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Abstract

This paper contains a survey on a series of papers by the authors, dealing with linear
and non linear Kolmogorov-type operators, arising in diffusion theory, probability and
finance. Some new results, about existence for Cauchy problems, regularity properties
and pointwise estimates of solutions, are also announced.

1 The Kolmogorov equation and the rank condition

In its simplest form, Kolmogorov’s equation can be written as

∂2
x1

u + x1∂x2u− ∂tu = 0, (x1, x2, t) = (x, t) ∈ R2 × R. (1.1)

The second order part in (1.1) is strongly degenerate due to the presence in it of the only term
∂2

x1
. However Kolmogorov constructed already in 1934 an explicit fundamental solution of

(1.1) which is a C∞ function outside the diagonal [24]. This implies that (1.1) is hypoelliptic,
i.e. every distributional solution to (1.1) in an open subset Ω of R3 actually is a C∞(Ω)
function.

As Hörmander pointed out in the introduction of his celebrated paper on hypoelliptic
second order differential equations [22], the Komogorov method can also be applied to the
more general operator

L = div(AD) + 〈x,BD〉 − ∂t, x ∈ RN , t ∈ R, (1.2)

where D = (∂x1 , . . . , ∂xN ) and 〈·, ·〉 denote, respectively, the gradient and the inner product
in RN ; A = (aij) and B = (bij) are N ×N constant real matrices, and A is symmetric and
non-negative defined. We remark that equation (1.1) can be written in the form (1.2) with

A =
(

1 0
0 0

)
and B =

(
0 1
0 0

)
.
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For any operator of the type (1.2), we denote, for every t ∈ R,

E(t) = exp(−tBT ), (1.3)

and

C(t) =

t∫

0

E(s)AET (s)ds. (1.4)

It is not difficult to show that

C(t) > 0 for every t > 0, (1.5)

if and only if the following condition holds

Ker(A) does not contain non-trivial subspaces which are invariant for B. (1.6)

Under condition (1.6), following Kolmogorov’s method, Hörmander constructed in [22], page
148, (see also [25], Theorems 1 and 4) an explicit fundamental solution for (1.2):

Γ(x, t, ξ, τ) = Γ(x− E(t− τ)ξ, t− τ), (1.7)

where Γ(x, t) = 0 if t ≤ 0 and

Γ(x, t) =
(4π)−

N
2√

det C(t)
exp

(
−1

4
〈C−1(t)x, x〉 − t tr(B)

)
, if t > 0. (1.8)

Hereafter we use the notations

z = (x, t), ζ = (ξ, τ), x, ξ ∈ RN , t, τ ∈ R.

It is quite trivial to recognize that Γ(z, ζ) is a C∞ function outside {(z, ζ) ∈ RN+1 × RN+1 :
z = ζ}. Then, under condition (1.6), the operator L in (1.2) is hypoelliptic. It is noteworthy
to remark that condition (1.6) can also be expressed in geometric-differential form. Indeed,
if we set

Xj =
N∑

k=1

ajk∂xk
, j = 1, . . . , N, Y = 〈x,BD〉 − ∂t, (1.9)

then (1.6) is equivalent to the following condition

rank Lie (X1, . . . , XN , Y ) = N + 1, (1.10)

at any point of RN+1. In (1.10), Lie (X1, . . . , XN , Y ) denotes the Lie algebra generated by
X1, . . . , XN , Y . For an easy proof of the equivalence of (1.5), (1.6) and (1.10), see Theorem
3 in [25] and Proposition A.1 in [31].

In PDE’s theory, rank conditions like (1.10) are today called of Hörmander’s type because
of the following celebrated result. Consider a second order differential operator

Pu :=
p∑

j=1

X2
j u + X0u + cu
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where

Xj =
N∑

k=1

ajk∂xk
, j = 1, . . . , p,

and the ajk are real valued C∞ functions in an open set Ω ⊆ Rn. Hörmander discovered that
P is hypoelliptic in Ω if

rank Lie (X1, . . . , Xp, X0) = n, (1.11)

at any point of Ω ([22], Theorem 1.1).
Hörmander’s Theorem was extended by Radkevič [45] and by Olěınik and Radkevič [35]

to general second order operators with smooth coefficients and non-negative characteristic
form

L =
N∑

i,j=1

∂xi

(
aij∂xj

)
+

N∑

i=1

bi∂xi + c. (1.12)

If the coefficients aij , bi, c are real analytic, then the rank condition is also necessary for the
hypoellipticity of L (see [15] and [35], Chap. II, Sec. 8).

