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1. Introduction

We consider the second order partial differential equation

Lu(x, t) ≡

m0
∑

i,j=1

∂xi
(aij(x, t)∂xj

u(x, t)) +

N
∑

i,j=1

bijxi∂xj
u(x, t) − ∂tu(x, t) = 0 , (1.1)

where (x, t) = (x1, . . . , xN , t) = z denotes the point in R
N+1, and 1 ≤ m0 ≤ N .

Equation (1.1) arises in the theory of stochastic processes as well as in the kinetic

theory; in particular, it contains the (spatially inhomogeneous) Fokker–Planck–

Landau equation.

We aim to adapt the iterative scheme introduced by Moser in [1, 2] for the

uniformly parabolic equations, to prove that the weak solutions to (1.1) are locally

bounded functions. Moser’s method is based on a combination of a Caccioppoli

type estimate with the classical embedding Sobolev inequality. Due to the strong

degeneracy of the operator L, some new difficulties arise in treating (1.1). Indeed,

the natural extension of the Caccioppoli estimates gives an L2
loc bound only of the

first order derivatives ∂xj
u, for j = 1, . . . ,m0, but it does not give any information

on the other spatial directions.
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Actually, the various extensions of the Moser’s iteration technique available in

literature (see, for instance, [3–6]) rely on the implicit assumption that the Sobolev

inequality (adapted to the suitable functional setting) is the necessary starting point

of the procedure. This argument fails in our case, since the Caccioppoli estimates

provide an incomplete information. In order to overcome this problem, we prove a

Sobolev type inequality only for the solutions to (1.1). Our idea is to represent u

in terms of a parametrix of L, which is the fundamental solution of the following

operator

L0 = ∆m0 + Y , (1.2)

where ∆m0 is the Laplace operator in the variables x1, . . . , xm0 and Y is the first

order part of L:

Y =

N
∑

i,j=1

bijxi∂xj
− ∂t . (1.3)

With a slight abuse of notation, we shall refer to L0 as principal part of L. Then,

if u is a solution to (1.1), we have

L0u = (L0 − L)u =

m0
∑

i=1

∂xi
Fi , (1.4)

where

Fi =

m0
∑

j=1

(δij − aij)∂xj
u , i = 1, . . . ,m0 .

Since the Fi’s depend only on the first order derivatives ∂xj
u, j = 1, . . . ,m0, the

Caccioppoli inequality yields an H−1
loc -estimate of the right hand side of (1.4). Thus,

by using the fundamental solution of L0, we get the needed Lp
loc estimate of the

solution. This argument seems quite natural, since the classical Sobolev inequality

can be proved by representing any function u ∈ H1 as a convolution with the

fundamental solution of the Laplace operator.

We next state our assumptions and main results.

[H.1] The coefficients aij , 1 ≤ i, j ≤ m0, are real valued, measurable functions

of z. Moreover aij = aji, 1 ≤ i, j ≤ m0, and there exists a positive constant µ such

that

µ−1|ξ|2 ≤

m0
∑

i,j=1

aij(z)ξiξj ≤ µ|ξ|2 ,

for every z ∈ R
N+1 and ξ ∈ R

m0 . The matrix B = (bij)i,j=1,...,N is constant.

[H.2] L0 is hypoelliptic (i.e. every distributional solution of L0u = 0 is a C∞

function) and δλ-homogeneous of degree two with respect to some dilations group

(δλ)λ>0 in R
N+1 (see (2.6) below).
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We explicitly remark that, although [H.2] is expressed in terms of L0, it is a

requirement on the coefficients bij of the operator L. Indeed, a well-known criterion

for the hypoellipticity is the Hörmander’s condition [7]. In our setting, it reads:

rank Lie(∂x1 , . . . , ∂xm0
, Y )(z) = N + 1 , ∀ z ∈ R

N+1 ,

where Lie (∂x1 , . . . , ∂xm0
, Y ) denotes the Lie algebra generated by the first order

differential operators (vector fields) ∂x1 , . . . , ∂xm0
, Y . Then the hypoellipticity of

L0 (as well as the dilations group (δλ)λ>0) depends only on m0 and on the first

order part of L. In Sec. 2, we recall a known structure condition on the matrix B

equivalent to [H.2].

Let us remark that if L is an uniformly parabolic operator (i.e. m0 = N and

B ≡ 0), then [H.2] is clearly satisfied. Indeed, the principal part of L simply is the

heat operator, which is hypoelliptic and homogeneous with respect to the parabolic

dilations δλ(x, t) = (λx, λ2t).

We give the definition of solution to (1.1). We denote by D = (∂x1 , . . . , ∂xN
),

〈·, ·〉 respectively the gradient and the inner product in R
N . Besides, Dm0 is the

gradient with respect to the variables x1, . . . , xm0 .

Definition 1.1. A weak solution of (1.1) in a subset Ω of R
N+1 is a function u

such that u, Dm0u, Y u ∈ L2
loc(Ω) and

∫

Ω

−〈ADu,Dφ〉 + φY u = 0 , ∀ φ ∈ C∞
0 (Ω) . (1.5)

As we shall see in Sec. 2, the natural geometry underlying operator L is deter-

mined by a suitable homogeneous Lie group structure on R
N+1. Our main results

below reflect this non-Euclidean background. Let “◦” denote the Lie product on

R
N+1 defined in (2.3), and consider the cylinder

R1 = {(x, t) ∈ R
N × R| |x| < 1, |t| < 1} .

For every z0 ∈ R
N+1 and r > 0, we set

Rr(z0) ≡ z0 ◦ (δr(R1)) = {z ∈ R
N+1|z = z0 ◦ δr(ζ), ζ ∈ R1} . (1.6)

We have

Theorem 1.2. Let u be a non-negative weak solution of (1.1) in Ω. Let z0 ∈ Ω and

r, %, 0 < r
2 ≤ % < r, be such that Rr(z0) ⊆ Ω. Then there exists a positive constant

c which depends on µ and on the homogeneous dimension Q (cf. (2.7)) such that,

for every p > 0, it holds

sup
R%(z0)

up ≤
c

(r − %)Q+2

∫

Rr(z0)

up . (1.7)

Estimate (1.7) also holds for every p < 0 such that up ∈ L1(Rr(z0)).

