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(Communicated by David S. Tartakoff)

Abstract. We prove some maximum and gradient estimates for classical so-
lutions to a wide class of quasilinear degenerate parabolic equations, including
first order ones. The proof is elementary and exploits the smallness of the
domain in the time direction.

1. Introduction

We aim to show some simple a priori estimates for solutions to a quasilinear
degenerate equation of the form

(1.1) Pu ≡ −ut +
N∑

i,j=1

aij(X,u,Du)Diju+ a(X,u,Du) = 0,

where X = (x, t) ∈ QT ≡ Ω×]0, T [ and Ω is a bounded domain of RN . As
usual, ut, Diju stand for ∂tu, ∂xixju respectively and we denote by D = Dx the
gradient with respect to the spatial variables. The coefficients aij(X, z, p), i, j =
1, ..., N, a(X, z, p) are assumed to be defined for all values of (X, z, p) inQT×R×RN .
Besides the principal matrix A = (aij) is supposed symmetric and positive semi-
definite (the case A = 0 of a first order equation is included).

In many contexts the obtainment of bounds for the solution and its gradient
plays a crucial role. It is well known that the solvability of a boundary value
problem for a parabolic or elliptic equation can be reduced to the establishment of
a priori estimates of solutions. In the degenerate parabolic case, the equation is
often regularized by adding a vanishing diffusion term as follows:

(1.2) Pε ≡ P + ε∆x, ε > 0,

where ∆ denotes the Laplacian operator in the spatial variables. Consequently it is
important to obtain ε-uniform estimates of solutions, namely estimates which are
independent on the “parabolicity” constant of the equation. Gradient estimates
are normally achieved by ad hoc arguments which are, in most cases, modifications
of the classical Bernstein method [3]. More precisely, under suitable hypotheses,
by differentiating the equation it is possible to obtain estimates by means of the
maximum principle and classical barrier functions arguments. In general, these
estimates are only valid if the domain is sufficiently small in the time direction,
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due to the occurrence of blow up phenomena. This is the case, for instance, of the
Burgers’ equation in R× R+

(1.3) −ut + u∂xu = 0,

or the well known semilinear heat equation

(1.4) −ut + ∆u+ up = 0, p > 1.

On the other hand, by exploiting the smallness of T in (1.1), it is possible to
obtain estimates of the solution even if the operator P does not satisfy a standard
comparison principle. Indeed in this paper we aim to remark that the fact that
T is sufficiently small is almost sufficient to obtain at least maximum estimates
and, in many cases, gradient bounds. This fact was implicitly used by Pascucci
and Polidoro [14] and then by Citti and Manfredini [5] to study some non-linear
degenerate equations with applications to finance and image processing. Here we
aim to show the following a priori estimates which, to the best of our knowledge,
have not appeared in print. Our first result is the following

Theorem 1.1 (Maximum estimates). Assume that the function a(·, ·, 0) is bounded
on QT ×K for every K bounded subset of R. Suppose that u ∈ C2(QT ) is such that

(1.5)

Pu ≥ 0 in QT ,

lim sup
PQT

u ≤ C,

where C ≥ 1 and PQT denotes the parabolic boundary of the cylinder QT . Then
there exists T0 ∈ ]0, T ], which depends only on Ω, a(·, ·, 0) and C, such that

(1.6) sup
QT0

u ≤ 3C.

We remark that T0 in Theorem 1.1 does not depend on (aij), therefore (1.6)
provides an ε-uniform estimate for the regularized equation (1.2).

As a consequence of Theorem 1.1 we establish some gradient bounds by the
Bernstein method. Several extensions of this technique are known in literature.
In the case of parabolic equations, considerable generalizations of this method are
due to Ladyzhenskaya and Ural’tseva [10], [11], and Serrin [15]. A wide survey of
the related literature can be found in Lieberman [12]. We also quote the papers by
Ivanov [9] and by Lieberman [13] for the degenerate parabolic case, and by Barles [2]
who generalized the Bernstein method to a class of fully non-linear elliptic equations
in the framework of viscosity solutions.