2 Lie group and metric structures related to Kolmogorov op-
erators

Let L be the operator in (1.2) with constant matrices A and B. In [31] it was shown that
L is invariant with respect to the left translations of the Lie group G =

(
RN+1, ◦) with

composition law defined by

(x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t + τ), (x, t), (ξ, τ) ∈ RN × R, (2.1)

with E(·) as in (1.3). It is easily checked that in G

(ξ, τ)−1 = (−E(−τ)ξ,−τ),

then, by (1.7), we can write
Γ(z, ζ) = Γ(ζ−1 ◦ z).

The Hörmander condition (1.10) implies that, for some basis on RN , the matrices A and B
take the following block form

A =
(

A0 0
0 0

)
, (2.2)

and 


∗ B1 0 · · · 0
∗ ∗ B2 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · Br

∗ ∗ ∗ · · · ∗




(2.3)
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where A0 is a symmetric non-singular p0×p0 matrix and the Bj ’s blocks are pj−1×pj matrices
of rank pj , j = 1, 2, . . . , r. The pj ’s are positive integers such that

p0 ≥ p1 ≥ . . . pr ≥ 1, and p0 + p1 + · · ·+ pr = N,

and the blocks denoted by ∗ are arbitrary (see [31], Proposition 2.1).
In the sequel we shall call Kolmogorov operator with constant coefficients any operator

of the type (1.2) with the matrices A and B satisfying the above structural conditions. The
class of Kolmogorov operators with constant coefficients contains a remarkable subclass of
operators which are also invariant with respect to a suitable dilation group. Indeed, there
exists a group of dilations (δλ)λ>0 such that

L ◦ δλ = λ2 (δλ ◦ L) , ∀λ > 0, (2.4)

if and only if all the ∗-blocks in (2.3) are zero matrices. In this case

δλ = diag(λIp0 , λ
3Ip1 , . . . , λ

2r+1Ipr , λ
2), (2.5)

where Ipj denotes the pj × pj identity matrix. The proofs of these statements are contained
in [27] and [31](cf. Proposition 2.2).

When the ∗-blocks in B are zero, the dilations (δλ)λ>0 in (2.5) are a group of auto-
morphisms of G. Equipped with them, G becomes a homogeneous group with homogeneous
dimension Q + 2, where

Q := p0 + 3p1 + · · ·+ (2r + 1)pr,

(see [26], page 288, and [31], Remark 2.1).
We shall call homogeneous Kolmogorov operator every Kolmogorov operator whose matrix

B has null ∗-blocks.
It is esay to check that the fundamental solution Γ of a homogeneous Kolmogorov equation

is δλ-homogeneous of degree −Q, i.e.

Γ(δλ(z)) = λ−QΓ(z), ∀z ∈ RN+1 \ {0}, ∀λ > 0.

In this case Γ takes the following simple form:

Γ(x, t) =
cN

tQ/2
exp

(
−1

4
〈C−1(1)D0(t−1/2)x,D0(t−1/2)x〉

)
,

where C(1) is given by (1.4), with t = 1 and D0(λ) is the N ×N matrix

D0(λ) = diag(λIp0 , λ
3Ip1 , . . . , λ

2r+1Ipr).

