(w),

if λ = λ(c1) is suitably large, for some positive constant c which depends only on c1.
As before, we infer that w ≤ 0, which yields (3.13).

We are in a position to prove Theorem 3.1.
Proof of Theorem 3.1. In order to prove the existence of a unique classical solution

to (3.3)–(3.4), we consider, for every ε > 0 and n ∈ N, the Cauchy–Dirichlet problem

∆xu+ ε
2uyy + hn(·, u)∂yu− ∂tu = fn(·, u) in Sn,T ,(3.18)

u = gn in ∂pSn,T .(3.19)

We split the proof into four steps: We first use Schauder’s fixed point theorem to
solve the above problem. Then we let n go to infinity under the assumption that the
coefficients are smooth. Next we prove estimates (3.6), (3.7), and (3.8). Finally we
remove the smoothness assumption.

First step. Assume that f, g, h are C∞ functions. We fix α ∈ ]0, 1[, n ∈ N and
denote by W the family of functions v ∈ C1+α (Sn,T ) such that

|v|1+α ≤M,(3.20)

|v(x, y, t)| ≤ 2c1
√
1 + |(x, y)|2 in Sn,T ,(3.21)

|vxi |0 ≤ 4c1, i = 1, . . . , N,(3.22)

|vy|0 ≤ 4c1,(3.23)

where the positive constantsM,T will be suitably chosen later. Clearly,W is a closed,
convex subset of C1+α (Sn,T ). We define a transformation u ≡ Zv onW by choosing u
as the unique classical solution of the linear Cauchy–Dirichlet problem (3.10)–(3.11).
If we show that

(i) Z (W) is precompact in C1+α (Sn,T );
(ii) Z is a continuous operator;
(iii) Z (W) ⊆ W,

then we are done. The proof of (i) and (ii) is quite standard and relies on the following
two estimates of u (see, for example, [10, Chap. 3, Thm. 6 and Chap. 7, Thm. 4]:

|u|2+α ≤ c
(
|gn|2+α + |fn (·, v) |α

)
≤ c̄

(
|gn|2+α + |v|α

)
(3.24)
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for some constant c̄ > 0 dependent on ε, n,M,α;

|u|1+δ ≤ c̃
(
|fn|0 + |Lεvgn|0 + |gn|1+δ

)
, δ ∈ ]0, 1[,(3.25)

for some positive constant c̃ dependent on ε, n, δ but not onM . Besides, (iii) is exactly
the content of Lemma 3.2. Therefore, by Schauder’s theorem, the operator Z has a
fixed point u in W.

Note that, by (3.6), a comparison principle in the space W does hold; therefore u
is the unique classical solution of problem (3.18)–(3.19) verifying estimates (3.6) and
(3.8). Moreover, by a standard bootstrap argument, u ∈ C∞(Sn,T ).

Second step. We fix ε > 0 and denote by un the solution of the Cauchy–Dirichlet
problem (3.18)–(3.19), whose existence has been proved in the previous step. We now
want to obtain the solution of the Cauchy problem (3.3)–(3.4) letting n go to infinity.

Fixing k ∈ N, we consider the sequence (unχ4k)n≥4k, where χ is the cut-off
function introduced in (3.9). Then we have

Lεun (u
nχ4k) = f4k(·, un) + 2

(〈∇xun,∇xχ4k〉+ ε2∂yun∂yχ4k

)
+ unLεunχ4k

≡ Fn,4k on S4k,T ,

(unχ4k) |∂pS4k,T
= g4k.

By classical Hölder estimates, we deduce

|un|S2k,T

δ ≤ |unχ4k|S4k,T

1+δ ≤ c
(
|Fn,4k|S4k,T

0 + |Lεung4k|S4k,T

0 + |g4k|S4k,T

1+δ

)
≤ c̄

for every n ≥ 4k and δ ∈ ]0, 1[, where c̄ = c̄(δ, ε, c1, k) does not depend on n. Moreover,
since

Lεun (u
nχ2k) = Fn,2k on S4k,T ,

(unχ2k) |∂pS2k,T
= g2k,

we obtain

|un|Sk,T

2+δ ≤ |unχ2k|S2k,T

2+δ ≤ c
(
|Fn,2k|S2k,T

δ + |g2k|S2k,T

2+δ

)
≤ ¯̄c ∀n ≥ 4k,

where ¯̄c = ¯̄c(δ, ε, c1, k) does not depend on n.
Then, by the Ascoli–Arzelà theorem and Cantor’s diagonal argument, we can

extract from un a subsequence | |2+α-convergent on compacts of ST for every α ∈ ]0, 1[
to the solution uε of (3.18)–(3.19) verifying estimates (3.6) and (3.8). The uniqueness
of uε follows again from standard results.