Remark 1.3. Sub and super-solutions also verify estimate (1.7) for suitable values

of p (see Corollary 4.3). More precisely, (1.7) holds for
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(i) p ≥ 1 or p < 0, if u is a non-negative weak sub-solution of (1.1) such that

up ∈ L1(Rr(z0));

(ii) p ∈]0, 1
2 [, if u is a non-negative weak super-solution of (1.1). In this case,

the constant c in (1.7) also depends on p.

A direct consequence of Theorem 1.2 is the local boundedness of weak solutions

to (1.1).

Corollary 1.4. Let u be a weak solution of (1.1) in Ω. Let z0, %, r as in Theo-

rem 1.2. Then, we have

sup
R%(z0)

|u| ≤

(

c

(r − %)Q+2

∫

Rr(z0)

|u|p

)
1
p

, ∀ p ≥ 1 , (1.8)

where c = c(Q,µ).

The interest in the above class of operators is motivated by the following appli-

cations.

Example 1.5. Consider the following kinetic equation

∂tf − 〈v,∇xf〉 = Q(f) , t ≥ 0, x ∈ R
n, v ∈ R

n , (1.9)

where n ≥ 1 and Q(f) is the so-called “collision operator” which can take either a

linear or a non linear form. The solution f corresponds at each time t to the density

of particles at the point x with velocity v. If

Q(f) = 4vf ,

then (1.9) becomes the prototype of the linear Fokker–Planck equation (see, for

instance, [8, 9]) and it can be written in the form (1.1) by choosing m0 = n,

N = 2n and

B =

(

0 −In
0 0

)

,

where In is the identity n × n matrix. In this case the Lie group is given by the

Galilean change of coordinates (v, x, t) · (v′, x′, t′) = (v + v′, x+ x′ + t′v, t+ t′) and

the dilations group is δλ(v, x, t) = (λv, λ3x, λ2t).

In the Boltzmann–Landau equation (see [10–12])

Q(f) =

n
∑

i,j=1

∂vi
(aij(·, f)∂vj

f) ,

the coefficients aij actually depend on the unknown function through some integral

expressions.

We also recall that equations of the form (1.9) arise in mathematical finance

(see [13–15]).
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Example 1.6. The equation

∂tu =

n
∑

i,j=1

∂xi
(aij∂xj

u) +

n
∑

i=1

xi∂yi
u+

n
∑

i=1

yi∂si
u ,

(x, y, s, t) ∈ R
n × R

n × R
n × R ,

arises in the theory of degenerate diffusion processes (see, for instance, [16, 17]). The

above operator satisfies hypotheses [H.1]–[H.2] and the corresponding Lie group has

step two. The dilations are given by δλ(x, y, s, t) = (λx, λ3y, λ5s, λ2t).

A further motivation comes from the theory of partial differential equations. As

said above, in the case of aij constant coefficients, the smoothness of the solutions

has been pointed out by Kolmogorov [18] and by Hörmander [7]. A systematic study

of this class of operators has been carried out by Kupcov [19], Lanconelli and one

of us [20].

The Levi parametrix method has been used by Weber [21], Il’in [22], Eidelman

[16] and Polidoro [23], [24] to deal with Hölder continuous coefficients aij . In these

hypotheses, Schauder type estimates have been proved by Satyro [25], Lunardi

[26], Manfredini [27]. Besides, the regularity properties of the weak solutions to

(1.1) have been studied by Bramanti, Cerutti and Manfredini [28], Manfredini and

Polidoro [29], Polidoro and Ragusa [30], assuming a weak continuity condition on

the coefficients aij (they are supposed to be in a suitable vanishing mean oscillation

space).

A boundary value problem for a nonlinear equation of the form (1.1) has been

considered by Lanconelli and Lascialfari in [31], by Lascialfari and Morbidelli in

[32]. Their results have been proved by combining the Kakutani–Ky Fan fixed point

theorem with the above interior estimates. However, the dependence of the a priori

estimates on the regularity of the coefficients aij forces some restrictive conditions

on the nonlinearity of the operator.

The Moser’s method extends the techniques previously used in the elliptic case

[33, 34] and which are equivalent to the ones due to De Giorgi [35]. These classical

results have been generalized in many directions (see [36–40]). The first extensions

of Moser’s technique to a non-Euclidean framework are contained in [4, 41]. We also

recall that the technique introduced by Nash [42] and developed in [43], has been

used in [44], in the framework of subelliptic operators on Lie groups. The main goal

in the above quoted papers is the uniform Hölder continuity of the solutions, which

is a basic tool in the study of the non linear problem. In a future study we plan

to complete the Moser’s procedure for operator (1.1) by proving a weak Harnack

inequality, which has not been established yet. We also recall that Theorem 1.2 has

been used in [45] to obtain a pointwise global upper bound for the fundamental

solution of (1.1).

The paper is organized as follows. In Sec. 2, we recall some known facts on

the principal part L0 and we collect some preliminaries. In Sec. 3, we prove some

Caccioppoli and Sobolev type inequalities. Section 4 is devoted to the proof of
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Theorem 1.2 and Corollary 1.4, by the Moser’s iteration scheme. In order to restore

the analogy with the classical result by Moser, in Sec. 5, we show that, for p < 0,

(1.7) holds if we replace Rr(z0), R%(z0) by Rr(z0) ∩ {t < t0}, R%(z0) ∩ {t < t0}

respectively.

2. Preliminaries

In this section we recall some known facts about the principal part L0 of L, and we

show some preliminary results. We rewrite operator L in (1.1) in the compact form

L = div (AD) + Y , (2.1)

where A = (aij)1≤i,j≤N , aij ≡ 0 if i > m0 or j > m0, and Y is defined in (1.3). We

also set

A0 =

(

Im0 0

0 0

)

,

where Im0 is the identity matrix in R
m0 . Then the principal part of L takes the

form

L0 = div (A0D) + Y .

Operator L0 has the remarkable property of being invariant with respect to a Lie

product in R
N+1. More precisely, we let

E(s) = exp(−sBT ) , s ∈ R , (2.2)

and we denote by `ζ , ζ ∈ R
N+1, the left translation `ζ(z) = ζ ◦ z in the group law

(x, t) ◦ (ξ, τ) = (ξ +E(τ)x, t + τ) , (x, t), (ξ, τ) ∈ R
N+1 , (2.3)

then we have

L ◦ `ζ = `ζ ◦ L .