Moreover cN = (4π)−N/2 (detC(1))−1/2 (see [31], Proposition 2.3).
In the family of Kolmogorov operators, the homogeneous ones play a central role. Indeed,

any Kolmogorov operator can be approximated, in a suitable sense, by a homogeneous oper-
ator. More precisely, let B in (2.3) be the matrix related to some Kolmogorov operator with
constant coefficients

L = div (AD) + 〈x,BD〉 − ∂t. (2.6)
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If we denote by B0 the matrix obtained by annihilating every ∗-block in (2.3), the operator

L0 = div (AD) + 〈x,B0D〉 − ∂t

is homogeneous. Denoting by Γ and Γ0 the fundamental solutions with pole at ζ = 0 of L
and L0 respectively, then, for every b > 0 there exists a positive constant a such that

1
a
Γ0(z) ≤ Γ(z) ≤ aΓ0(z) (2.7)

on the level set {z : Γ0(z) > b} (see [31], Theorem 3.1). The operator L0 is homogeneous
and, due to inequalities (2.7), it could be called the principal part of L.

As we already noticed, the fundamental solution of a constant coefficients Kolmogorov op-
erator L is invariant with respect to the left translations on G = (RN+1, ◦), and homogeneous
of degree −Q with respect to the dilations δλ (G and δλ defined in (2.1) and (2.5)). Then,
it is quite obvious to expect that the intrinsic geometry underlying L is that one determined
by G and δλ.

Let α1, . . . , αN be strictly positive integers such that

δλ = diag
(
λα1 , . . . , λαN , λ2

)

and define, for every z ∈ RN+1 \ {0}, ‖z‖G = % where % is the unique positive solution to the
equation

t2

%4
+

N∑

j=1

x2
j

%2αj
= 1, z = (x1, . . . , xN , t).

We agree to let ‖z‖G = 0 if z = 0. Then

z 7−→ ‖z‖G
is a δλ-homogeneous function of degree one, continuous on RN+1, strictly positive and of class
C∞ in RN+1 \ {0}. If we define

dG(z, ζ) = ‖ζ−1 ◦ z‖G , z, ζ ∈ RN+1, (2.8)

then (RN+1, dG) is a (pseudo-)metric space, the natural one for the operator L. Indeed, it is
not difficult to recognize that dG is equivalent to the control distance related to L, which is
defined as follows. Let Z1, . . . , ZN be the column vectors of the square root of A. We agree
to identify Zj with the vector (Zj , 0) of RN+1. Let us also identify the first order differential
operator Y with the vector field (BT x,−1). We call L-admissible curve every absolutely
continuous function

γ : [0, 1] −→ RN+1

such that

γ̇(s) =
N∑

j=1

cj(s)Zj + cN+1(s)Y (γ(s)) a.e. in [0, 1].
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Let us denote

I(γ) =

1∫

0




N∑

j=1

(cj(s))4 + (cN+1(s))2




1
4

ds.

The rank condition (1.6) is equivalent to the following one

rank Lie (Z1, . . . , ZN , Y ) = N + 1,

at any point of RN+1. Thanks to a classical theorem of Caratheodory-Razewski-Chow, this
condition implies that every point ζ ∈ RN+1 is reachable from an arbitrary given point
z ∈ RN+1 by means of L-admissible curves. Then

dL(z, ζ) = inf{I(γ) | γ L-admissible, γ(0) = z, γ(1) = ζ}

is finite for every z, ζ ∈ RN+1. The function

(z, ζ) 7−→ dL(z, ζ)

actually is a distance in RN+1, called L-control distance. Since Z1, . . . , ZN and Y are invari-
ant with respect to the left translations on G and δλ-homogeneous of degree one and two
respectively, we have

dL(z, ζ) = dL(ζ−1 ◦ z, 0) =: dL(ζ−1 ◦ z),

and
dL(δλ(z)) = λdL(z).

These properties easily imply that

1
a
dL(z, ζ) ≤ dG(z, ζ) ≤ adL(z, ζ), ∀z, ζ ∈ RN+1,

for a suitable constant a > 0.
We want to stress that the composition law (2.1), the dilations (2.5) and the metric dG

are determined only by the matrix B, i.e. by the first order part of the operator L. We would
like to mention an observation contained in the recent paper [7].

