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HÖLDER REGULARITY FOR A KOLMOGOROV EQUATION

ANDREA PASCUCCI

Abstract. We study the interior regularity properties of the solutions to the
degenerate parabolic equation,

∆xu+ b∂yu− ∂tu = f, (x, y, t) ∈ RN × R× R,
which arises in mathematical finance and in the theory of diffusion processes.

1. Introduction

We consider the degenerate parabolic equation

(1.1) Lbu ≡ (∆x + b∂y − ∂t)u = f

in the variables (x, y, t) ∈ RN × R × R, where ∆x denotes the Laplacian operator
acting in the variables x = (x1, ..., xN ). We aim to prove some new Schauder type
interior estimates related to the Hölder classes Ck,αb naturally associated to Lb. Our
estimates improve the known ones and allow us to study nonlinear equations of the
form

(1.2) ∆xu+ b(·, u)∂yu− ∂tu = f(·, u),

recently considered in mathematical finance in [1] and [2]. We also obtain regularity
results for the following nonlinear convection-diffusion model proposed by Escobedo,
Vazquez and Zuazua in [9]:

∆xu+ ∂yg(u)− ∂tu = 0,

with particular interest in the case g(u) = u|u|q−1 for q ∈]1, N+2
N+1 [.

While we refer to the next section for the precise notation and assumptions on
the coefficients b and f , we would like to make some preliminary remarks. One
of the main features of operator Lb is the strong degeneracy of its characteristic
form due to the lack of diffusion in the y-direction. On the other hand, Lb can be
represented in the form,

(1.3)
p∑
j=1

X2
j +Xp+1,

where the first-order differential operators (vector fields) Xj are defined as follows:

(1.4) Xj = ∂xj , j = 1, ..., p = N, and XN+1 = b∂y − ∂t.
A classical result by Hörmander [11] states that if an operator H , in the form (1.3),
is such that the vector fields Xj have smooth coefficients and their commutators,
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up to a certain order, span the whole space at every point, then H is hypoelliptic.
This means that every weak solution of Hu = f , with f ∈ C∞, is smooth.

For instance, if N = 1 and b(x, y, t) = x in (1.1), then

(1.5) Lx = ∂xx + x∂y − ∂t
is the linearized prototype of the Kolmogorov operator which, under suitable con-
ditions, describes the probability density of a physical system with two degrees of
freedom (cf. [18]). In this case we have

X1 = ∂x, X2 = x∂y − ∂t, and [X1, X2] ≡ X1X2 −X2X1 = ∂y,

so that Lx is a hypoelliptic operator. More generally, the vector fields in (1.4) verify

(1.6) [Xj , XN+1] = (∂xjb)∂y, j = 1, ..., N ;

therefore, the assumptions of Hörmander’s theorem are satisfied if

(1.7) b ∈ C∞ and ∇xb ≡ (∂x1b, ..., ∂xN b) 6= 0.

Hörmander’s result was the starting point of an extensive study of operators H
in the form (1.3) with smooth vector fields. A general theory of the regularity
analogous to the classical one has been developed both in Sobolev and Hölder
spaces by Folland [10], Rothschild and Stein [17], Nagel and Stein [15], and Beals
[3]. We also refer to the more recent papers by Krylov [12] and by Lanconelli,
Polidoro and the author [13]. The case of operators in the form

p∑
i,j=1

aijXiXj +Xp+1

with non-regular coefficients aij has been considered by Xu [19] and Bramanti and
Brandolini [4]. Thanks to the known results (cf. [17]), we have the following.

Theorem 1.1 (Rothschild-Stein). Let u be a classical solution of (1.1) (cf. Def-
inition 4.1) in an open subset Ω of RN+2. If f ∈ Ck−2,α

b (Ω) and the Hörmander
condition (1.7) holds, then u ∈ Ck,αb (Ω).

The regularity assumption on b in Theorem 1.1 can be weakened by assuming
at least b ∈ Ck+1,α

b (Ω). In this case the proof follows the original one with minor
changes and we obtain the following:

Theorem 1.2 (Rothschild-Stein). Let u be a classical solution of (1.1) in Ω with
f ∈ Ck−2,α

b (Ω). If b ∈ Ck+1,α
b (Ω) and ∇xb 6= 0 in Ω, then u ∈ Ck,αb (Ω).

In view of the classical Schauder estimates, the previous results do not seem
optimal. In particular, we emphasize that they do not allow the treatment of
the existence and regularity theory of nonlinear equations. As a matter of fact,
the further weaker assumption b ∈ Ck−2,α

b is naturally expected. Actually, the
techniques used by Rothschild and Stein require the smoothness of the vector fields
as an essential hypothesis. On the contrary, here we aim to consider non-regular
vector fields.

In the recent papers [7], [8] in collaboration with Citti and Polidoro, we consid-
ered the nonlinear equation in three variables

(1.8) Luu = ∂xxu+ u∂yu− ∂tu = f
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and we studied the regularity of the solution u by a modification of the classi-
cal freezing method. More precisely, we regarded Lb as a local perturbation of a
Hörmander’s operator on the Heisenberg group. This last operator played the same
role as the constant coefficients operators in the classical theory. This technique
was introduced by Citti in [5] to study an equation of Levi type.

Aiming to adapt those ideas, we immediately realize that, in dimensions higher
than three, the Lie algebra formally associated to Lb is not free. This means that
the vector fields Xj do not satisfy as few linear relations as possible (i.e., only
those forced by anti-commutativity and the Jacobi identity). As a consequence,
the algebra that one might naturally associate to Lb varies from point to point. In
order to overcome this problem and to eliminate the inessential relations among
the commutators, we add some extra variables and we lift the operator Lb to a
higher-dimensional space. We recall that a general version of the so-called “lifting
method” for an operator in (1.3) with smooth coefficients, is due to Rothschild and
Stein [17]. In our case we make the tentative choice to define the following operator
in R2N+1:

(1.9) LB = ∆x + b∂y1 + x2∂y2 + ...+ xN∂yN − ∂t

where (x, y, t) = (x1, ..., xN , y1, ..., yN , t) denotes the point in R2N+1. In order to
apply to (1.9) the freezing techniques cited above, a detailed analysis and careful
estimates of the fundamental solutions to the frozen operators are in order. This is
done in Section 3 and it is our main proof. Then, we study the regularity properties
of LB and finally, we apply our results to the operator Lb. We prove the following.

Theorem 1.3. Let u be a classical solution of (1.1) in Ω (cf. Definition 4.1 and
Remark 4.3) and assume the Hörmander type condition

(1.10) b ∈ C1(Ω) and ∇xb 6= 0 in Ω.

If b, f ∈ Ck−2,α
b (Ω), with k ≥ 2 and α ∈]0, 1[, then u ∈ Ck,ᾱb (Ω) for every ᾱ ∈]0, α[.

We remark that Theorem 1.3 and a bootstrap argument give simple conditions
for the interior regularity of solutions to a nonlinear equation of the form (1.2). In
particular, we refine the results in [7].

Two possible directions for extending Theorem 1.3 come readily to mind. It
seems that our technique can be adapted without difficulty to the following, more
general, class of ultraparabolic operators in RN+2:

N∑
i,j=1

aij∂xixj + b∂y − ∂t

where (aij) is a positive definite matrix with Hölder continuous entries. Secondly,
assumption (1.10) could be relaxed by a “higher step” condition, that is, by re-
quiring that higher-order commutators of the vector fields Xj span RN+2. In this
case, it seems that the proof would be essentially analogous, even if it could become
considerably knotty.

This paper is organized as follows. In Section 2 we set the notation and we
collect some tools for the analysis on nilpotent Lie groups. In Section 3 we provide
some estimates of the fundamental solutions of the frozen operators. Section 4 is
devoted to the proof of Theorem 1.3.
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2. Hölder classes and control distances

In this section we present some preliminary material and we define the lifted and
frozen operators related to Lb. We begin by defining the Hölder classes related to
the vector fields in (1.4). For the reader’s convenience, we also give the following
standard

Definition 2.1. Let D be a locally Lipschitz continuous vector field on Ω and
d a (positive) formal degree associated to D. We call u Hölder continuous with
exponent α, α ∈]0, d[, in Ω w.r.t. D and we write u ∈ CαD(Ω) if, for every compact
subset E of Ω, there exists a constant C such that

|u(exp (δD) (z))− u(z)| ≤ C|δ|αd ,
for every z ∈ E and suitably small δ. We refer, for instance, to [16] for the definition
and properties of exponential mappings induced by vector fields. We say that u is
Lie derivable w.r.t. D in z ∈ Ω if the following limit exists:

Du(z) = lim
δ→0

u(exp (δD) (z))− u(z)
δ

.