We recall that, by [20, Propositions 2.1 and 2.2], hypothesis [H.2] is equivalent

to assume that for some basis on R
N , the matrix B has the canonical form















0 B1 0 · · · 0

0 0 B2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Br

0 0 0 · · · 0















, (2.4)

where Bk is a mk−1 ×mk matrix of rank mk, k = 1, 2, . . . , r with

m0 ≥ m1 ≥ · · ·mr ≥ 1 , and

r
∑

k=0

mk = N .
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In this case the dilations associated to L0 are given by

δλ = diag(λIm0 , λ
3Im1 , . . . , λ

2r+1Imr
, λ2) , λ > 0 , (2.5)

where Imk
denotes the mk ×mk identity matrix. We can write explicitly the second

assertion in Hypothesis [H.2] as

L0 ◦ δλ = λ2(δλ ◦ L0) , ∀ λ > 0 . (2.6)

In the sequel we shall always assume that B has the canonical form (2.4).

We denote by Γ0(·, ζ) the fundamental solution of L0 in (1.2) with pole in

ζ ∈ R
N+1. An explicit expression of Γ0(·, ζ) has been constructed in [7] and [19]:

Γ0(z, ζ) = Γ0(ζ
−1 ◦ z, 0) , ∀ z, ζ ∈ R

N+1, z 6= ζ ,

where

Γ0((x, t), (0, 0)) =











(4π)−
N
2

√

detC(t)
exp

(

−
1

4
〈C−1(t)x, x〉

)

, if t > 0 ,

0 , if t ≤ 0 ,

and

C(t) =

∫ t

0

E(s)A0E
T (s)ds ,

(E(·) is the matrix defined in (2.2)). Note that hypothesis [H.2] implies that C(t)

is strictly positive for every positive t (see [20, Proposition A.1]). In view of the

invariance properties of L0, it is not difficult to show that

Γ0(δλ(z), 0) = λ−QΓ0(z, 0) , ∀ z ∈ R
N+1 \ {0}, λ > 0 ,

where

Q = m0 + 3m1 + · · · + (2r + 1)mr . (2.7)

The natural number Q + 2 is usually called the homogeneous dimension of R
N+1

with respect to (δλ)λ>0. This denomination is proper since the Jacobian Jδλ equals

λQ+2. Let ‖·‖ denote a δλ-homogeneous norma in R
N+1. The following bound holds

Γ0(z, ζ) ≤ c‖ζ−1 ◦ z‖−Q , (2.8)

for some positive constant c.

aFor instance, a δλ-homogeneous norm is given by

‖z‖ ≡





N
∑

j=1

x
αj

j + |t|
(2r+1)!

2





1
(2r+1)!

where αj = (2r + 1)! if 1 ≤ j ≤ m0 and

αj =
(2r + 1)!

2k + 1
, if 1 +

k−1
∑

i=0

mi ≤ j ≤
k
∑

i=0

mi, 1 ≤ k ≤ r .
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We define the L0-potential of the function f ∈ L1(RN+1) as follows

Γ0(f)(z) =

∫

RN+1

Γ0(z, ζ)f(ζ)dζ , z ∈ R
N+1 . (2.9)

This definition is well posed, indeed, for every T > 0, we have
∫

RN×[−T,T ]

|Γ0(f)(z)|dz

(inverting the order of integration)

≤

∫

RN+1

|f(ζ)|dζ

∫

RN×[−T,T ]

Γ0(z, ζ)dz ≤ 2T

∫

RN+1

|f(ζ)|dζ = 2T‖f‖L1(RN1) .

Let us also recall some classical potential estimates (cf., for instance, [46]).

Theorem 2.1. Let α ∈]0, Q+ 2[ and let G ∈ C(RN+1 \ {0}) be a δλ-homogeneous

function of degree α − Q − 2. If f ∈ Lp(RN+1) for some p ∈]1,+∞[, then the

function

Gf (z) ≡

∫

RN+1

G(ζ−1 ◦ z)f(ζ)dζ ,

is defined almost everywhere and there exists a constant c = c(Q, p) such that

‖Gf‖Lq(RN+1) ≤ c max
‖z‖=1

|G(z)| ‖f‖Lp(RN+1) ,

where q is defined by

1

q
=

1

p
−

α

Q+ 2
.

For reader’s convenience, we state separately some potential estimates which

will be used in the sequel. These estimates are essentially contained in the previous

theorem. We also remark that, by the homogeneity properties of Γ0, the potential

Γ0(Dm0f) is well-defined for any f ∈ L2(RN+1), at least in the distributional sense,

that is

Γ0(Dm0f)(z) ≡ −

∫

RN+1

D(ζ)
m0

Γ0(z, ζ)f(ζ)dζ . (2.10)

In (2.10), the superscript in D
(ζ)
m0 indicates that we are differentiating with respect

to the variable ζ.

Corollary 2.2. Let f ∈ L2(RN+1). There exists a positive constant c = c(Q) such

that

‖Γ0(f)‖L2κ̃(RN+1) ≤ c‖f‖L2(RN+1) , (2.11)

‖Γ0(Dm0f)‖L2κ(RN+1) ≤ c‖f‖L2(RN+1) , (2.12)

where κ̃ = 1 + 4
Q−2 and κ = 1 + 2

Q .
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Proof. Estimate (2.11) is an immediate consequence of Theorem 2.1 and of the

homogeneity of Γ0. In order to prove (2.12), it suffices to observe that, by (2.10),

we have

Γ0(Dm0f)(z) =

∫

RN+1

(D̃Γ0)(ζ
−1 ◦ z, 0)f(ζ)dζ , (2.13)

where D̃ is a first order differential operator δλ-homogeneous of degree one. Hence

(2.12) follows applying Theorem 2.1 with G = (D̃Γ0)(·, 0) and α = 1.

In order to show (2.13), let us denote by Dmk
, k = 1, . . . , r, the gradient with

respect to the variables xj for

1 +

k−1
∑

i=0

mi ≤ j ≤

k
∑

i=0

mi .