Remark 2.1 If the ∗-blocks in B are zero and we define

δ̃λ := diag(λIp0 , λ
2Ip1 , . . . , λ

r+1Ipr , λ), λ > 0,

then (δ̃λ)λ>0 is another group of automorphisms of G. Equipped with these dilations, G
becomes a homogeneous Carnot group and

∆G = div(AD) + Y 2

is its intrinsic sub-Laplacian (here Y is the first order differential operator defined in (1.9)).
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3 Some motivation for studying Kolmogorov equations

The operator (1.1) in previous section is the lowest dimension version of the following degen-
erate parabolic operator in RN+1, N = 2n,

L =
n∑

j=1

∂2
xj

+
n∑

j=1

xj∂xn+j − ∂t. (3.1)

Kolmogorov introduced (3.1) in 1934 in order to describe the probability density of a system
with 2n degree of freedom. The 2n-dimensional space is the phase space, (x1, . . . , xn) is the
velocity and (xn+1, . . . , x2n) the position of the system. By choosing

A =
(

In 0
0 0

)
and B =

(
0 In

0 0

)
,

where In and 0 denote respectively the identity and the null n × n matrices, operator (3.1)
can be written as in (1.2). We also recall that (3.1) is a prototype for a family of evolution
equations arising in the kinetic theory of gases that take the following general form

Y u = J (u). (3.2)

Here R2n 3 x 7−→ u(x, t) ∈ R is the density of particles which have velocity (x1, ..., xn) and
position (xn+1, ..., x2n) at time t,

Y u := −
n∑

j=1

xj∂xn+ju + ∂tu

is the so called total derivative of u and J (u) describes some kind of collisions. This last term
can take different form, either linear or non linear. For instance, in the usual Fokker-Planck
equation, we have

J (u) =
n∑

i,j=1

aij∂
2
xixj

u +
n∑

i=1

ai∂xiu + au (3.3)

where aij , ai and a are functions of (x, t); J (u) may also occur in divergence form

J (u) =
n∑

i,j=1

∂xi

(
aij∂xju + biu

)
+

n∑

i=1

ai∂xiu + au. (3.4)

We also mention the following non linear collision operator of Fokker-Planck-Landau type

J (u) =
n∑

i,j=1

∂xi

(
aij(z, u)∂xju + bi(z, u)

)
, (3.5)

where the coefficients aij and bi depend on z ∈ R2n+1 and on the unknown function u through
some integral expressions. This operator is studied as a simplified version of the Boltzmann
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collision operator. For the description of wide classes of stochastic processes and kinetic
models leading to equations of the previous type, we refer to the classical monographies [9],
[16] and [10].

Ultraparabolic differential equations with non linear total derivative terms appear when
studying convection-diffusion models. We would like to mention the paper by Escobedo,
Vázquez and Zuazua [18] in which the following equation is studied

∂yg(u)− ∂tu = −∆xu, x = (x1, . . . , xn) ∈ Rn, y, t ∈ R. (3.6)

The linearized equation of (3.6)

g′(u)∂yv − ∂tv = −∆xv,

if g′(u) is different from zero and smooth enough, can be reduced to the form (1.2) with
N = n + 2,

A =




1 · · · 0 0
...

. . .
...

...
0 · · · 1 0
0 · · · 0 0


 and B =




0 · · · 0 1
...

. . .
...

...
0 · · · 0 0
0 · · · 0 0


 . (3.7)

We would also like to mention the paper [36] where blow-up phenomena of Fujita type are
studied for semilinear equations related to Kolmogorov operators.

In the last decades mathematical models involving linear and non linear Kolmogorov
type equations have also appeared in finance [1], [4], [5] and [49]. We explicitly mention the
equation

s2∂2
sV + (log s)∂τV + ∂tV = 0, s > 0, τ, t ∈ R (3.8)

which arises in the problem of pricing Asian options. (3.8) can be reduced to the Kolmogorov
equation (1.1) by means of an elementary change of variables (see [6], page 479). Very recently,
the nonlinear Kolmogorov type equation

∂2
x1

u + u∂x2u− ∂tu = f (3.9)

has been proposed in [2] as a mathematical model for utility functional and decision making.
When f = 0, (3.9) becomes a particular case of (3.6).