Definition 2.2. Let α ∈]0, 1[. We set the formal degree of X1, . . . , XN in (1.4)
equal to one and the formal degree of XN+1 equal to two. We define

Cαb (Ω) =
N+1⋂
j=1

CαXj (Ω).

We say that u ∈ C1,α
b (Ω) if

Xju ∈ Cαb (Ω), j = 1, . . . , N, and u ∈ C1+α
XN+1

(Ω).

Finally, if k ∈ N, k ≥ 2, we define by recurrence the class Ck,αb (Ω) as follows:
assuming that b ∈ Ck−2,α

b (Ω), we say that u ∈ Ck,αb (Ω) if

Xju ∈ Ck−1,α
b (Ω), j = 1, . . . , N, and XN+1u ∈ Ck−2,α

b (Ω).

For greater convenience, when in the sequel we consider the class u ∈ Ck,αb (Ω)
with k ≥ 2, we always implicitly assume that b ∈ Ck−2,α

b (Ω).
No regularity in the y-direction is seemingly assumed in the definition of Ck,αb (Ω).

On the other hand, keeping in mind that [Xj , XN+1] = (∂xjb)∂y and Hörmander’s
condition, it is natural to set the formal degree of the vector field ∂y equal to
three and it is possible to prove, by a standard argument based on the Campbell-
Hausdorff formula, the following

Lemma 2.3. If k = 0, 1, 2 and u ∈ Ck,αb (Ω), then u ∈ Ck+α
∂y

(Ω). If k ≥ 3 and

u ∈ Ck,αb (Ω), then ∂yu ∈ Ck−3,α
b (Ω).

By the previous lemma, we have the following inclusion of the space Ck,αb in the
space of Hölder continuous functions in the classical sense:

C3k,α
b (Ω) ⊆ Ck,α3 (Ω).

We now lift the original vector fields in (1.4) to R2N+1 in such a way that they
become free. Since we aim to prove a local result, it is not restrictive to suppose that
Ω is suitably small. Then, without loss of generality, by (1.10), we may assume that
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∂x1b 6= 0 in Ω. In the sequel we denote by z = (x, y, t) = (x1, . . . , xN , y1, . . . , yN , t)
and ζ = (ξ, η, τ) the points in R2N+1 and we set Ω0 = Ω× RN−1.

We define the lifted vector fields on Ω0 as

(2.1) Dj = ∂xj , j = 1, . . . , N, DN+1 = 〈B,∇y〉 − ∂t,
where

B(x, y1, t) = (b(x, y1, t), x2, . . . , xn), and ∇y = (∂y1 , . . . , ∂yN ).

Thus, the operator LB in (1.9) can be expressed in the form

LB =
N∑
j=1

D2
j + DN+1.

Since ∂x1b 6= 0 in Ω0, the commutators

DN+2 ≡ [D1, DN+1] = (∂x1b)∂y1 ,

DN+1+j ≡ [Dj, DN+1] = (∂xjb)∂y1 + ∂yj , 2 ≤ j ≤ N,

are linearly independent and the system (Dj)1≤j≤2N+1 forms a basis of R2N+1 at
every point of Ω0. Analogously to Definition 2.2, we give the notion of Hölder
continuity related to (Dj).

Definition 2.4. Let α ∈]0, 1[. We set the formal degree of D1, . . . , DN equal to
one and the formal degree of DN+1 equal to two. We define

CαB(Ω0) =
N+1⋂
j=1

CαDj (Ω0).

We say that u ∈ C1,α
B (Ω0) if

Dju ∈ CαB(Ω0), j = 1, . . . , N, and u ∈ C1+α
DN+1

(Ω0).

Finally, if k ∈ N, k ≥ 2, we define by recurrence the class Ck,αB (Ω0) as follows:
assuming that b ∈ Ck−2,α

b (Ω), we say that u ∈ Ck,αB (Ω0) if

Dju ∈ Ck−1,α
B (Ω0), j = 1, . . . , N, and DN+1u ∈ Ck−2,α

B (Ω0).

Remark 2.5. Given a function w = w(x, y1, t) on Ω, we denote again by w its
extension to Ω0 = Ω × RN−1, i.e., the function defined by w(x, y1, . . . , yN , t) =
w(x, y1, t). Hence, it is clear that a solution u to (1.1) in Ω is also a solution to
LBu = f in Ω0. Moreover, u ∈ Ck,αb (Ω) if and only if u ∈ Ck,αB (Ω0).

We next construct a nilpotent Hörmander operator locally approximating LB
and we introduce some distances naturally associated to the vector fields Dj in
(2.1). More details about distances defined by vector fields can be found in [10]
and [16].

For fixed z̄ ∈ Ω0, we define the frozen vector fields

(2.2) Dz̄
j = ∂xj , j = 1, . . . , N,

and

Dz̄
N+1 = (b(z̄) + 〈∇xb(z̄), (x − x̄)〉)∂y1 +

N∑
j=2

xj∂yj − ∂t.
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Since the commutators of Dz̄
j and Dz̄

N+1 are given by

Dz̄
N+2 ≡ [Dz̄

1 , D
z̄
N+1] = ∂x1b(z̄)∂y1 ,

Dz̄
N+1+j ≡ [Dz̄

j , D
z̄
N+1] = ∂xjb(z̄)∂y1 + ∂yj , 2 ≤ j ≤ N,

(2.3)

and ∂x1b(z̄) 6= 0 by assumption, the Hörmander condition is verified and the oper-
ator

(2.4) Lz̄ =
N∑
j=1

(
Dz̄
j

)2 +Dz̄
N+1

is hypoelliptic. We call
∇z̄ ≡ (Dz̄

1 , . . . , D
z̄
2N+1),

the intrinsic gradient related to the system of vector fields defined in (2.2) and (2.3).
For fixed z ∈ R2N+1, we consider the exponential map

Ez̄z (θ) = exp (〈θ,∇z̄〉) (z), θ ∈ R2N+1.

It is well known that the map Ez̄z is a global diffeomorphism. Its inverse function
θz̄z is usually called the canonical change of coordinates and it has the explicit
expression

(2.5) θz̄z(ζ) =
(
Ez̄z
)−1 (ζ) = (θ1, . . . , θ2N+1),

where
θj = ξj − xj , 1 ≤ j ≤ N,

θN+1 =− (τ − t),

θN+2 =
1

∂x1b(z̄)

[
η1 − y1 + (τ − t)

(
b(z̄) +

∂x1b(z̄)
2

(ξ1 + x1 − 2x̄1)
)

−
N∑
j=2

∂xjb(z̄)(ηj − yj + x̄j(τ − t))
]
,

θN+1+j = ηj − yj +
(τ − t)(ξj + xj)

2
, 2 ≤ j ≤ N.

(2.6)

Through the canonical change of coordinates, the vector fieldsDz
j , D

z̄
j corresponding

to different points z, z̄ ∈ Ω0, coincide. More precisely, if we set

DH
j = ∂θj −

θN+1

2
∂θN+1+j , 1 ≤ j ≤ N,

DH
N+1 = ∂θN+1 +

1
2

N∑
j=1

θj∂θN+1+j ,

DH
N+1+j ≡ [DH

j , D
H
N+1] = ∂θN+1+j , 1 ≤ j ≤ N,

(2.7)

then, for any smooth function ϕ and z̄ ∈ Ω0, it follows that

Dz̄
j

(
ϕ ◦ θz̄z̄

)
= (DH

j ϕ) ◦ θz̄z̄ , 1 ≤ j ≤ 2N + 1.

The vector fields in (2.7) generate a free Lie algebra which is isomorphic to the
Heisenberg one. Indeed, the vector fields in (2.7) induce a composition law in
R2N+1 formally defined by the Campbell-Hausdorff formula, or explicitly(
θ ⊕ θ̄

)
j

=

{
θj + θ̄j , if 1 ≤ j ≤ N + 1,
θj + θ̄j + 1

2

(
θj−N−1θ̄N+1 − θ̄j−N−1θN+1

)
, if N + 2 ≤ j ≤ 2N + 1,
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and the dilations group

(2.8) δλ(θ) = (λθ1, . . . , λθN , λ
2θN+1, λ

3θN+2, . . . , λ
3θ2N+1), λ > 0.