We remark that the matrix B in (2.4) is nilpotent and we have

E(s) =

r
∑

k=0

(−s)k

k!
(BT )k , s ∈ R . (2.14)

Thus, by (2.14) and expression (2.3) of the product law, we deduce

D(ζ)
m0

Γ0(z, ζ) = D(ζ)
m0

Γ0(ζ
−1 ◦ z, 0)

=

(

−Dm0Γ0(·, 0)−

r
∑

k=1

(−1)k

k!
(t−τ)kDmk

Γ0(·, 0)BT
k · · ·BT

1

)

(ζ−1 ◦ z).

Definition 2.3. A weak sub-solution of (1.1) in a domain Ω is a function u such

that u, Dm0u, Y u ∈ L2
loc(Ω) and

∫

Ω

−〈ADu,Dφ〉 + φY u ≥ 0 , ∀ φ ∈ C∞
0 (Ω), φ ≥ 0 . (2.15)

A function u is a weak super-solution of (1.1) if −u is a sub-solution.

Remark 2.4. If u is a sub and super-solution of (1.1) in Ω then it is a solution,

i.e. (1.5) holds. Indeed, for every given φ ∈ C∞
0 (Ω), we may consider ψ ∈ C∞

0 (Ω)

such that ψ ≥ 0 and φ+ ψ ≥ 0 in Ω. Therefore (1.5) follows by applying (2.15) to

±u.

Roughly speaking, the next lemma states that we can use the fundamental

solution Γ0 as a test function in the definition of sub and super-solution.

Lemma 2.5. Let v be a weak sub-solution of (1.1) in Ω. For every φ ∈ C∞
0 (Ω),

φ ≥ 0, and for almost every z ∈ R
N+1, we have

∫

Ω

−〈ADv,D(Γ0(z, ·)φ)〉 + Γ0(z, ·)φY v ≥ 0 .

An analogous result holds for weak super-solutions.
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Proof. For every ε > 0, we set

χε(z, ζ) = χ

(

‖ζ−1 ◦ z‖

ε

)

, z, ζ ∈ R
N+1 ,

where χ ∈ C1([0,+∞[, [0, 1]) is such that χ(s) = 0 for s ∈ [0, 1], χ(s) = 1 for s ≥ 2

and 0 ≤ χ′ ≤ 2. By (2.15), for every ε > 0 and z ∈ R
N+1, we have

0 ≤

∫

Ω

−〈ADv,D(Γ0(z, ·)χε(z, ·)φ)〉 + Γ0(z, ·)χε(z, ·)φY v

= −I1,ε(z) + I2,ε(z) − I3,ε(z) ,

where

I1,ε(z) =

∫

Ω

〈ADv,D(Γ0(z, ·))〉χε(z, ·)φ ,

I2,ε(z) =

∫

Ω

Γ0(z, ·)χε(z, ·)(−〈ADv,Dφ〉 + φY v) ,

I3,ε(z) =

∫

Ω

〈ADv,Dχε(z, ·)〉Γ0(z, ·)φ .

Keeping in mind the proof of Corollary 2.2, it is clear that the integral which defines

I1,ε(z) is a potential and it is convergent for almost every z ∈ R
N+1. Thus, since

|〈ADv,D(Γ0(z, ·))〉χε(z, ·)φ| ≤ |〈ADv,D(Γ0(z, ·))〉φ| ∈ L1 , ∀ ε > 0 ,

by the dominated convergence theorem, we get

lim
ε→0+

I1,ε(z) =

∫

Ω

〈ADv,D(Γ0(z, ·))〉φ , for a.e. z ∈ R
N+1 .

Analogously, we have

lim
ε→0+

I2,ε(z) =

∫

Ω

Γ0(z, ·)(−〈ADv,Dφ〉 + φY v) , for a.e. z ∈ R
N+1 .

In order to conclude, it suffices to prove that

lim
ε→0+

I3,ε(z) = 0 , for a.e. z ∈ R
N+1 . (2.16)

By [H.1] and Cauchy–Schwartz inequality, we have

I3,ε(z) ≤
2µ

ε

∫

‖ζ−1◦z‖≤2ε

|Dm0v(ζ)|Γ0(z, ζ)φdζ

(by estimate (2.8) of Γ0, for α ∈]0, 1[)

≤ 2cµεα

∫

RN+1

|Dm0v(ζ)|‖ζ
−1 ◦ z‖−Q−1−αφ(ζ)dζ −→ 0 , as ε→ 0+ ,

since the last integral is convergent for a.e. z ∈ R
N+1.
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Lemma 2.6. Let f ∈ C2 ∩ Lip(R) be a monotone non-decreasing function. If f

is convex (respectively concave) and u is a weak sub-solution (respectively super-

solution) of (1.1), then v = f(u) is a weak sub-solution (respectively super-solution)

of (1.1).

Proof. The proof is standard and we only consider the case of a sub-solution. Since

f ∈ C2 and it is Lipschitz continuous, then v, Dm0v, Y v ∈ L2
loc. By a standard

density argument, we express (2.15) in terms of

φ = f ′(u)ψ , ψ ∈ C∞
0 , ψ ≥ 0 .

We remark that φ ≥ 0 because f is non-decreasing, thus we obtain

0 ≤

∫

−〈ADu,Dφ〉 + φY

=

∫

−〈ADu,Du〉f ′′(u)ψ + f ′(u)(−〈ADu,Dψ〉 + ψY u)

(since f ′′ ≥ 0)

≤

∫

−〈ADv,Dψ〉 + ψY v .

3. Caccioppoli and Sobolev Type Inequalities

In this section we prove some Caccioppoli and some Sobolev type inequalities for

the non-negative solutions to (1.1). We recall the notation (1.6) and, by simplicity,

we shall write Rr instead of Rr(0).