4 Linear equations with Hölder continuous coefficients

For linear Kolmogorov operators with Hölder continuous coefficients very satisfactory re-
sults are present in literature. Weber [48] in 1951, Il’in [23] in 1964 and Sonin [47] in 1967
constructed a fundamental solution for linear Kolmogorov operators. Regularity results of
solutions and first boundary value problems were investigated by Genčev [21], Šatyro [46],
Eidelman, Ivasyshen and Malytska [17]. The results of these authors have been generalized
and improved in a series of papers by Polidoro [40, 41, 42], Manfredini [33] and Lunardi [32].
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Consider in RN+1 the second order differential operator

L =
p0∑

i,j=1

aij(z)∂xixju + 〈x,BDu〉 − ∂tu, (4.1)

where 1 ≤ p0 ≤ N , z = (x, t) ∈ RN × R. Assume the matrix B as in (2.3) with the ∗-
blocks equal to zero; the block Bj has rank pj and dimension pj−1 × pj , j = 1, . . . , r, with
p0 ≥ p1 ≥ · · · ≥ pr ≥ 1. Suppose the matrix (aij)i,j=1,...,p0 in (4.1) uniformly positive definite,
i.e. there exists λ > 0 such that

1
λ

p0∑

j=1

ξ2
j ≤

p0∑

i,j=1

aij(z)ξiξj ≤ λ

p0∑

j=1

ξ2
j (4.2)

for every (ξ1, . . . , ξp0) ∈ Rp0 and for every z ∈ RN+1. We also assume the aij Hölder contin-
uous with exponent α ∈]0, 1[ with respect to the distance dG in (2.8), i.e.

|aij(z)− aij(ζ)| ≤ MdG(z, ζ)α, ∀z, ζ ∈ RN+1, (4.3)

for some constant M . Under these hypotheses, in [40] the following theorem is proved

Theorem 4.1 The operator L in (4.1) has a global fundamental solution Γ satisfying the
following lower and upper local estimates: for every ε > 0 there exists k > 0 such that

(1− ε)Z(z, ζ) ≤ Γ(z, ζ) ≤ (1 + ε)Z(z, ζ), (4.4)

for any z, ζ ∈ RN+1 such that Z(z, ζ) ≥ k. In (4.4), Z(z, ζ) denotes the parametrix of L with
pole at ζ, i.e. the fundamental solution with pole at ζ of the frozen operator

Lζ =
p0∑

i,j=1

aij(ζ)∂xixj + 〈x,BD〉 − ∂t. (4.5)

We remark that Z(z, ζ) takes the explicit Gaussian type form (1.7)-(1.8), where C(t) is
given by (1.4) with A = (αij)i,j=1,...,N , αij = aij(ζ) if 1 ≤ i, j ≤ p0 and αij = 0 otherwise.

Theorem 4.1, which in particular improves and generalizes the previous results by Weber
[48], Il’in [23] and Sonin [47], was proved in [40] by adapting the Levi’s parametrix method
to the Lie group and metric structures related to the matrix B (cf. Section 2).

The Levi’s parametrix method also provides a global upper bound for the fundamental
solution Γ. It was shown in [40], Corollary 2.5, that there exists a positive constant λ such
that, if Γ+ denotes the fundamental solution of the constant coefficients Kolmogorov operator

L+ = λ∆p0 + 〈x,BD〉 − ∂t,

then, for every T > 0, there exists a positive constant c+ = c+(T ) with the property that

Γ(z, ζ) ≤ c+Γ+(z, ζ) (4.6)
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for every z = (x, t), ζ = (ξ, τ) ∈ RN+1, 0 < t− τ < T .
If the operator L can be written in divergence form, a lower bound for Γ analogous to (4.6)

also holds. This result relies on the local estimates (4.4) of Γ and on a Harnack inequality
for non negative solutions to Lu = 0, which is invariant with respect to the translation and
dilation groups, related to the matrix B, described in Section 2. To be more specific, let us
introduce some notation. Consider the Euclidean cylinder

H1 = {(x, t) ∈ RN × R | |x| < 1, |t| < 1}.
For every z0 = (x0, t0) ∈ RN+1 and r > 0, we set

Hr(z0) ≡ z0 ◦ (δr(R1)) = {z ∈ RN+1 | z = z0 ◦ δr(ζ), ζ ∈ R1}, (4.7)

and
H−

r (z0) = {z ∈ Hr(z0) | t = t0 − r2}.
Then, the following theorem holds (see [40]).