The space R2N+1 endowed with the law ⊕ and the dilations δλ is a homogeneous Lie
group. The associated Lie algebra of the ⊕-left-invariant vector fields is the one gen-
erated by DH

1 , . . . , D
H
N+1. We also remark that DH

1 , . . . , D
H
N are δλ-homogeneous of

degree one and DH
N+1 is δλ-homogeneous of degree two. Therefore, the Hörmander

operator,

(2.9) LH =
N∑
j=1

(
DH
j

)2
+DH

N+1,

has a fundamental solution ΓH which is invariant with respect to the left ⊕-
translations and it is homogeneous of degree −Q + 2 where Q = 4N + 2 is the
homogeneous dimension of (RN+1,⊕). An explicit expression of ΓH is known (see,
e.g., [14]); however, here we only use its qualitative properties. A norm homoge-
neous w.r.t. the dilations in (2.8) is given by

(2.10) ‖θ‖H =
N∑
j=1

(
|θj |+ |θN+1+j |

1
3

)
+ |θN+1|

1
2 ,

and the associated control distance is defined by

dH(θ̄, θ) = ‖θ−1 ⊕ θ̄‖H .

The following Lie product on R2N+1 is naturally induced:

z ◦ ζ = Ez̄z̄
(
θz̄z̄(z)⊕ θz̄z̄(ζ)

)
= (x+ ξ − x̄, y + η − ȳ − (τ − t̄)JxB(z̄)(x − x̄), t+ τ − t̄) ,

(2.11)

where JxB denotes the Jacobian matrix of B w.r.t. the variable x, i.e., the diagonal
matrix diag(∂x1b, 1, . . . , 1). Correspondingly, we have the dilations group

δz̄λ(z) = Ez̄z̄
(
δλθ

z̄
z̄(z)

)
, λ > 0,

and the associated control distance

(2.12) dz̄(z, ζ) = ‖θz̄z(ζ)‖H .

Lemma 2.6. There exists a constant c0, only dependent on Ω0, such that

(2.13) c−1
0 dz(z, ζ) ≤ d̃z(z, ζ) ≤ c0dz(z, ζ),

for every z, ζ ∈ Ω0, where

d̃z(z, ζ) = |x− ξ|+ |t− τ | 12 + |y1 − η1 + (t− τ)b(z)| 13

+
N∑
j=2

∣∣∣∣yj − ηj +
(t− τ)(ξj + xj)

2

∣∣∣∣ 13 .
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Proof. By (2.6) and by denoting θzz(ζ) = (θ1, . . . , θ2N+1), we have

θN+2 =
1

∂x1b(z)

[
η1 + y1 + b(z)(τ − t)−

N∑
j=2

∂xjb(z)
(
ηj − yj +

(τ − t)(ξj + xj)
2

)

+
1
2

N∑
j=2

∂xjb(z)(τ − t)(ξj − xj)
]

+
(τ − t)(ξ1 − x1)

2

=
1

∂x1b(z)

η1 + y1 + b(z)(τ − t)−
N∑
j=2

∂xjb(z)
(
θN+1+j +

1
2
θjθN+1

)
− 1

2
θ1θN+1.

Hence (2.13) is an immediate consequence of the elementary inequality

(2.14) (ab)
1
3 ≤ a

3
+

2
√
b

3
, ∀a, b > 0.

�

We stress that the distances dz, dζ corresponding to different points z, ζ ∈ Ω0 are
not, in general, equivalent. Nevertheless, using Lemma 2.6, it is straightforward to
prove the following

Lemma 2.7. There exists a constant c0, only dependent on Ω0, such that

(2.15) c−1
0 dz(z, z̄) ≤ dz̄(z̄, z) ≤ c0dz(z, z̄)

and

(2.16) dz(z, ζ) ≤ c0 (dz(z, z̄) + dz̄(z̄, ζ))

for every z, z̄, ζ ∈ Ω0.

It is remarkable that the Hölder continuity property related to the vector fields
Dj can be expressed in terms of the control distances associated to the frozen vector
fields. Indeed, we have

Lemma 2.8. Let g be a function on Ω0 and α ∈ ]0, 1[. Suppose that, for every
compact subset E of Ω0, there exists a constant C such that

(2.17) |g(z)− g(z̄)| ≤ Cdz̄(z̄, z)α, ∀z, z̄ ∈ E.

Then g ∈ CαB(Ω0).

Proof. We have to prove that

|u(exp(δDj)(z))− u(z)| ≤ cδα, 1 ≤ j ≤ N,
|u(exp(δDN+1)(z))− u(z)| ≤ cδ α2 .

(2.18)

The first inequality is obvious since dz(z, exp(δDj)(z)) = δ, for 1 ≤ j ≤ N . With
regard to the second inequality in (2.18), by assumption (2.17), it suffices to verify
that

(2.19) dz(z, exp(δDN+1)(z)) ≤ cδ 1
2 .
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Denoting γ(δ) = exp(δDN+1)(z), we have

γ(δ) = z +

δ∫
0

DN+1(γ(s))ds

=

x, y1 +

δ∫
0

b(γ(s))ds, y2 + δx2, . . . , yN + δxN , t− δ

 .

Hence, by Lemma 2.6, we get

c−1
0 dz(z, γ(δ)) ≤ d̃z(z, γ(δ)) = |δ| 12 +

∣∣∣∣∣∣
δ∫

0

(b(γ(s))− b(z))ds

∣∣∣∣∣∣
1
3

≤ |δ| 12 +

∣∣∣∣∣δ sup
s∈[0,δ]

|b(γ(s))− b(z)|
∣∣∣∣∣

1
3

(since b ∈ C1(Ω) and |z − ζ| ≤ dz(z, ζ) for every z, ζ in a suitably compact subset
E0 of Ω)

≤ |δ| 12 +
∣∣∣∣δ(sup

E0

|∇b|
)
dz(z, γ(δ))

∣∣∣∣ 1
3

(by (2.14) for ε > 0)

≤ |δ| 12
(

1 +
2
3

(
ε sup
E0

|∇b|
) 1

2
)

+
dz(z, γ(δ))

3ε
,

which yields (2.19) if ε is suitably large. �

The control distances previously introduced also give an estimate of the error in
the intrinsic Taylor expansion of a function u ∈ Ck,αB . To be more precise, as in [7],
Theorem 2.16, the following result can be proved.

Proposition 2.9. Let z̄ ∈ Ω0 and u ∈ Ck,αB (Ω0). There exists a unique polynomial
function P kz̄ u which is a sum of terms δz̄λ-homogeneous of degree less than or equal
to k and verifies

(2.20) u(z) = P kz̄ u(z) +O(dz̄(z̄, z)k+α), as z −→ z̄.

For instance, in the case k = 0, 1, we have

P 0
z̄ u(z) = u(z̄) and P 1

z̄ u(z) = u(z̄) + 〈∇xu(z̄), x− x̄〉.
Hence, the frozen vector fields defined in (2.2) are obtained by considering the first-
order (intrinsic) Taylor expansion of the coefficients of the original vector fields in
(2.1). In particular, we have

DN+1 −Dz̄
N+1 = (b − P 1

z̄ b)∂y1 .

We end this section by stating a technical lemma, which will be used in the proof
of Theorem 1.3. For fixed z, z̄ ∈ Ω0 and a constant M ≥ 1, we define the set

(2.21) ΩM (z̄, z) = {ζ ∈ Ω0 | Mdz̄(z̄, z) ≤ dz̄(z̄, ζ)}.
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We remark that we can choose M sufficiently large so that

(2.22) (cM )−1dz(z, ζ) ≤ dz̄(z̄, ζ) ≤ cMdz(z, ζ), ∀ζ ∈ ΩM (z̄, z),

for some constant cM . Indeed, by Lemma 2.7, we have

dz(z, ζ) ≤ c0 (dz(z, z̄) + dz̄(z̄, ζ)) ≤ c0 (c0dz̄(z̄, z) + dz̄(z̄, ζ)) ≤ c0
( c0
M

+ 1
)
dz̄(z̄, ζ),

and, on the other hand,

dz̄(z̄, ζ) ≤ c0 (dz̄(z̄, z) + dz(z, ζ)) ≤ c0
(
dz̄(z̄, ζ)
M

+ dz(z, ζ)
)
,

so that (
1
c0
− 1
M

)
dz̄(z̄, ζ) ≤ dz(z, ζ).

Lemma 2.10. Let u ∈ Ck,αB (Ω0) and k ≤ 4. For every compact subset E of Ω0,
there exists a constant c = c(E) such that∣∣P kz u(ζ)− P kz̄ u(ζ)

∣∣ ≤ cdz̄(z̄, z)αdz̄(z̄, ζ)k,(2.23) ∣∣(P kz u(ζ)− P 1
z u(ζ)

)
−
(
P kz̄ u(ζ)− P 1

z̄ u(ζ)
)∣∣ ≤ cdz̄(z̄, z)αdz̄(z̄, ζ)k,(2.24)

for z, z̄ ∈ E and ζ ∈ ΩM (z̄, z).