Since the Bernstein technique involves the differentiation of equation (1.1), we
need to impose some extra structural conditions on the derivatives of the coefficients
of P . Preferring straightforwardness to generality, in the following theorem we
assume the solution u ∈ C3 and the coefficients aij , a ∈ C1 (see Remark 2.1).
Moreover we assume that at least one of the following conditions holds:

(H.1) the principal coefficients aij can be written as follows:

(1.7) aij(X, z, p) = a∗ij(p) +
1
2

(picj(X, z, p) + pjci(X, z, p)) , i, j = 1, ..., N,

where a∗ij , ci ∈ C1, i, j = 1, ..., N , and the matrix (a∗ij) is positive semi-definite;
(H.2) the matrix A is diagonal and there exist two positive constants k,M such

that, for every i = 1, ..., N ,

(1.8) |Dx,zaii(X, z, p)|2 ≤Maii(X, z, p) whenever aii(X, z, p) ≤ k.
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In (1.8), Dx,z stands for (D, ∂z). As we shall see in the proof, these conditions can
be further weakened or adapted to more general settings.

Theorem 1.2 (Gradient estimates). Assume that the functions Dx,zaij and Dx,za
are bounded on QT × K for every K bounded subset of R × RN . If the principal
coefficients of the operator P in (1.1) verify condition (H.1) or (H.2), then for
every C ≥ 1 there exists T0 ∈ ]0, T ], which depends on Dx,zaij , Dx,za, Ω, k,M and
C, such that for every u ∈ C3(QT0) solution of (1.1) verifying

lim sup
PQT0

|Du|2 ≤ C,

we have

(1.9) sup
QT0

|Du|2 ≤ 3C.

We close the Introduction by quoting some examples of applications of our re-
sults.

Condition (1.8) is satisfied if (aij) in (1.1) is uniformly positive definite. In this
case it suffices to choose k < inf λ, where λ is the smallest eigenvalue of the matrix
(aij). The following simple equation in R2,

|u|α∂xxu− ∂tu = 0,

verifies (1.8) if α = 2 but not if α = 1.
Condition (1.7) is satisfied if (aij) only depends on p. Then obviously a∗ij = aij

and ci = 0. We also refer to Gilbarg and Trudinger [7], Chap. 14, for other
examples of such decompositions. In particular, Theorem 1.2 applies to equations
(1.4), (1.3) and, in general, to first order equations. Other particular cases are
the equation of motion by mean curvature (see, for example, Huisken [8]) and the
nonlinear ultraparabolic equation arising in mathematical finance

∂xxu+ u∂yu− ∂tu = f, (x, y, t) ∈ R2 × R+,

studied in [6], [1], [14] and [4]. Theorems 1.1 and 1.2 were also used in [5] to prove a
locally existence result for an equation, arising in mathematical vision, of the form

ut =
N∑

i,j=1

aij(u)∂xixju+
N∑
i=1

bi(u)∂xiu+ c(u),

where u = u(x, y, t), (x, y, t) ∈ RN × R× R.

2. Proof of Theorems 1.1 and 1.2

Throughout this section we adopt the notation

‖f‖D = sup
D
f

and we use the summation convention that any term with a repeated index i is
summed over i = 1 to N .

Proof of Theorem 1.1. By a standard truncation argument it is not restrictive to
suppose that u ∈ C(Ω×]0, T ]) and it is positive in some points of QT . Hence ‖u‖QT
is finite. Besides we may also assume that

(2.1) MT ≡ sup
QT×[−‖u‖QT ,‖u‖QT ]

|a(·, ·, 0)| > 0.
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We set
v = e−tMT u.

By the so-called Weierstrass Lemma, there exists z̄ = (x̄, t̄) ∈ QT such that

‖v‖QT = ‖v‖QT∩B(z̄,r), ∀r > 0,

where B(z̄, r) denotes the Euclidean ball with radius r and center z̄ in RN+1. We
may also assume that t̄ < T .

Then, if z̄ ∈ PQT , we have

(2.2) u(z) = etMT v(z) ≤ etMT ‖v‖QT ≤ eTMT ‖u‖QT∩B(z̄,r) ≤ CeTMT ,

where C is the positive constant in (1.5).
On the other hand, if z̄ ∈ QT , then by assumption v(z̄) is strictly positive and

0 ≤ Pu(z̄) ≤ a(z̄, u(z̄), 0)− ∂tu(z̄)

(given that ∂tu(z̄) = MTu(z̄))

≤MT (1− u(z̄)).