Third step. We still assume f, g, h ∈ C∞∩Lip. We aim to prove estimate (3.7)
for the solution uε found in the previous step. We fix (x̄, ȳ) ∈ R

n × R and set

w(x, y, t) = uε(x, εy, t)χ̄(x, εy), ε > 0, (x, y, t) ∈ ST ,
where χ̄(x, y) = χ(x− x̄, y − ȳ) and χ is the cut-off function in (3.9). We have

(∆x + ∂yy − ∂t)w = Ψε on ST ,

where

Ψε(x, y, t) =
[
χ̄
(
f(·, uε)− h(uε)uεy

)
+ uε

(
∆xχ̄+ ε

2χ̄yy
)

+ 2
(〈∇xuε,∇xχ̄〉+ ε2uεyχ̄y) ](x, εy, t), (x, y, t) ∈ ST .
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Denoting by ΓH(z; ζ) the fundamental solution of the heat operator in R
N+2 with pole

at ζ = (ξ, η, τ) and evaluated in z = (x, y, t), we have the following representation of
w:

w(z) =

∫ t
0

∫
RN+1

ΓH(z; ζ)Ψ
ε(ζ)d(ξ, η)dτ

−
∫

RN+1

ΓH(z; ξ, η, 0)gχ̄(ξ, εη)d(ξ, η) ≡ I1(z)− I2(z).(3.26)

In order to estimate I1, it suffices to note that, by (3.5), (3.6), and (3.8), we have
that

|Ψε|0 ≤ c
√
1 + |(x̄, ȳ)|2,(3.27)

with c dependent only on c1. Hence, by an elementary argument, we get

|I1(x, y, t+ s)− I1(x, y, t)| ≤ c
√
1 + |(x̄, ȳ)|2 |s| 12 ∀(x, y, t) ∈ ST , s ∈ [−t, T − t],

(3.28)

where c depends only on c1.
To estimate I2, we begin by noting that a simple change of variables gives

I2(x, y, t) =

∫
RN+1

ΓH(ξ, η, 1; 0)gχ̄
(
x− ξ√t, ε(y − η√t)

)
dξdη.

Then

|I2(x, y, t+ s)− I2(x, y, t)| ≤
∫

RN+1

ΓH(ξ, η, 1; 0)

·
∣∣∣gχ̄ (x− ξ√t+ s, ε(y − η√t+ s))− gχ̄(x− ξ√t, ε(y − η√t))∣∣∣ dξdη

(by the mean value theorem, for some constant c = c(c1) > 0)

≤ c
√
1 + |(x̄, ȳ)|2

∣∣∣√t+ s−√
t
∣∣∣ ∫

RN+1

ΓH(ξ, η, 1; 0) (|ξ|+ ε|η|) dξdη

≤ c
√
1 + |(x̄, ȳ)|2

√
2|s| ∀(x, y, t) ∈ ST , s ∈ [−t, T − t],(3.29)

where c depends only on c1.
Then, by the definition of w and by (3.26), we obtain

uε(x̄, ȳ, t) = I1

(
x̄,
ȳ

ε
, t
)
− I2

(
x̄,
ȳ

ε
, t
)
,

and estimate (3.7) follows from (3.28), (3.29).
Fourth step. We finally consider the general case where f, g, h are only assumed to

be globally Lipschitz continuous. We use the standard mollifiers to approximate f, g, h
uniformly on compacts by some sequences (fn), (gn), (hn) in C

∞∩Lip that verify the
estimates (3.5). Since the interval [0, T ] of existence of the solution constructed in the
second step does not depend on the regularity of the coefficients, we may employ the
usual density argument to find a function uε which is the unique classical solution of
(3.3)–(3.4).
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Proof of Theorem 2.1. By Theorem 3.1, there exists a sequence

uεn ∈ C2+α,loc (ST ) ∩ C
(
ST
)
,

with εn ↓ 0, such that every function uεn is a solution of (3.3)–(3.4) with ε = εn
and verifies (1.6) for a constant c0 that does not depend on n, and (u

εn) converges
uniformly on compact subsets of ST to a function u.

Arguing as in [6, Lem. 2.4], we can prove the following a priori estimates of Cacci-
oppoli type for the derivatives of the functions (uεn): if ϕ ∈ C∞

0 (ST ), there exists a
positive constant c which depends only on f, ϕ and on the constant c0 in (1.6) such
that

N∑
j=1

(
‖uεnxjxjϕ‖2 + ‖uεnxjyϕ‖2

)
+ εn‖uεnyyϕ‖2 + ‖uεnt ϕ‖2 ≤ c(3.30)

for every n. Therefore, up to a subsequence, ∂xj ,xku
εn , ε2n∂yyu

εn , ∂yu
εn , and ∂tu

εn

weakly converge in L2
loc(ST ) to ∂xj ,xku, 0, ∂yu, and ∂tu, respectively. Hence u ∈

H1
loc(ST ), ∂xjxku ∈ L2

loc(ST ) for j, k = 1, . . . , N , and (1.1) is satisfied a.e.
The uniqueness of the solution can be proved as in [2, Prop. 5.1]. Indeed, since

(uεn) converges uniformly on compact sets, it is standard to prove that the limit u is
a viscosity solution of (1.1)–(1.2) satisfying (1.6). Then the uniqueness of u follows
by the comparison principle for viscosity solutions.