Theorem 3.1 (Caccioppoli type inequalities). Let u be a non-negative weak

solution of (1.1) in R1. Let p ∈ R, p 6= 0, p 6= 1/2 and let %, r be such that
1
2 ≤ % < r ≤ 1. If up ∈ L2(Rr) then Dm0u

p ∈ L2(R%) and there exists a constant

c, only dependent on the homogeneous dimension Q, such that

‖Dm0u
p‖L2(R%) ≤

c
√

µ(µ+ ε)

ε(r − %)
‖up‖L2(Rr) , where ε =

|2p− 1|

4p
. (3.1)

Proof. We consider the case p < 1, p 6= 0, p 6= 1/2. We first assume that u is

uniformly positive, that is u ≥ u0 for some constant u0 > 0. Let v = up. Since u is

a weak solution to Lu = 0 and u ≥ u0, then v, Dm0v, Y v ∈ L2(Rr). For every ψ ∈

C∞
0 (R1) we consider the function φ = u2p−1ψ2. Note that φ and Dm0φ ∈ L2(R1),

then we can use φ as a test function in (1.5). We find

0 =
p

2

∫

R1

〈ADu,Dφ〉 − φY u

=
p

2

∫

R1

(2p− 1)u2p−2ψ2〈ADu,Du〉 + 2ψu2p−1〈ADu,Dψ〉 − u2p−1ψ2Y u

=

∫

R1

(

1 −
1

2p

)

ψ2〈ADv,Dv〉 + vψ〈ADv,Dψ〉 −
ψ2

4
Y (v2)
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(using the identity

ψ2Y (v2) = Y (ψ2v2) − 2v2ψY ψ

and applying the divergence theorem)

=

∫

R1

(

1 −
1

2p

)

ψ2〈ADv,Dv〉 + vψ〈ADv,Dψ〉 +
v2ψ

2
Y ψ .

Setting ε = |2p−1|
4p and using the estimate

vψ|〈ADv,Dψ〉| ≤ εψ2〈ADv,Dv〉 +
v2

4ε
〈ADψ,Dψ〉 ,

we finally obtain

ε

∫

R1

ψ2〈ADv,Dv〉 ≤
1

4

∫

R1

v2

(

1

ε
〈ADψ,Dψ〉 + 2|ψY ψ|

)

. (3.2)

The thesis follows by making a suitable choice of the function ψ in (3.2). More

precisely, we set

ψ(x, t) = χ(‖(x, 0)‖)χ(|t|
1
2 ) , (3.3)

where χ ∈ C∞(R, [0, 1]) is such that

χ(s) = 1 if s ≤ % , χ(s) = 0 if s ≥ r , |χ′| ≤
2

r − %
.

We observe that

|∂tψ|, |∂xj
ψ| ≤

c1
r − %

, j = 1, . . . , N (3.4)

where c1 is a dimensional constant. Then, accordingly to (3.2), we obtain

ε

µ

∫

R%

|Dm0u
p|2 ≤ ε

∫

Rr

ψ2〈ADup, Dup〉

≤
1

4

∫

Rr

u2p

(

c1µ

ε(r − %)2
+

2c1
r − %

)

≤
c2

(r − %)2

(

1 +
µ

ε

)

∫

Rr

u2p ,

(3.5)

and this proves (3.1).

The previous argument can be straightforwardly adapted to the case of a non-

negative weak solution to (1.1). Indeed, we may consider estimate (3.5) for the

solution u+ 1
n , n ∈ N,

ε

µ

∫

R%

∣

∣

∣

∣

Dm0

(

u+
1

n

)p∣
∣

∣

∣

2

≤
c2

(r − %)2

(

1 +
µ

ε

)

∫

Rr

(

u+
1

n

)2p

,

and we let n go to infinity. The passage to the limit in the first integral is allowed

since
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∣

∣

∣

∣

Dm0

(

u+
1

n

)p∣
∣

∣

∣

= p

(

u+
1

n

)p−1

|Dm0u| ↑ |Dm0u
p| , ∀ p < 1, n −→ ∞ .

In the second integral we rely on the assumption up ∈ L2(Rr).

We next consider the case p ≥ 1. For any n ∈ N, we define the function gn,p on

]0,+∞[ as follows

gn,p(s) =

{

sp , if 0 < s ≤ n ,

np + pnp−1(s− n) , if s > n ,

then we let

vn,p = gn,p(u) . (3.6)

Note that

gn,p ∈ C1(R+) , g′n,p ∈ L∞(R+) ,

thus, since u is a weak solution of (1.1), we have

vn,p ∈ L2
loc , Dm0vn,p ∈ L2

loc , Y vn,p ∈ L2
loc .

We also note that the function

g′′n,p(s) =

{

p(p− 1)sp−2 , if 0 < s < n ,

0 , if s ≥ n ,

is the weak derivative of g′n,p, then Dm0g
′
n,p(u) = g′′n,p(u)Dm0u (for the detailed

proof of this assertion, we refer to [47, Theorem 7.8]). Hence, by using

φ = gn,p(u)g
′
n,p(u)ψ

2 , ψ ∈ C∞
0 (R1)

as a test function in (1.5), we find

0 =

∫

R1

〈ADu,Dφ〉 − φY u

=

∫

R1

(g′n,p(u)
2 + g′′n,p(u)gn,p(u))ψ

2〈ADu,Du〉

+ gn,p(u)g
′
n,p(u)(2ψ〈ADu,Dψ〉 − ψ2Y u)

(since g′′n,p(u) ≥ 0)

≥

∫

R1

ψ2〈ADvn,p, Dvn,p〉 + 2vn,pψ〈ADvn,p, Dψ〉 −
ψ2

2
Y (v2

n,p)

=

∫

R1

ψ2〈ADvn,p, Dvn,p〉 + 2vn,pψ〈ADvn,p, Dψ〉 + v2
n,pψY ψ .

Therefore, if ε = |2p−1|
4p , we get

ε

∫

R1

ψ2〈ADvn,p, Dvn,p〉 ≤
1

4

∫

R1

v2
n,p

(

1

ε
〈ADψ,Dψ〉 +

1

2
|ψY ψ|

)

.
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Since 0 < vn,p ≤ up and

〈ADvn,p, Dvn,p〉 ↑ 〈ADup, Dup〉 , as n→ ∞ ,

we get from the above inequality

ε

∫

R1

ψ2〈ADup, Dup〉 ≤
1

4

∫

R1

u2p

(

1

ε
〈ADψ,Dψ〉 +

1

2
|ψY ψ|

)

and we conclude the proof as in the previous case.