Proof. The proof is a direct and tiresome computation. We only show (2.23) for
k = 1. We have∣∣P 1

z u(ζ)− P 1
z̄ u(ζ)

∣∣ =
∣∣u(z)− P 1

z̄ u(z) + 〈ξ − x,∇x(u(z)− u(z̄))〉
∣∣

(since u ∈ C1,α
B (Ω0) and by (2.22))

≤ cdz̄(z̄, z)αdz̄(z̄, ζ).

�

3. Parametrices

The proof of Theorem 1.3 is based on a representation formula for classical
solutions to (1.1) in terms of the fundamental solution Γz̄ of the frozen operator
Lz̄ in (2.4). In this section, we provide some crucial estimates of Γz̄, with z̄ ∈
Ω0 = Ω×RN−1 (cf. Proposition 3.1). Most of the results of this section are rather
technical.

We denote by Γz̄(z, ζ) (resp. ΓH(θ)) the fundamental solution of Lz̄ (resp. of
LH in (2.9)), evaluated in z (resp. in θ) and with pole in ζ (resp. in the origin).
We note that

(3.1) Γz̄(z, ζ) = Γz̄(ζ−1 ◦ z, 0) =
1

∂x1b(z̄)
ΓH
(
θz̄z̄(ζ−1 ◦ z)

)
,

where the product “◦” is defined in (2.11).
We introduce some auxiliary notation. We denote the identity by D0 = Dz̄

0 =
DH

0 and for every multi-index σ = (σ1, . . . , σm) ∈ {0, 1, . . . , 2N + 1}m, we set

Dz̄
σ = Dz̄

σ1
· · ·Dz̄

σm , DH
σ = DH

σ1
· · ·DH

σm .

We call the weight of σ the number

(3.2) |σ| = mσ
1 + 2mσ

2 + 3mσ
3
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where mσ
1 ,m

σ
2 ,m

σ
3 , respectively, are the cardinalities of the sets

{σj ∈ σ | 1 ≤ σj ≤ N},
{σj ∈ σ | σj = N + 1},

{σj ∈ σ | N + 2 ≤ σj ≤ 2N + 1}.

Analogously, if b ∈ C|σ|−2,α
b (Ω), we put

Dσ = Dσ1 · · ·Dσm .

For greater convenience, whenever we consider a derivative Dσ with |σ| ≥ 2, in the
sequel we agree to assume b ∈ C|σ|−2,α

b (Ω). Moreover, to avoid any ambiguity, when
we have a function F which depends on several variables, we systematically write
D(z)F instead of DF (z). Then, for instance, D(z)Γz̄(·, ζ) denotes the D-derivative
of Γz̄(·, ζ) evaluated at the point z.

The following estimate of Γz̄ and its derivatives is well known: for every z̄ ∈ Ω0

and multi-index σ ∈ {0, 1, . . . , 2N + 1}m there exists a positive constant c, such
that

(3.3) |Dz̄
σ(z)Γz̄(·, ζ)| ≤ cdz̄(z, ζ)−Q+2−|σ|, ∀z, ζ ∈ Ω0, z 6= ζ.

Moreover, the constant c in (3.3) depends continuously on z̄.
In the proof of Theorem 1.3, we shall also need to compare the fundamental

solutions of frozen operators corresponding to different points of Ω0. The main
result of this section is the following.

Proposition 3.1. Let σ ∈ {1, . . . , N + 1}m. There exists a positive constant
c = c(σ,Ω0) such that

(3.4) |Dσ(z)Γz̄ (·, ζ)−Dσ(z̄)Γz̄ (·, ζ)| ≤ c dz̄ (z̄, ζ)−Q+2−|σ|−α
dz̄ (z̄, z)α ,

and, if |σ| ≥ 3,

(3.5) |Dσ(z)Γz (·, ζ)−Dσ(z̄)Γz̄ (·, ζ)| ≤ c dz̄ (z̄, ζ)−Q+2−|σ|−α
dz̄ (z̄, z)α ,

for every z, z̄ ∈ Ω0 and ζ ∈ ΩM (z̄, z) (cf. (2.21)).

The proof of Proposition 3.1 is based on two lemmas. The first one gives an
expression of Dj in terms of the frozen vector fields in (2.2).

Lemma 3.2. Let z, z̄ ∈ Ω0 and σ ∈ {1, . . . , N + 1}m (and b ∈ C
|σ|−2,α
b (Ω), if

|σ| ≥ 2). For every smooth function ϕ, we have

(3.6) Dσϕ(z) =
∑

µ∈{1,...,N+2}m
Λµ,z̄(z) (Rz̄(z))αµ Dz̄

µϕ(z)

where |µ| ≤ |σ|+ αµ, αµ ≤ mσ
2 , and

Rz̄(z) =
b(z)− P 1

z̄ b(z)
∂x1b(z̄)

=
b(z)− b(z̄)− 〈∇xb(z̄), x− x̄〉

∂x1b(z̄)
,

Λµ,z̄(z) =
∑
i

ci(µ)
∏

ν∈Jµ,i

(Dν(z)Rz̄)
βν .

(3.7)

In (3.7), Jµ,i is a suitable subset of {1, . . . , N + 1}m−1, |ν| ≤ |σ| − 2 and βν ≤ m.
Moreover, we have

(3.8) |Λµ,z̄(z) (Rz̄(z))αµ − Λµ,z̄(z̄) (Rz̄(z̄))
αµ | ≤ cdz̄(z̄, z)αµ+α
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for some positive constant c = c(σ,Ω0).

Proof. We proceed by induction on |σ|. If |σ| = 1, 2, the assertion is trivial since
Dσ = Dz̄

σ if mσ
2 = 0 (cf. (3.2)), and we have

DN+1 = Dz̄
N+1 +Rz̄D

z̄
N+2.

We next consider |σ| ≥ 2. If j = 1, . . . , N , by induction, we have

DjDσϕ(z) =
∑

µ∈{1,...,N+2}m
(Dj(z) (Λµ,z̄ (Rz̄)

αµ)Dz̄
µϕ(z)

+ Λµ,z̄(z) (Rz̄(z))αµ Dz̄
jD

z̄
µϕ(z)).

Analogously, we have

DN+1Dσϕ(z) =
∑

µ∈{1,...,N+2}m

(
DN+1(z) (Λµ,z̄ (Rz̄)

αµ)Dz̄
µϕ(z)

+ Λµ,z̄(z) (Rz̄(z))αµ Dz̄
N+1D

z̄
µϕ(z) + Λµ,z̄(z) (Rz̄(z))αµ+1

Dz̄
N+2D

z̄
µϕ(z)

)
.

Then the thesis is a straightforward verification. In particular, (3.8) is a conse-
quence of the fact that, by assumption, b ∈ C|σ|−2,α

b (Ω) and Rz̄(z̄) = 0. �

The proof of (3.5) in Proposition 3.1 is rather delicate since we need to estimate
the fundamental solutions of frozen operators related to different points z, z̄. Here
we use the canonical change of coordinates (2.5) and we investigate the properties
of the fundamental solution ΓH . The next lemma provides us with some basic
estimates.

Lemma 3.3. Let b ∈ C1,α
b (Ω). There exists a positive constant c = c(Ω), such that

(3.9) dH
(
θz̄z̄(ζ), θzz(ζ)

)
≤ c dz̄(z̄, ζ)1−α3 dz̄(z̄, z)

α
3 ,

for every z, z̄ ∈ Ω0 and ζ ∈ ΩM (z̄, z).

Proof. Let us denote (−θzz(ζ)) ⊕ θz̄z̄(ζ) = θ. Keeping in mind formulas (2.5) and
(2.6), we get

(3.10) dH
(
θz̄z̄(ζ), θzz(ζ)

)
= |x− x̄|+ |t− t̄| 12 +

2N+1∑
j=N+2

|θj |
1
3 .

If 2 ≤ j ≤ N , we have

θN+1+j = ηj − ȳj +
(τ − t̄)(xj + x̄j)

2
−
(
ηj − yj +

(τ − t)(ξj + xj)
2

)
+

(ξj − xj)(τ − t̄)
2

− (ξj − xj)(τ − t)
2

=
(
yj − ȳj +

(t− t̄)(xj + x̄j)
2

)
+ (ξj − xj)(τ − t̄)− (ξj − x̄j)(τ − t);

therefore,

|θN+1+j |
1
3 ≤ dz̄(z̄, z) + dz̄(z̄, ζ)

2
3 dz̄(z̄, z)

1
3 + dz(z, ζ)

2
3 dz̄(z̄, z)

1
3

(since ζ ∈ ΩM (z̄, z) and by (2.22))

≤ cdz̄(z̄, ζ)1−α3 dz̄(z̄, z)
α
3 .