Theorem 4.2 Let L as in Theorem 4.1 and assume it can be written in divergence form:

L = div(AD) + 〈x,BD〉 − ∂t.

Let Ω be an open subset of RN+1. Then there exist constants c0, r0 > 0 and θ ∈]0, 1[ only
depending on B and on the constants λ and M in (4.2)-(4.3) such that

sup
H−

rθ(z0)

u ≤ c0u(z0),

for every non negative solution u to Lu = 0 in Ω and for every Hr(z0) ⊆ Ω, 0 < r ≤ r0.

We would like to precise the meaning of solution to Lu = 0. A continuous function

u : Ω −→ R, Ω ⊆ RN+1,

is a solution to Lu = 0 in Ω if each derivative ∂xiu, ∂2
xixj

u, for 1 ≤ i, j ≤ p0, and

Y u := 〈x,BDu〉 − ∂tu

exists in weak sense and it is a continuous function. Moreover
p0∑

i,j=1

aij(z)∂xixju(z)− Y u(z) = 0, ∀z ∈ Ω.

Remark 4.3 By using the embedding Theorem of Folland [19], one can see that every solu-
tion to Lu = 0 actually is Hölder continuous with respect to the norm ‖ · ‖G.

Theorem 4.2 extends some Harnack inequalities for constant coefficients Kolmogorov op-
erators first appeared in [28], [20] and [31].

Starting from Theorem 4.2, the following global lower bound estimate is proved (see [42],
Main Theorem).
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Theorem 4.4 Let L as in Theorem 4.2. Then there exists a positive constant λ such that,
if Γ− denotes the fundamental solution of

L− = λ−1∆p0 + 〈x,BD〉 − ∂t,

then, for every T > 0, there exists a positive constant c− with the property that

c−Γ−(z, ζ) ≤ Γ(z, ζ) (4.8)

for every z = (x, t), ζ = (ξ, τ) ∈ RN+1, 0 < t− τ < T .

We would like again to stress that the functions Γ− and Γ+ appearing in (4.6) and (4.8)
have the explicit form (1.7)-(1.8), with the matrix A in (1.4) replaced by λ−1diag(Ip0 , 0, ..., 0)
and λ diag(Ip0 , 0, ..., 0) respectively.

Theorem 4.4 was proved in [42] by using a rather complicated technique which was inspired
by a method of Aronson and Serrin for classical parabolic operators. The core of the method
used in [42] is a kind of discretization of the connectivity Theorem of Caratheodory-Razewski-
Chow. The rank condition

rank Lie
(
∂x1 , . . . , ∂xp0

, Y
)

= N + 1, at any point of RN+1

played a crucial role.
The estimates (4.6) and (4.8) were then used to prove uniqueness and representation

theorems for solutions to the Cauchy problem related to L (see Theorem 3.1 in [41]).

Theorem 4.5 Let L as in Theorem 4.2. Let u ∈ C(RN × [0, T ],R) be a solution of the
Cauchy problem {

Lu = 0 in RN×]0, T [,
u(·, 0) = 0.

Then u ≡ 0 if one of the following condition is satisfied.
(i) There exists c > 0 such that

∫

RN×]0,T [

e−c|x|2u(x, t)dxdt < ∞;

(ii) u ≥ 0.

Positive solutions to Kolmogorov equations are of special interest since they have the
role of distribution functions in several stochastic models. In these contexts, the following
representation and Fatou type results contained in the same paper cited above, [41] Theorem
4.1, are of some relevance.