We next state a result which extends Theorem 3.1 to super and sub-solutions.

We omit the proof, since it follows the same lines of Theorem 3.1. Note that, by

our method, we obtain some estimates only for p < 1/2 or p ≥ 1.

Proposition 3.2. Let u be a non-negative weak sub-solution of (1.1) in R1. Let %,

r, 1
2 ≤ % < r ≤ 1, and p ≥ 1 or p < 0. If up ∈ L2(Rr) then Dm0u

p ∈ L2(R%) and

there exists a constant c, only dependent on the homogeneous dimension Q, such

that

‖Dm0u
p‖L2(R%) ≤

c
√

µ(µ+ ε)

ε(r − %)
‖up‖L2(Rr) , where ε =

|2p− 1|

4p
.

The same statement holds when u is a non-negative weak super-solution of (1.1)

and p ∈]0, 1/2[.

Theorem 3.3 (Sobolev type inequalities for super and sub-solutions). Let

v be a non-negative weak sub-solution of L in R1. Then v ∈ L2κ
loc(R1), κ = 1 + 2

Q ,

and there exists a constant c, only dependent on Q and µ, such that

‖v‖L2κ(R%) ≤
c

r − %
(‖v‖L2(Rr) + ‖Dm0v‖L2(Rr)) , (3.7)

for every %, r with 1
2 ≤ % < r ≤ 1.

The same statement holds for non-negative super-solutions.

Proof. Let v be a non-negative sub-solution of L. We represent v in terms of the

fundamental solution Γ0. To this end, we consider the cut-off function ψ introduced

in (3.3). For every z ∈ R%, we have

v(z) = vψ(z)

=

∫

Rr

[〈A0D(vψ), DΓ0(z, ·)〉 − Γ0(z, ·)Y (vψ)](ζ)dζ = I1(z) + I2(z) + I3(z) ,

(3.8)

where

I1(z) =

∫

Rr

[〈A0Dψ,DΓ0(z, ·)〉v](ζ)dζ −

∫

Rr

[Γ0(z, ·)vY ψ](ζ)dζ ,

I2(z) =

∫

Rr

[〈(A0 −A)Dv,DΓ0(z, ·)〉ψ](ζ)dζ −

∫

Rr

[Γ0(z, ·)〈ADv,Dψ〉](ζ)dζ ,
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I3(z) =

∫

Rr

[〈ADv,D(Γ0(z, ·)ψ)〉 − Γ0(z, ·)ψY v](ζ)dζ .

Since the function v is a weak sub-solution of L, it follows from Lemma 2.5 that

I3 ≤ 0, then

0 ≤ v(z) ≤ I1(z) + I2(z) for a.e. z ∈ R% .

To prove our claim it is sufficient to estimate v by a sum of L0-potentials.

We start by estimating I1. Denote by I ′1 and I ′′1 the first and the second integral

in I1, respectively. Then I ′1 can be estimate by (2.12) of Corollary 2.2 as follows

‖I ′1‖L2κ(R%) ≤ c‖vDm0ψ‖L2(RN+1) ≤
c

r − %
‖v‖L2(Rr) ,

where the last inequality follows from (3.4). To estimate I ′′1 we use (2.11):

‖I ′′1 ‖L2κ(R%) ≤ meas(R%)
2/Q‖I ′′1 ‖L2κ̃(R%) ≤ c‖vY ψ‖L2(RN+1) ≤

c

r − %
‖v‖L2(Rr) .

We can use the same technique to prove that

‖I2‖L2κ(R%) ≤
c

r − %
‖Dm0v‖L2(Rr) ,

for some constant c = c(Q,µ), thus our first claim is proved.

A similar argument proves the thesis when v is a L-super-solution. In this case,

we introduce the following auxiliary operator

L̃0 = div (A0D) + Ỹ , Ỹ ≡ −〈x,BD〉 − ∂t .

If R is a domain which is symmetric with respect to the time variable t, for any

z = (x, t) ∈ R, we denote ẑ = (x,−t) ∈ R and w(z) = v(ẑ). We remark that

Dw(z) = Dv(ẑ) , Ỹ w(z) = −Y v(ẑ)

for almost every z ∈ R. Then, since v is a L-super-solution, we have
∫

R

[−〈A(ẑ)Dw,Dφ〉 − φỸ w](z)dz

=

∫

R

(−〈A(ẑ)Dv(ẑ), Dφ(z)〉 + φ(z)Y v(ẑ))dz ≤ 0 , (3.9)

for every φ ∈ C∞
0 (R), φ ≥ 0.

Next, we represent w in terms of the fundamental solution Γ̃0 of L̃0. For ψ as

in (3.3) and z ∈ R%, we have

w(z) = wψ(z)

=

∫

Rr

[〈A0D(wψ), DΓ̃0(z, ·)〉 − Γ̃0(z, ·)Ỹ (vψ)](ζ)dζ = I1(z) + I2(z) + I3(z) ,
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where

I1(z) =

∫

Rr

[(〈A0Dψ,DΓ̃0(z, ·)〉 − Γ̃0(z, ·)Ỹ ψ)w](ζ)dζ ,

I2(z) =

∫

Rr

〈(A0 +A(ζ̂))Dw(ζ), D(Γ̃0(z, ·)ψ)(ζ)〉dζ

−

∫

Rr

[Γ̃0(z, ·)〈A0Dw,Dψ〉](ζ)dζ ,

I3(z) =

∫

Rr

[−〈A(ẑ)Dw,D(Γ̃0(z, ·)ψ)〉 − Γ̃0(z, ·)ψỸ w](ζ)dζ .

Since w satisfies (3.9), by Lemma 2.5, we have I3(z) ≤ 0, for a.e. z ∈ R%. As in

the previous case, we conclude the proof of (3.7) by using the potential estimates

of the Corollary 2.2, that still hold for the function Γ̃0. Thus we have

‖v‖L2κ(R%) = ‖w‖L2κ(R%) ≤
c

r − %
(‖w‖L2(Rr) + ‖Dm0w‖L2(Rr))

=
c

r − %
(‖v‖L2(Rr) + ‖Dm0v‖L2(Rr))

for some constant c = c(Q,µ) and this completes the proof.

4. Iteration

In this section we use the classical Moser’s iteration scheme to prove Theorem 1.2.