(3.11)
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Next we prove the inequality

(3.12) |θN+2|
1
3 ≤ cdz̄(z̄, ζ)1−α3 dz̄(z̄, z)

α
3 ,

which by (3.10) suffices to conclude the proof of the lemma. Noting that

ηj − yj + xj(τ − t) = ηj − yj +
(τ − t)(ξj + xj)

2
− (τ − t)(ξj − xj)

2
,

we have

θN+2 =
1
2

(t− t̄) (ξ1 − x1 + ξ1 − x̄1) +
η − ȳ + (τ − t̄)b(z̄)

∂x1b(z̄)
− η − y + (τ − t)b(z)

∂x1b(z)

−
N∑
j=2

[
∂xjb(z̄)
∂x1b(z̄)

(ηj − ȳj + x̄j(τ − t̄))−
∂xjb(z)
∂x1b(z)

(ηj − yj + xj(τ − t))
]

=
1
2

(t− t̄) (ξ1 − x1 + ξ1 − x̄1) +A1 +A2 +A3 +A4,(3.13)

where

A1 =
y − ȳ + (t− t̄)b(z̄)

∂x1b(z̄)
+

(τ − t)(b(z)− b(z̄))
∂x1b(z̄)

+
∂x1b(z)− ∂x1b(z̄)
∂x1b(z̄)∂x1b(z)

(η − y + (τ − t)b(z)),

so that, since b ∈ C1,α
b (Ω) ∩ C1(Ω), we have

|A1|
1
3 ≤ c

(
dz̄(z̄, z) + dz(z, ζ)

2
3 dz̄(z̄, z)

1
3 + dz̄(z̄, z)

α
3 dz(z, ζ)

)
(since ζ ∈ ΩM (z̄, z) and by (2.22))

≤ c dz̄(z̄, ζ)1−α3 dz̄(z̄, z)
α
3 .

(3.14)

Also,

A2 =
N∑
j=2

(
∂xjb(z)
∂x1b(z)

−
∂xjb(z̄)
∂x1b(z̄)

)
(ηj − ȳj + x̄j(τ − t̄))

so that, since b ∈ C1,α
b (Ω), we have

(3.15) |A2|
1
3 ≤ c dz̄(z̄, z)

α
3 dz̄(z̄, ζ).

Moreover,

A3 =
N∑
j=2

∂xjb(z)
∂x1b(z)

(
ηj − yj +

(τ − t)(xj + xj)
2

−
(
ηj − ȳj +

(τ − t̄)(ξj + x̄j)
2

))
which can be estimated as before:

(3.16) |A3|
1
3 ≤ cdz̄(z̄, ζ)1−α3 dz̄(z̄, z)

α
3 .

Finally,

A4 =
1
2

N∑
j=2

∂xjb(z)
∂x1b(z)

((τ − t̄)(ξj − x̄j)− (τ − t)(ξj − xj))

=
1
2

N∑
j=2

∂xjb(z)
∂x1b(z)

((t− t̄)(ξj − x̄j) + (τ − t)(xj − x̄j))
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so that

|A4|
1
3 ≤ c dz̄(z̄, z)

2
3 dz̄(z̄, ζ)

1
3 + dz(z, ζ)

2
3 dz̄(z̄, z)

1
3

(since ζ ∈ ΩM (z̄, z) and by (2.22))

≤ c dz̄(z̄, ζ)1−α3 dz̄(z̄, z)
α
3 .

(3.17)

Plugging inequalities (3.14), (3.15), (3.16) and (3.17) back into (3.13), we obtain
(3.12). This concludes the proof. �

Remark 3.4. Let b ∈ C1,α
b (Ω). If z, z̄ ∈ Ω0, ζ ∈ ΩM (z̄, z) and θ ∈ RN+1 are such

that

dH
(
θz̄z̄(ζ), θ

)
≤ dH

(
θz̄z̄(ζ), θzz(ζ)

)
,

then there exists a positive constant c = c(Ω0) such that

(3.18) ‖θ‖H ≥ c‖θz̄z̄(ζ)‖H .

Indeed, we have

dz̄(z̄, ζ) = ‖θz̄z̄(ζ)‖H ≤ c
(
dH(0, θ) + dH

(
θz̄z̄(ζ), θ

))
≤
(
dH(0, θ) + dH

(
θz̄z̄(ζ), θzz(ζ)

))
(by (3.9) and since ζ ∈ ΩM (z̄, z))

≤ c
(
dH(0, θ) +M−

α
3 dz̄(z̄, ζ)

)
.

Thus, if M is suitably large, we get (3.18).

We are now in position to prove Proposition 3.1.

Proof of Proposition 3.1. We first prove estimate (3.4) by using Lemma 3.2. We
have

|(Dσ(z)−Dσ(z̄)) Γz̄ (·, ζ)| ≤ A1 +A2,

where

A1 =
∑

µ∈{1,...,N+2}m
|Λµ,z̄(z) (Rz̄(z))αµ − Λµ,z̄(z̄) (Rz̄(z̄))αµ |

∣∣Dz̄
µ(z̄)Γz̄ (·, ζ)

∣∣
and

A2 =
∑

µ∈{1,...,N+2}m

∣∣Λµ,z̄(z) (Rz̄(z))αµ
(
Dz̄
µ(z)−Dz̄

µ(z̄)
)

Γz̄ (·, ζ)
∣∣ .

Hence, by (3.3) and (3.8), we have

A1 ≤ c
∑

µ∈{1,...,N+2}m
dz̄(z̄, z)αµ+αdz̄(z̄, ζ)−Q+2−|µ|

(since ζ ∈ ΩM (z̄, z) and, by Lemma (3.2), |µ| ≤ |σ|+ αµ)

≤ cdz̄(z̄, z)αdz̄(z̄, ζ)−Q+2−|σ|.
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On the other hand, by the mean value theorem, for some z̃ such that dz̄(z̄, z̃) ≤
dz̄(z̄, z), we have∣∣(Dz̄

µ(z)−Dz̄
µ(z̄)

)
Γz̄ (·, ζ)

∣∣ =
∣∣〈θz̄z̄(z),∇z̄Dz̄

µ(z̃)Γz̄ (·, ζ) 〉
∣∣

≤ c
3∑
j=1

dz̄(z̄, z)jdz̄(z̄, ζ)−Q+2−|µ|−j

(since ζ ∈ ΩM (z̄, z))

≤ c dz̄ (z̄, ζ)−Q+2−|µ|−α
dz̄ (z̄, z)α .

As before, we conclude that

A2 ≤ c dz̄(z̄, ζ)−Q+2−|σ|−αdz̄(z̄, z)α.

Next we prove (3.5). By (3.1) and Lemma 3.2, we have

|Dσ(z)Γz (·, ζ)−Dσ(z̄)Γz̄ (·, ζ)|

≤

∣∣∣∣∣∣
∑
|µ|≤|σ|

(
Λµ,z(z)
∂x1b(z)

DH
µ (−θzz(ζ)) − Λµ,z̄(z̄)

∂x1b(z̄)
DH
µ

(
−θz̄z̄(ζ)

))
ΓH

∣∣∣∣∣∣ ≤ A1 +A2

where

A1 =
∑
|µ|≤|σ|

∣∣∣∣Λµ,z(z)
∂x1b(z)

− Λµ,z̄(z̄)
∂x1b(z̄)

∣∣∣∣ ∣∣DH
µ ΓH (−θzz(ζ))

∣∣ ,
A2 =

∑
|µ|≤|σ|

∣∣∣∣Λµ,z̄(z̄)∂x1b(z̄)

∣∣∣∣ ∣∣DH
µ ΓH (−θzz(ζ)) −DH

µ ΓH
(
−θz̄z̄(ζ)

)∣∣ .
Since the function

z 7−→ Λµ,z(z)
∂x1b(z)

∈ CαB(Ω0),

we get
A1 ≤ c dz̄ (z̄, z)α dz (z, ζ)−Q+2−|σ|

.