Then, by (2.1), u(z̄) ≤ 1 and also v(z̄) ≤ 1. Hence, as before, we get ‖u‖QT ≤ eTMT .
In conclusion, we have proved that

(2.3) ‖u‖QT ≤ CeTMT .

Next, we set

(2.4) mT ≡ sup
QT×[−3C,3C]

|a(·, ·, 0)|.

Since TmT tends to zero as T → 0+, there exists a positive T0 ∈]0, T ] such that

(2.5) etmt ≤ 2, ∀t ∈ [0, T0].

In order to conclude the proof of (1.6), we consider the set S defined as

S = {t ∈ [0, T0] | ‖u‖Qs ≤ 3C, ∀s ∈ [0, t]}.
Clearly, S is non-empty and closed. The set S is also open; indeed, if t belongs to
S, then by (2.3), we have

‖u‖Qt ≤ CetMt

(by definition of S,mt,Mt)
≤ Cetmt ≤ 2C.

Therefore the thesis follows by continuity. This proves that S = [0, T0] and con-
cludes the proof of the theorem. �

Proof of Theorem 1.2. We differentiate equation (1.1) with respect to the variable
xh, we multiply the obtained equation by Dhu ≡ ∂u

∂xh
and finally sum over h from

1 to N . Then, by setting v = |Du|2, we obtain

0 =aijDijhuDhu+DhaijDijuDhu+DzaijDiju(Dhu)2 +DpsaijDijuDhsuDhu

+DhaDhu+Dza(Dhu)2 +DpsaDhsuDhu−DhtuDhu

=
1
2
aijDijv − aijDhiuDhju+DhaijDijuDhu+DzaijDiju(Dhu)2

+
1
2

(DpsaijDiju+Dpsa)Dsv +DhaDhu+Dza (Dhu)2 − 1
2
vt.
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Therefore, by the Cauchy-Schwartz inequality, we estimate the terms involving
the derivatives Dxaij and Dzaij , and we obtain, for every δ > 0,

1
2

(aijDijv + (DpsaijDiju+ Dpsa)Dsv − vt)

+ |Da|
√
v +

(
Dza+

N2

2δ

)
v +

N2

2δ
v2 + F ≥ 0

(2.6)

where

(2.7) F = −aijDihuDjhu+ δ |Dx,zaij |2 (Diju)2
.

Aiming to apply Theorem 1.1 to (2.6), we estimate the term F by means of condition
(H.1) or (H.2).

Under condition (H.1) and by choosing δ = 1, we have

F = −aijDihuDjhu+ |Dx,zcj |2v2
j ≤ |Dx,zcj |2v2

j .

Then we can rewrite (2.6) in the form

aij(X, v,Dv)Dijv + b(X, v,Dv)− vt ≥ 0

with b such that

b(X, v, 0) = 2|Da|
√
v +

(
2Dza+N2

)
v +N2v2.

The thesis follows by Theorem 1.1, since by assumption b(X, v, 0) is bounded on
QT ×K for every K bounded subset of R.

Conversely, under assumption (H.2), we can choose a positive δ=δ(k,M,Dx,zaii)
sufficiently small so that

F = −aii(Dihu)2 + δ|Dx,zaii|2(Diiu)2 ≤
(
−aii + δ|Dx,zaii|2

)
(Diiu)2 ≤ 0.

Indeed, if (H.2) holds and aii(X, z, p) ≥ k, then we set δ > 0 so that

−aii + δ|Dx,zaii|2 ≤ −k + δ|Dx,zaii|2 ≤ 0.

On the other hand, if aii(X, z, p) ≤ k and Mδ ≤ 1, by (1.8), we get

−aii + δ|Dx,zaii|2 ≤ aii(−1 + δM) ≤ 0.

The thesis follows at once, again by Theorem 1.1. �

Remark 2.1. The assumption on the C3 regularity of the solution can be dropped
if we have some uniform boundary gradient estimates. Indeed, let us assume that
aij , a ∈ C1,α and there exists a positive constant C such that

lim sup
PQT

|Duε| ≤ C,

for every uε classical solution of the regularized equation Pεuε = 0 in QT (cf. (1.2)).
Then estimate (1.9) holds uniformly on ε and we get the thesis passing at limit.
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