4. Global existence. The main purpose of this section is to prove Theorem 1.2
by a simple continuation argument which relies on a bound of the gradient of u.

Proof of Theorem 1.2. The local existence result stated in Theorem 3.1 and a
standard argument ensure that there exist an interval I = [0, T [, where T ∈ R

+ or
T = +∞, and a solution u ∈ C2(RN+1 × I) to problem (1.1)–(1.2), which cannot
be defined for t ≥ T . We claim that our assumptions on f, g, and h yield T = +∞.
To this end, we consider the local solution u ∈ C2(RN+1 × [0, T ]), which has been
constructed in Theorem 3.1, and we denote by cT the spatial Lipschitz constant
corresponding to the strip ST :

cT = inf
{
c > 0 : |u(x, y, t)− u(x′, y′, t)| ≤ c(|x− x′|2 + |y − y′|2)1/2

∀(x, y, t),(x′, y′, t) ∈ R
N+1 × [0, T ]

}
.

We explicitly note that if T �= +∞, then ct → +∞ as t → T ; hence a bound of the
form

ct ≤ cekt(4.1)

for some positive constants c, k will prove our claim.
In order to prove (4.1) we first observe that, as in the proof of Theorem 3.1, it

is not restrictive to assume that f, g, and h are smooth and that u is the classical
solution of the regularized equation (1.5). We next show that

0 ≤ −uy ≤ c1
c0
+ 1,(4.2)

|uxj | ≤ c1ekt for j = 1, . . . , N(4.3)
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for every (x, y, t) ∈ ST , where c1 is the Lipschitz constant defined in (3.5) and k > 0
does not depend on ε. To prove the first inequality in (4.2) we set w(x, y, t) =
e−λtuy(x, y, t) for some λ > 0, and we note that since u is smooth, w is a solution to{

Lεw = e
−λtfy + (λ− h′(u)uy + fu)w in ST ,

w( · , 0) = gy.

By our assumptions fy ≥ 0, gy ≤ 0, c0 ≤ h′ ≤ c1 and also by Theorem 3.1, h′(u)uy+fu
is bounded in ST . Then λ−h′(u)uy+fu > 0 for suitably large λ and, as a consequence,
w ≤ 0 by the maximum principle. This proves the first inequality in (4.2). To prove
the second one we set w(x, y, t) = 1

2

(
u2
y(x, y, t)−λ2

)
, λ > 0, and argue as in the proof

of Theorem 3.1: w is a solution to{
Lεw = |∇xuy|2 + ε2u2

yy − uy(h′(u)u2
y − uyfu − fy) in ST ,

w( · , 0) = 1
2

(
g2y − λ2

)
.

Since uy ≤ 0, we may choose λ sufficiently large (for instance, λ = c1
c0
+1) so that the

right-hand side of the above differential equation is positive when w > 0. Then the
second inequality in (4.2) follows again from the maximum principle.

We finally consider the function w(x, y, t) = e−2λt
u2
xj

2 − c21
2 for j = 1, . . . , N .

Clearly w(x, y, 0) ≤ 0 and

Lεw = e
−2λt

(
u2
xj (λ− h′(u)uy + fu) + |∇xuxj |2 + ε2u2

xj ,y + uxjfxj

)
≥ e−2λt

(
u2
xj (λ+ fu) + uxjfxj

)
by (4.2). Since w ≥ 0 implies |uxjfxj | ≤ u2

xj then, for suitably large λ, we find
Lεw ≤ 0 for w ≥ 0 and prove (4.3) as above. This gives (4.1) and concludes the proof
of Theorem 1.2.

Remark 4.1. Hypothesis (1.9) on h is related to the natural assumptions in the
theory of conservation laws. A simple counterexample shows that we cannot drop this
condition. Indeed if h(u) = −u, f ≡ 0 and g(x, y) = x− y, then u(x, y, t) = x−y

1−t .

REFERENCES

[1] F. Antonelli, E. Barucci, and M. E. Mancino, A comparison result for FBSDE with ap-
plications to decisions theory, Math. Methods Oper. Res., 54 (2001), pp. 407–423.

[2] F. Antonelli and A. Pascucci, On the viscosity solutions of a stochastic differential utility
problem, J. Differential Equations, 186 (2002), pp. 69–87.
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