On the other hand, by the mean value theorem, there exists θ such that

dH
(
θz̄z̄(ζ), θ

)
≤ dH

(
θz̄z̄(ζ), θzz(ζ)

)
,

and∣∣DH
µ ΓH (−θzz(ζ)) −DH

µ ΓH
(
−θz̄z̄(ζ)

)∣∣ =
∣∣〈(−θzz(ζ)) ⊕ θz̄z̄(ζ),∇HDH

µ ΓH(θ)〉
∣∣

≤ c
3∑
j=1

dH
(
θz̄z̄(ζ), θzz (ζ)

)j ‖θ‖−Q+2−|µ|−j
H

≤ c dz̄ (z̄, z)α dz (z, ζ)−Q+2−|σ|−α
,

where the last inequality follows from Lemma 3.3 and Remark 3.4 (note that the
assumption b ∈ C1,α

b (Ω) of Lemma 3.3 is fulfilled because |σ| ≥ 3). The proof is
completed. �

We end this section by describing the fine behaviour of the vector fields Dz̄
j

through the right translations w.r.t. the law “◦” in (2.11).
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Lemma 3.5. Let b ∈ C1,α
b (Ω). For every smooth function ϕ and multi-index

µ ∈ {1, . . . , N + 2}m, we have

(3.19) Dz̄
µ(z)ϕ(· ◦ ζ−1) =

∑
ν∈{1,...,2N+1}m

Pν,z̄(ζ)Dz̄
ν(z ◦ ζ−1)ϕ,

where Pν,z̄ is a polynomial δz̄λ-homogeneous of degree kν , with |ν| ≤ |µ|+ kν , whose
coefficients are functions of z̄ of class CαB(Ω0).

Proof. Since

z ◦ ζ−1 = (x− ξ, y − η + JxB(z̄) (τ(x − x̄)− (τ − t̄)ξ) , t− τ) ,

we have, for 2 ≤ j ≤ N ,

Dz̄
1(z)ϕ(· ◦ ζ−1) = Dz̄

1(z ◦ ζ−1)ϕ+ τDz̄
N+2(z ◦ ζ−1)ϕ,

Dz̄
j (z)ϕ(· ◦ ζ−1) = Dz̄

j (z ◦ ζ−1)ϕ+ τ

(
Dz̄
N+1+j −

1
∂x1b(z̄)

Dz̄
N+2

)
(z ◦ ζ−1)ϕ,

Dz̄
N+1(z)ϕ(· ◦ ζ−1) =

Dz̄
N+1 +

N∑
j=2

ξjD
z̄
N+1+j

 (z ◦ ζ−1)ϕ,

Dz̄
N+2(z)ϕ(· ◦ ζ−1) = Dz̄

N+2(z ◦ ζ−1)ϕ.

The thesis easily follows by induction on |µ|. �

4. Hölder regularity

In this section we prove Theorem 1.3. We first give the definition of a classical
solution of (1.1).

Definition 4.1. A classical solution of (1.1) is a function u ∈ C1(Ω), with second-
order derivatives ∂xixju ∈ C(Ω), 1 ≤ i, j ≤ N , verifying (1.1).

For greater convenience, since in the following proof we deal with several esti-
mates, we shall denote by c a constant which will not be always the same.

Proof of Theorem 1.3. We proceed by induction on k. Let us remark that, if k ≥ 7,
the proof is standard and the thesis follows by differentiating the equation. More
precisely, if b, f ∈ Ck−2,α

b (Ω), with 0 < α < 1 and k ≥ 7, then by the inductive
hypothesis, u ∈ Ck−1,ᾱ

b (Ω) for every ᾱ ∈ ]0, α[. Subsequently, by differentiating
equation (1.1) w.r.t. the variable y and by denoting, as usual, ∂yu = uy, we get

Lbuy = fy − byuy ∈ Ck−5,ᾱ
b (Ω), ∀ᾱ ∈ ]0, α[.

Thus, we deduce that uy ∈ Ck−3,ᾱ
b (Ω). Next we differentiate equation (1.1) w.r.t.

the variable xj , j = 1, . . . , N − 1, and we get

Lbuxj = fxj − bxjuy ∈ C
k−3,ᾱ
b (Ω), ∀ᾱ ∈ ]0, α[.

Therefore, we deduce that uxj ∈ C
k−1,ᾱ
b (Ω). Finally, we differentiate equation (1.1)

w.r.t. to XN+1 = b∂y − ∂t:
Lb(XN+1u) = XN+1f + 2〈∇xb,∇xuy〉+ uy∆xb ∈ Ck−4,ᾱ

b (Ω), ∀ᾱ ∈ ]0, α[.

Hence, XN+1u ∈ Ck−2,ᾱ
b (Ω) and this proves that u ∈ Ck,ᾱb (Ω) for every ᾱ ∈ ]0, α[.

We next consider 3 ≤ k ≤ 6. We set the problem in dimension 2N + 1 and we
prove that u ∈ Ck,ᾱB (Ω0). Then, by Remark 2.5, we infer that u ∈ Ck,ᾱb (Ω). We split
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the proof into two steps: existence of the derivatives and Hölder continuity. Since
the case k = 2 is easier, we shall only sketch its proof separately at the end. �

The case 3 ≤ k ≤ 6: existence of the derivatives. Let b, f ∈ Ck−2,α
b (Ω), with

0 < α < 1 and 3 ≤ k ≤ 6. By the inductive hypothesis, u ∈ Ck−1,ᾱ
b (Ω) for every

ᾱ ∈ ]0, α[. Since we aim to prove a local result, we only prove the existence of the
derivatives of order k of u in a domain E0, where E0 is a compact subset of Ω0.
To this end, we represent the solution u in terms of the fundamental solution Γz̄,
z̄ ∈ E0. More precisely, we consider a cut-off function ϕ ∈ C∞0 (Ω0) such that ϕ = 1
in a neighborhood of E0. We remark that it is not restrictive to assume that

(4.1) supp(∇ϕ) ⊆ ΩM (z̄, z), ∀z, z̄ ∈ E0,

where M is large so that (2.22) holds for every z, z̄ ∈ E0. We have

(uϕ)(z) =
∫
Ω0

Γz̄(z, ζ)Lz̄(uϕ)(ζ)dζ

=
∫
Ω0

Γz̄(z, ζ)
(
ϕ
(
f − (b− P 1

z̄ b)uy1

)
+ 2〈∇xu,∇xϕ〉+ uLz̄ϕ

)
dζ.

(4.2)

Consequently, the solution u can be expressed in the form

u(z) = I1,z̄(z)− I2,z̄(z), z ∈ E0

where
Ij,z̄(z) =

∫
Ω0

Γz̄(z, ζ)Uj,z̄(ζ)dζ, j = 1, 2,

with U1,z̄ ∈ C∞0 (Ω0) and

|U2,z̄(ζ)| ≤ cdz̄(z̄, ζ)k−2+ᾱ, ∀z̄ ∈ E0, ζ ∈ Ω0, ᾱ ∈ ]0, α[.(4.3)

Indeed, it suffices to put

U1,z̄ = ϕ
(
P k−2
z̄ f + P k−4

z̄ uy1

(
P k−2
z̄ b− P 1

z̄ b
))

(4.4)

+ 2〈P k−2
z̄ ∇xu,∇xϕ〉+ (Lz̄ϕ)P k−2

z̄ u,

U2,z̄ = ϕ
(
uy1

(
b− P k−2

z̄ b
)

+
(
P k−2
z̄ b− P 1

z̄ b
) (
uy1 − P k−4

z̄ uy1

)
+ f − P k−2

z̄ f
)

(4.5)

+ 2〈∇xu− P k−2
z̄ ∇xu,∇xϕ〉+ Lz̄ϕ

(
u− P k−2

z̄ u
)

where we agree that P hz̄ u ≡ 0 if h < 0. Hence, (4.3) is a consequence of the
regularity assumptions on u, b, f and of the estimate

P k−2
z̄ b(ζ)− P 1

z̄ b(ζ) = O
(
dz̄(z̄, ζ)2

)
, as ζ −→ z̄,

which can be easily deduced from the homogeneity property of the Taylor polyno-
mial P hz̄ b. Note that I1,z̄ is a smooth function on E0. Indeed, by the change of
variables ζ̄ = ζ−1 ◦ z, we have

(4.6) I1,z̄(z) =
∫

Γz̄(ζ̄ , 0)U1,z̄(z ◦ ζ̄−1)dζ̄

and U1,z̄ ∈ C∞0 (Ω0).
On the other hand, the function

(4.7) Jσ(z̄) =
∫
Ω0

Dσ(z̄)Γz̄(·, ζ)U2,z̄(ζ)dζ, z̄ ∈ E0,
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is well defined for |σ| = k. Indeed, by Lemma 3.2, we have

(4.8) |Dσ(z̄)Γz̄(·, ζ)| =

∣∣∣∣∣∣
∑
|µ|≤|σ|

Λµ,z̄(z̄)Dz̄
µ(z̄)Γz̄(·, ζ)

∣∣∣∣∣∣ ≤ cdz̄(z̄, ζ)−Q+2−|σ|;

therefore, by (4.3), the integral in the right-hand side of (4.7) converges.
We claim that, for every multi-index σ ∈ {1, . . . , N + 1}m, with |σ| ≤ k, we have

(4.9) Dσu(z̄) = Dσ(z̄)I1,z̄ − Jσ(z̄), ∀z̄ ∈ E0.