We begin with some preliminary remarks.

Remark 4.1. A transformation of the form

ζ 7−→ z0 ◦ δr(ζ) , r > 0, z0 ∈ R
N+1 , (4.1)

preserves the class of differential equations considered. More precisely, if u is a weak

solution of (1.1) in the cylinder Rr(z0) then the function

v(ζ) = u(z0 ◦ δr(ζ))

is a solution to the equation

div (ÃDv)(ζ) + Y v(ζ) = 0 , ζ ∈ R1 ,

where Ã(ζ) = A(z0 ◦ δr(ζ)) satisfies hypothesis [H.1] with the same constant µ as

A.

Lemma 4.2. There exists a positive constant c̄ such that, for every %, r, with
1
2 ≤ % < r ≤ 1 and z0 ∈ R

N+1, it holds

Rc̄(r−%)(z) ⊆ Rr(z0) , ∀ z ∈ R%(z0) . (4.2)

Proof. By the change of variables z = z0◦δr(ζ), it suffices to prove (4.2) for z0 = 0

and r = 1. By expression (2.5) of the dilations (δλ), it is clear that

R% ⊆ {(x, t) ∈ R
N+1||x| < %, |t| < %2} , ∀ % < 1 .
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Then the thesis is a consequence of the following inclusion

Rε(z) ⊆ {(ξ, τ)||x − ξ| < cε, |t− τ | < (cε)2} , ∀ z ∈ R%, ε < 1 , (4.3)

for some positive constant c. Indeed, if we choose ε ≤ 1−%
c , we get

Rε(z) ⊆ R1 , ∀ z ∈ R% ,

and this shows (4.2) with c̄ = c−1.

We are left with the proof of (4.3). If ζ = (ξ, τ) ∈ Rε(z) then

ζ = z ◦ z̄ = (x̄ +E(t̄)x, t+ t̄) ,

for some z̄ ∈ Rε. Hence

|ξ − x| = |x̄+ (E(t̄) −E(0))x| ≤ x̄| + |t̄| max
|s|≤|1

‖E′(s)‖ ≤ cε , τ − t| = |t̄| < ε2 ,

where c = 1 + |max|s|≤1 ‖E
′(s)‖.

We are now in position to prove Theorem 1.2.

Proof of Theorem 1.2. It suffices to give the proof in the case z0 = 0, % = 1
2 and

r = 1. Then, by a transformation of the form (4.1), we get

sup
R θ

2
(z)

up ≤
c

θQ+2

∫

Rθ(z)

up (4.4)

for every z ∈ R%(z0) and θ > 0 suitably small, with c = c(Q,µ). Keeping in mind

Lemma 4.2, we set θ = c̄(r − %) in (4.4), and we obtain

sup
R c̄(r−%)

2

(z)

up ≤
c̃

(r − %)Q+2

∫

Rr(z0)

up , ∀ z ∈ R%(z0) ,

which yields (1.7).

We are left with the proof of (1.7) for z0 = 0, % = 1/2 and r = 1. We first consider

the case p > 0 which is technically more complicated. Combining Theorems 3.1 and

3.3, we obtain the following estimate: if q, δ > 0 verify the condition

|q − 1/2| ≥ δ ,

then there exists a positive constant cδ = c(δ,Q, µ), such that

‖uq‖L2κ(R%) ≤
cδ

(r − %)2
‖uq‖L2(Rr) , (4.5)

for every %, r, 1
2 ≤ % < r ≤ 1, where κ = 1 + 2

Q .

Fixed a suitable δ > 0 as we shall specify later and p > 0, we iterate inequality

(4.5) by choosing

%n =
1

2

(

1 +
1

2n

)

, pn =
pκn

2
, n ∈ N ∪ {0} .
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We set v = u
p
2 . If p > 0 is such that

|pκn − 1| ≥ 2δ , ∀ n ∈ N ∪ {0} , (4.6)

by (4.5), we obtain

‖vκn

‖L2κ(R%n+1
) ≤

cδ
(%n − %n+1)2

‖vκn

‖L2(Rrn) , ∀ n ∈ N ∪ {0} . (4.7)

Since

‖vκn

‖L2κ = (‖v‖L2κn+1 )κn

and ‖vκn

‖L2 = (‖v‖L2κn )κn

,

we can rewrite (4.7) in the form

‖v‖L2κn+1(R%n+1
) ≤

(

cδ
(%n − %n+1)2

)
1

κn

‖v‖L2κn(R%n ) .

Iterating this inequality, we obtain

‖v‖L2κn+1(R%n+1
) ≤

n
∏

j=0

(

cδ
(%j − %j+1)2

)
1

κj

‖v‖L2(R1) ,

and letting n go to infinity, we get

sup
R 1

2

v ≤ c‖v‖L2(R1) ,

where

c =

∞
∏

j=0

(

cδ
(%j − %j+1)2

)
1

κj

,

is a finite constant, dependent on δ. Thus, we have proved that

sup
R 1

2

up ≤ c2
∫

R1

up , (4.8)

for every p > 0 which verifies condition (4.6).

We now make a suitable choice of δ > 0, only dependent on the homogeneous

dimension Q, in order to show that (4.8) holds for every positive p. We remark

that, if p is a number of the form

pm =
κm(κ+ 1)

2
, m ∈ Z ,

then (4.6) is satisfied with δ = (2Q+ 4)−1, for every m ∈ Z. Therefore (4.8) holds

for such a choice of p, with c only dependent on Q, µ. On the other hand, if p is an

arbitrary positive number, we consider m ∈ Z such that

pm =
κm(κ+ 1)

2
≤ p < pm+1 . (4.9)

Hence, by (4.8), we have

sup
R 1

2

u ≤

(

c2
∫

R1

upm

)
1

pm

≤ c
2

pm

(∫

R1

up

)
1
p

,
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so that, by (4.9), we obtain

sup
R 1

2

up ≤ c
2p
pm

∫

R1

up ≤ c2κ

∫

R1

up .

This concludes the proof of (1.7) for p > 0.