Theorem 4.6 Let L as in Theorem 4.2. Then:
(i) for every non negative solution to Lu = 0 in RN×]0, T [ there exists a nonnegative

Borel measure µ such that ∫

RN

e−c|x|2dµ(x) < ∞ (4.9)
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for some positive constant c, and

u(z) =
∫

RN

Γ(z, (ξ, 0))dµ(ξ), ∀z ∈ RN×]0, T [; (4.10)

(ii) for every non negative Borel measure µ verifying (4.9) there exists T > 0 such that
the function u in (4.10) is a solution to Lu = 0 in RN×]0, T [. Moreover

lim
t→0+

u(·, t) = µ in measure

and
lim

t→0+
u(x, t) = ϕ(x) a.e.

where ϕdx is the absolutely continuous part of µ with respect to the Lebesgue measure.

We want to close this section by briefly recalling the interior Schauder type estimates
proved in [33] (see also [32]). The results of these papers improve and generalizes the previous
ones contained in [21], [46] and [17].

Let L as in Theorem 4.2 and u a smooth real function defined on a subset Ω of RN+1.
Then, for every bounded open set Ω1 such that Ω1 ⊆ Ω, there exists a constant c > 0 such
that

|u|2+α,Ω1 ≤ c

(
sup
Ω
|u|+ |Lu|α,Ω

)
. (4.11)

Here we use the notations
|f |α,Ω = sup

z 6=ζ
z,ζ∈Ω

|f(z)− f(ζ)|
(dG(z, ζ))α

,

and

|f |2+α,Ω1 =
p0∑

i,j=1

|∂xixjf |α,Ω1 + |Y u|α,Ω1 + sup
Ω1

|u|.

In [33], the interior Schauder estimates are also used to study a first boundary value problem
for L.

We would also like to quote the paper [29] in which a boundary value problem for a class
of quasilinear operators of Fokker-Planck type was studied. In [29] the a priori estimates of
[33] are used as crucial tools.

5 Linear equations with non-continuous coefficients

A priori Lp estimates and Hölder regularity properties of solutions to Kolmogorov equations
with weakly continuous coefficients have been proved in [8], [34], [43] and [44]. Let L be the
following operator

L =
p0∑

i,j=1

aij(z)∂xixj + 〈x,BD〉 − ∂t. (5.1)
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Suppose the matrix (aij)i,j=1,...,p0 satisfies the positivity condition (4.2) and that the constant
matrix B is as in (2.3) with all the ∗-blocks equal to zero and the Bj ’s of maximum rank.
We also assume the coefficients aij satisfying the following weak continuity condition

aij ∈ VMOG , i, j = 1, . . . , p0. (5.2)

The space of vanishing mean oscillation VMOG is defined as follows. Denote by Br(z0) the
dG-ball of center z0 and radius r:

Br(z0) = {z ∈ RN+1 | dG(z0, z) < r}. (5.3)

Here dG stands for the distance defined in (2.8), Section2. We say that u ∈ VMOG if:
u ∈ L1

loc(RN+1) and

lim
r→0+


sup

%≤r

1
meas(B%)

∫

B%

|u− uB% |


 = 0, (5.4)

where
uB% =

1
meas(B%)

∫

B%

u(ζ)dζ

Here meas(B%) denotes the Lebesgue measure of B%: we want to stress that

meas(B%) = %Q+2meas(B1).

In [8] and [43], interior regularity properties of strong solutions to the equation Lu = f
in Ω ⊆ RN+1, with L as in (5.1), were studied. In order to recall those results, we need to
introduce some notation. If Ω is an open subset of RN+1, 1 < q < ∞ and 0 ≤ µ ≤ Q + 2, we
set

Lq,µ(G, Ω) = {u ∈ Lq
loc(Ω) | ‖u‖Lq,µ(G,Ω) < ∞},

where
‖u‖q

Lq,µ(G,Ω) = sup
r>0, z∈Ω

1
rµ

∫

Ω∩Br(z)

|u(ζ)|qdζ.