The proof of (4.9) is based on the use of some suitable high-order difference quo-
tients related to the system Dj , j = 1, . . . , N + 1. For z ∈ Ω and δ ∈ R \ {0}
sufficiently small, we set

4(j)(u, z, δ) =
u(exp(δDj)(z))− u(z)

δ
, 1 ≤ j ≤ N,

4(N+1)(u, z, δ) =
u(exp(δ2DN+1)(z))− u(z)

δ2
.

Also, if σ ∈ {1, . . . , N + 1}m, by recurrence we define

4σ(u, z, δ) = 4(σm)(4(σ1,...,σm−1)(u, ·, δ), z, δ).

The following result can be proved as in [6], Remark 4.2.

Lemma 4.2. Let u ∈ Ck−1,α
b (Ω) and σ ∈ {1, . . . , N + 1}m, |σ| = k. If there exists

lim
δ→0
4σ(u, ·, δ) = v

uniformly on compact subsets of Ω, then there exists Dσu = v.

We are now in a position to prove (4.9). Since I1,z̄ is a smooth function, by the
mean value theorem, we have

4σ(I1,z̄ , z̄, δ) = Dσ(zδ)I1
z̄

for some zδ such that

(4.10) dz̄(z̄, zδ) ≤ c1δ,
where the constant c1 depends only on σ and on the constant c0 in (2.16) (for
instance, c1 = mcm−1

0 is fine). Thus, 4σ(I1,z̄ , z̄, δ) converges to Dσ(z̄)I1,z̄ as δ
tends to zero uniformly in z̄ ∈ E0. Therefore, by Lemma 4.2, in order to prove
(4.9), it suffices to show that

(4.11) lim
δ→0
4σ(I2,z̄ , z̄, δ) = Jσ(z̄)

uniformly on E0.
Let us consider a cut-off function χ ∈ C∞0 (R, [0, 1]) such that χ(s) = 1 for s ≥ 2

and χ vanishes for s ≤ 1. We set

(4.12) I2,z̄,δ(z) =
∫
Ω0

Γz̄(z, ζ)χ
(
dz̄(z̄, ζ)
2c1Mδ

)
U2,z̄(ζ)dζ, z ∈ E0,

where M, c1 are the constants in (4.1), (4.10) respectively. Note that

z 7−→ I2,z̄,δ(z), dz̄(z̄, z) ≤ c1δ,
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is a smooth function. Indeed, if dz̄(z̄, z) ≤ c1δ, then by (2.16), the argument of the
cut-off function χ in (4.12) satisfies

dz̄(z̄, ζ)
2c1Mδ

≤ 1
2c1δ

(dz̄(z̄, z) + dz(z, ζ)) ≤ 1, ∀ζ, dz(z, ζ) ≤ c1δ,

so that χ vanishes in a neighborhood of the pole of Γz̄(z, ζ).
We claim that

sup
dz̄(z̄,z)≤c1δ

|I2,z̄,δ(z)− I2,z̄(z)| ≤ cδk+ᾱ,(4.13)

sup
dz̄(z̄,z)≤c1δ

|Dσ(z)I2,z̄,δ − Jσ(z̄)| ≤ cδᾱ,(4.14)

for some positive constant c which depends continuously on z̄. Taking the claim for
granted, we immediately conclude the proof of (4.11) (and consequently of (4.9)):

|4σ(I2,z̄, z̄, δ)− Jσ(z̄)|
(by the mean value theorem, for some zδ such that dz̄(z̄, zδ) ≤ c1δ)

≤ |4σ(I2,z̄ , z̄, δ)−4σ(I2,z̄,δ, z̄, δ)|+ |Dσ(zδ)I2,z̄,δ − Jσ(z̄)|

(by (4.13) and (4.14))

≤ cδᾱ.
We are left with the proof of the claim. We begin by proving (4.13). We have

|I2,z̄(z)− I2,z̄,δ(z)| ≤
∫

dz̄(z̄,ζ)≤4c1Mδ

Γz̄(z, ζ) |U2,z̄(ζ)| dζ

(by (3.3) and (4.3))

≤ cδk−2+ᾱ

∫
dz̄(z̄,ζ)≤4c1Mδ

dz̄(z, ζ)−Q+2dζ

(since, by assumption, dz̄(z, ζ) ≤ c0(dz̄(z̄, z) + dz̄(z̄, ζ)) ≤ c0(c1δ + dz̄(z̄, ζ)))

≤ cδk−2+ᾱ

∫
dz̄(z,ζ)≤c0c1(1+4M)δ

dz̄(z, ζ)−Q+2dζ ≤ cδk+ᾱ.

Next, we prove (4.14). We have

|Dσ(z)I2,z̄,δ − Jσ(z̄)| ≤ A1(z̄, z) +A2(z̄, z),

where

A1(z̄, z) =
∫
Ω0

|Dσ(z̄)Γz̄(·, ζ)|
(

1− χ
(
dz̄(z̄, ζ)
2c1Mδ

))
|U2,z̄(ζ)| dζ

and

A2(z̄, z) =
∫
Ω0

|(Dσ(z)−Dσ(z̄)) Γz̄(·, ζ)|χ
(
dz̄(z̄, ζ)
2c1Mδ

)
|U2,z̄(ζ)| dζ.

Proceeding as in the proof of (4.13) and using (4.8), we obtain

A1(z̄, z) ≤ cδᾱ.
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On the other hand, we remark that, if dz̄(z̄, z) ≤ c1δ, then

supp
(
χ

(
dz̄(z̄, ·)
2c1Mδ

))
⊆ ΩM .

Hence, by estimate (3.4) of Proposition 3.1 and (4.3), we get

A2(z̄, z) ≤ c
∫

ΩM

dz̄(z̄, z)ᾱdz̄(z̄, ζ)−Q+ᾱdζ ≤ cδᾱ.

This concludes the proof of (4.14).

The case 3 ≤ k ≤ 6: Hölder continuity of the derivatives. Let α ∈ ]0, 1[ and
3 ≤ k ≤ 6. In the previous step, we have proved that, if b, f ∈ Ck−2,α

b (Ω), and
u ∈ Ck−1,ᾱ

b (Ω), for any ᾱ ∈ ]0, α[, then u is Dσ-differentiable for any σ of weight
|σ| ≤ k and the representation formula (4.9) of Dσu holds.

In this step, we aim to prove that

Dσu ∈ CᾱB(E0), ∀σ ∈ {1, . . . , N + 1}m, |σ| = k, and ᾱ ∈ ]0, α[,(4.15)

Dσu ∈ C1+ᾱ
DN+1

(E0), ∀σ, |σ| = k − 1, and ᾱ ∈ ]0, α[,(4.16)

where E0 is any domain fixed as in the preceding step. As a consequence of (4.15)
and (4.16), we deduce that u ∈ Ck,ᾱb (Ω).

We prove (4.15) by means of Lemma 2.8 and we consider separately the terms
Dσ(z̄)I1,z̄ and Jσ(z̄) in formula (4.9), with z̄ ∈ E0 and |σ| = k. Let us begin with
Jσ and prove that

(4.17) |Jσ(z)− Jσ(z̄)| ≤ cdz̄(z̄, z)ᾱ, ∀z̄, z ∈ E0, ᾱ ∈ ]0, α[,

for some constant c = c(E0, ᾱ, k). By a standard decomposition, we obtain

Jσ(z)− Jσ(z̄) = A1(z, z̄) +A2(z, z̄) +A3(z, z̄),

where

A1(z, z̄) =
∫

Ω0\ΩM (z̄,z)

(Dσ(z)Γz(·, ζ)U2,z(ζ) −Dσ(z̄)Γz̄(·, ζ)U2,z̄(ζ)) dζ,

A2(z, z̄) =
∫

ΩM(z̄,z)

(Dσ(z)Γz(·, ζ)−Dσ(z̄)Γz̄(·, ζ))U2,z̄(ζ)dζ,

A3(z, z̄) =
∫

ΩM(z̄,z)

Dσ(z)Γz(·, ζ) (U2,z(ζ)− U2,z̄(ζ)) dζ.

By (4.3) and (4.8), it is straightforward to prove that

|A1(z, z̄)| ≤ cdz̄(z̄, z)ᾱ, ∀z̄, z ∈ E0.