We next consider p < 0. In this case, assuming that u ≥ u0 for some positive

constant u0, estimate (1.7) can be proved as in the case p > 0 or even more easily

since condition (4.5) is satisfied for every p < 0. On the other hand, if u is a non-

negative solution, it suffices to apply (1.7) to u + 1
n , n ∈ N, and to let n go to

infinity, by the monotone convergence theorem.

Proceeding as in the proof of Theorem 1.2, we obtain the following

Corollary 4.3. Let u be a non-negative weak sub-solution of (1.1) in Ω. Let z0 ∈ Ω

and r, %, 1
2 ≤ % < r ≤ 1, such that Rr(z0) ⊆ Ω. Then we have

sup
R%(z0)

u ≤

(

c

(r − %)Q+2

∫

Rr(z0)

up

)
1
p

, ∀ p ≥ 1 , (4.10)

inf
R%(z0)

u ≥

(

c

(r − %)Q+2

∫

Rr(z0)

up

)
1
p

, ∀ p < 0 , (4.11)

where c = c(Q,µ). Estimate (4.11) is meaningful only when up ∈ L1(Rr(z0)).

We close this section by proving the local boundedness of weak solutions to

(1.1).

Proof of Corollary 1.4. We consider a sequence (gn)n∈N in C∞(R, [0,+∞[) with

the following properties:

gn(s) ↓ max(0, s) , s ∈ R , as n→ ∞ ,

and, for every n ∈ N, gn is a monotone increasing, convex function which is linear

out of a fixed compact set. By Lemma 2.6, (gn(u)) and (gn(−u)) are sequences

of non-negative sub-solutions of L, which converge to u+ = max(0, u) and u− =

max(0,−u) respectively. Thus, the thesis follows applying (4.10) of corollary (4.3)

to gn(u), gn(−u) and passing at limit as n goes to infinity.

5. Bounds on the Set Rr((x0, t0)) ∩ {t < t0}

In this section we prove that Theorem 1.2 also holds in the sets

R−
r ((x0, t0)) ≡ Rr((x0, t0)) ∩ {t < t0} , (5.1)

in the case of negative exponents p. This result is analogous to [1, Theorem 3] (see

also inequality (6−) in the statement of [2, Lemma 1] and states that, in some sense,
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every point of the set R−
% (z0) can be considered as an interior point of R−

r (z0), when

% < r, even if it belongs to its topological boundary.

Proposition 5.1. Let u be a non-negative weak sub-solution of (1.1) in Ω. Let

z0 ∈ Ω and r, %, 1
2 ≤ % < r ≤ 1, such that R−

r (z0) ⊆ Ω and let p < 0. Then there

exists a positive constant c which depends on µ and on the homogeneous dimension

Q such that

sup
R−% (z0)

up ≤
c

(r − %)Q+2

∫

R−r (z0)

up , (5.2)

provided that the last integral converges.

Proof. We proceed exactly as in the proof of Theorem 1.2, by using the following

two estimates:

‖Dm0u
p‖L2(R−% ) ≤

c
√

µ(µ+ ε)

ε(r − %)
‖up‖L2(R−r ) , where ε =

|2p− 1|

4p
, (5.3)

and

‖up‖L2κ(R−% ) ≤
c

r − %
(‖up‖L2(R−r ) + ‖Dm0u

p‖L2(R−r )) , (5.4)

for every negative p and for any %, r with 1
2 ≤ % < r ≤ 1.

In order to prove the Caccioppoli type inequality (5.3) we introduce a function

χn(t) defined as

χn(s) =







1 , if s ≤ 0 ,

1 − ns , if 0 ≤ s ≤ 1/n ,

0 , if s ≥ 1/n ,

for every n ∈ N. We proceed as in the proof of Theorem 3.1: we let v = up and,

for every ψ ∈ C∞
0 (Rr) we consider the function φ = u2p−1ψ2. It is not restrictive

to assume z0 = 0, r = 1 and u ≥ u0, for some positive constant u0. Since χn is

Lipschitz continuous and v, Dm0v, Y v ∈ L2(R1), we can use χn(t)φ(x, t) as a test

function in (2.15). We find

0 ≤
p

2

∫

R1

〈ADu,D(χnφ)〉 − χnφY u

=

∫

R1

(

1 −
1

2p

)

χnψ
2〈ADv,Dv〉 + χnvψ〈ADv,Dψ〉 −

χnψ
2

4
Y (v2)

(using the identity

χnψ
2Y (v2) = Y (χnψ

2v2) − 2v2Y (χnψ
2)
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and applying the divergence theorem)

=

∫

R1

χn

[(

1 −
1

2p

)

ψ2〈ADv,Dv〉 + vψ〈ADv,Dψ〉 +
v2ψ

2
Y ψ

]

+n

∫

R1∩{0≤t≤1/n}

v2ψ2

4
.

Note that the last integral above is non-negative, then, by letting n→ ∞ we find
∫

R−1

(

1 −
1

2p

)

ψ2〈ADv,Dv〉 + ψ〈ADv,Dψ〉 +
v2ψ

2
Y ψ ≤ 0 .

After that, we follow the same line used in the proof of Theorem 3.1 and we obtain

(5.3).

The Sobolev type inequality (5.4) can be proved exactly as Theorem 3.3: it is

sufficient to note that the fundamental solution Γ0(x, t, ξ, τ) vanishes in the set

{τ > t}. Then, when representing up(x, t), we actually have

up(x, t) = upψ(x, t)

≤

∫

Rr∩{τ≤t}

[〈A0D(upψ), DΓ0(x, t, ·)〉 − Γ0(x, t, ·)Y (upψ)](ξ, τ)dξdτ ,

for every (x, t) ∈ R−
% . This means that we integrate the functions up and Dm0u

p

only in the set R−
r , thus we can use their L2(R−

r ) norm in the estimates (2.11)

and (2.12) of Corollary 2.2. We then get (5.4) as in the proof of Theorem 3.3. This

completes the proof.

Acknowledgments

We would like to express our gratitude to Professor Ermanno Lanconelli for his

interest in our work and for many useful discussions. Investigation supported by

the University of Bologna. Funds for selected research topics.

References

[1] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure
Appl. Math. 17 (1964) 101–134.

[2] J. Moser, On a pointwise estimate for parabolic differential equations, Comm. Pure
Appl. Math. 24 (1971) 727–740.
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