Next, we estimate A2(z, z̄) by using (3.5) of Proposition 3.1. We deduce that, for
every ¯̄α ∈ ]0, ᾱ[, there exists a constant c = c(E0, ¯̄α), such that

|A2(z, z̄)| ≤ c
∫

ΩM (z̄,z)

dz̄ (z̄, ζ)−Q dz̄ (z̄, z)ᾱ dζ ≤ cdz̄(z̄, z) ¯̄α, ∀z̄, z ∈ E0.

Analogously, we have

(4.18) |A3(z, z̄)| ≤ cdz̄(z̄, z) ¯̄α, ∀z̄, z ∈ E0.
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Indeed, (4.18) is an immediate consequence of (4.8) and of the following estimate:
there exists a positive constant c = c(E0) such that

(4.19) |U2,z(ζ) − U2,z̄(ζ)| ≤ cdz̄(z̄, z)ᾱdz̄(z̄, ζ)k−2, ∀z, z̄ ∈ E0, ζ ∈ ΩM (z̄, z).

Let us prove (4.19). We have

U2,z − U2,z̄ = B1(z, z̄) + ϕB2(z, z̄) +B3(z, z̄),

where

B1(z, z̄) = ϕ
(
uy1

(
P k−2
z̄ b− P k−2

z b
)

+
(
P k−2
z̄ f − P k−2

z f
))

+ 2〈P k−2
z̄ ∇xu− P k−2

z ∇xu,∇xϕ〉,
B2(z, z̄) =

(
P k−2
z b− P 1

z b
) (
uy1 − P k−4

z uy1

)
−
(
P k−2
z̄ b − P 1

z̄ b
) (
uy1 − P k−4

z̄ uy1

)
,

B3(z, z̄) = Lzϕ
(
u− P k−2

z u
)
− Lz̄ϕ

(
u− P k−2

z̄ u
)
.

By (2.23) of Lemma 2.10, we get at once

|B1(z, z̄)(ζ)| ≤ cdz̄(z̄, z)ᾱdz̄(z̄, ζ)k−2, ∀z, z̄ ∈ E0, ζ ∈ ΩM (z̄, z).

We next remark that

B2(z, z̄) =
(
P k−2
z b− P 1

z b
) (
P k−4
z̄ uy1 − P k−4

z uy1

)
+
[(
P k−2
z b− P 1

z b
)
−
(
P k−2
z̄ b− P 1

z̄ b
)] (

uy1 − P k−4
z̄ uy1

)
.

Therefore, by (2.23) and (2.24) of Lemma 2.10, we infer

|B2(z, z̄)(ζ)| ≤ cdz̄(z̄, z)ᾱdz̄(z̄, ζ)k−2, ∀z, z̄ ∈ E0, ζ ∈ ΩM (z̄, z).

Finally, we observe that

B3(z, z̄) = (Lzϕ− Lz̄ϕ)
(
u− P k−2

z u
)

+ Lz̄ϕ
(
P k−2
z̄ u− P k−2

z u
)

=
(
P 1
z b− P 1

z̄ b
)
∂y1ϕ

(
u− P k−2

z u
)

+ Lz̄ϕ
(
P k−2
z̄ u− P k−2

z u
)
.

Thus, applying again Lemma 2.10, we establish (4.19) and, consequently, (4.17).
We conclude the proof of (4.15) by showing that

(4.20) |Dσ(z)I1,z −Dσ(z̄)I1,z̄ | ≤ cdz̄(z̄, z)α, ∀z̄, z ∈ E0,

for some constant c = c(E0, k). We denote ζ̄ = (ξ̄, η̄, τ̄ ) and by
(4.21)
z 7−→ R

(z̄)
ζ−1(z) ≡ z ◦ ζ−1 = (x− ξ, y − η + JxB(z̄) (τ(x− x̄)− (τ − t̄)ξ) , t− τ) ,
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the right translation w.r.t. the law “◦” in (2.11). By (4.6), for every z ∈ E0 and
multi-index σ ∈ {1, . . . , N + 1}m of weight |σ| = k, we have

Dσ(z)I1,z =
∫

Γz(ζ̄, 0)Dσ(z)U1,z(R
(z)

ζ̄−1(·))dζ̄

(by Lemma 3.2)

=
∑
|µ|≤k

Λµ,z(z)
∫

Γz(ζ̄, 0)Dz
µ(z)U1,z(R

(z)

ζ̄−1(·))dζ̄

(by Lemma 3.5)

=
∑
|µ|≤k

∑
ν∈{1,...,2N+1}m

Λµ,z(z)
∫

Γz(ζ̄ , 0)Pν,z(ζ̄)Dz
ν(z ◦ ζ̄−1)U1,zdζ̄

(by the change of variables ζ̄ = ζ−1 ◦ z)

=
∫
Ω0

Γz(z, ζ)Vz(ζ)dζ,

(4.22)

where

Vz(ζ) =
∑
|µ|≤k

∑
ν∈{1,...,2N+1}m

Λµ,z(z)Pν,z(ζ−1 ◦ z)Dz
ν(ζ)U1,z .

We observe that

(4.23) |Vz(ζ)− Vz̄(ζ)| ≤ cdz̄(z̄, z)α, ∀z, z̄ ∈ E0, ζ ∈ Ω0,

for some constant c. Indeed, (4.23) follows from (3.8), the fact the function z 7→ Pν,z
is of class CαB by Lemma 3.5, and the estimate∣∣Dz

νP
k
z u(ζ)−Dz̄

σP
k
z̄ u(ζ)

∣∣ ≤ cdz̄(z̄, z)α.(4.24)

At this point, the proof of (4.20) is analogous to the one of (4.17). Indeed it suffices
to observe that

Dσ(z)I1,z −Dσ(z̄)I1,z̄ = A1(z, z̄) +A2(z, z̄) +A3(z, z̄),

where

A1(z, z̄) =
∫

Ω0\ΩM (z̄,z)

(Γz(z, ζ)Vz(ζ) − Γz̄(z̄, ζ)Vz̄(ζ)) dζ,

A2(z, z̄) =
∫

ΩM(z̄,z)

(Γz(z, ζ)− Γz̄(z̄, ζ)) Vz̄(ζ)dζ,

A3(z, z̄) =
∫

ΩM(z̄,z)

Γz(z, ζ) (Vz(ζ)− Vz̄(ζ)) dζ,

and to conclude as before, by using Proposition 3.1. Thus, (4.15) is proved. We
omit the proof of (4.16) since it is essentially analogous.
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The case k = 2. Let b, f ∈ Cαb (Ω), with 0 < α < 1. Since, by assumption (1.10),
b ∈ C1(Ω), we have

LBu(z)− Lz̄u(z) = (b− P 1
z̄ b)∂y1u(z) = O (dz̄(z̄, z)) , as z −→ z̄.

In this case, a much simpler choice of the frozen operators provides an approxima-
tion of Lb of the same order. Indeed, for convenience, let us denote by z = (x, y, t)
a point of Ω. For fixed z̄ ∈ Ω, we define

L(z̄) = ∆x + (b(z̄) + x1 − x̄1)∂y − ∂t.
Then, L(z̄) is a Hörmander operator which, in the case N = 1, up to a straight-
forward change of variables, coincides with the Kolmogorov operator in (1.5). More-
over, we have

Lbu(z)− L(z̄)u(z) = (b(z)− b(z̄)− (x1 − x̄1))∂yu(z)

= O
(
d(z̄)(z̄, z)

)
, as z −→ z̄,

where d(z̄) denotes the control distance associated to L(z̄).
Given a cut-off function ϕ, we represent the solution u in terms of the funda-

mental solution Γ(z̄) of L(z̄):

(uϕ)(z) =
∫
Ω

Γ(z̄)(z, ζ)L(z̄)(uϕ)(ζ)dζ.

Since L(z̄)(uϕ) ∈ C0(Ω), it is standard to prove that u ∈ C1,ᾱ
b (Ω), for every ᾱ ∈

]0, 1[. Moreover, it is not difficult to adapt the previous arguments and to show
that u ∈ C2,ᾱ

b (Ω), for every ᾱ ∈ ]0, α[. �

Remark 4.3. Theorem 1.3 holds true if we assume that u is a locally Lipschitz
continuous, strong solution to (1.1) instead of a classical solution. We recall that u
is a strong solution to (1.1) if it has weak derivatives and equation (1.1) is satisfied
almost everywhere. In order to justify our claim, it suffices to remark that the
proof of Theorem 1.3 is based only on the representation formula (4.2) and on the
boundedness of the first-order derivatives of the solution.
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[11] Hörmander, L. Hypoelliptic second order differential equations. Acta Math. 1967, 119, 147–
171. MR 36:5526
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