Obviously, Lq,µ = Lq if µ = 0. The Sobolev-Morrey type space Sq,µ(G, Ω) is defined as follows

Sq,µ(G, Ω) = {u ∈ Lq,µ(G, Ω) | ∂xiu, ∂xixju, Y u ∈ Lq,µ(G, Ω)},
where, as usual, Y = 〈x,BD〉 − ∂t. The norm in this space is defined by

‖u‖q
Sq,µ(G,Ω) := ‖u‖q

q,µ +
p0∑

i=1

‖∂xiu‖q
q,µ +

p0∑

i,j=1

‖∂xixju‖q
q,µ + ‖Y u‖q

q,µ,

where ‖ · ‖q,µ = ‖ · ‖Lq,µ(G,Ω). When L is as in (5.1), we call strong solution to

Lu = f, f ∈ Lq,µ(G, Ω), (5.5)

a function u ∈ Sq,µ(G,Ω) satisfying (5.5) pointwise a.e. in Ω. Then, the following theorem
holds (see [43], Theorems 1.5 and 1.6):
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Theorem 5.1 Let u be a strong solution to (5.5) in Ω with L in the non-divergence form
(5.1). Then, for every open set Ω1 ⊂⊂ Ω, there exists a positive constant c which does not
depend on u, such that

‖u‖Sq,µ(G,Ω) ≤ c
(‖f‖Lq,µ(G,Ω) + ‖u‖Lq,µ(G,Ω)

)
. (5.6)

Moreover, if 2q+µ > Q+2 then u is G-Hölder continuous with exponent α = min{1, q−1(2q+
µ−Q− 2)}, i.e.

|u(z)− u(ζ)| ≤ c (dG(z, ζ))α (‖f‖Lq,µ(G,Ω) + ‖u‖Lq,µ(G,Ω)

)
,

for every z, ζ ∈ Ω1. Finally, if β = q−1(q + µ−Q− 2) > 0, then

|∂xiu(z)− ∂xiu(ζ)| ≤ c (dG(z, ζ))β (‖f‖Lq,µ(G,Ω) + ‖u‖Lq,µ(G,Ω)

)
,

for every z, ζ ∈ Ω1, i = 1, . . . , p0.

We stress that the constant c in the provious inequalities depend on the “VMOG continuity
moduli” of the coefficients aij .

Inequality (5.6) in the case µ = 0 was first proved in [8]. The technique used in [8] and [43]
is inspired to the one first introduced by Chiarenza, Frasca and Longo [11] for classical elliptic
operators in non divergence form. The starting point is a representation formula which, in
the present context, takes the following form. Let u ∈ C∞

0 (RN+1) and i, j = 1, . . . , p0. Then

∂xixju(z) =− P. V.
∫

RN+1

Γij(z; ζ−1 ◦ z)
p0∑

h,k=1

(ahk(z)− ahk(ζ))∂xhxk
u(ζ)dζ

− Lu(z)
∫

‖ζ‖G=1

Γj(z; ζ)νj(ζ)dσ(ζ).

Here Γ(z; ·) denotes the fundamental solution with pole at z of the constant coefficients
Kolmogorov operator

Lz =
p0∑

i,j=1

aij(z)∂ξiξj
− 〈ξ, BD〉 − ∂t.

Moreover Γj = ∂ξjΓ, Γij = ∂ξiξjΓ and ν = (ν1, . . . , νN+1) is the outer normal to {‖ζ‖G = 1}.
Finally

P. V.
∫

RN+1

f = lim
ε→0

∫

‖ζ‖G≥ε

f

The key tools used in [8] and [43] are some deep continuity results for singular integrals, and
their commutators with VMOG functions, modelled on the Lie group and metric structures
described in Section 2.

The same methods and techniques, suitably adapted, were used in [34] and in [44] in order
to prove interior regularity results for weak solutions to the divergence form equation

Lu :=
p0∑

i,j=1

∂xi

(
aij(z)∂xj

)
+ Y u =

p0∑

i=1

∂xiFi(z) (5.7)
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with aij ∈VMOG and Fi ∈ Lq
loc(R

N+1). A weak solution to (5.7) in an open set Ω ⊆ RN+1

is a function u ∈ L2
loc(Ω) such that the weak derivatives ∂x1u, . . . , ∂xp0

u, Y u exist and belong
to L2

loc(Ω) and

∫

Ω




p0∑

i,j=1

aij∂xiu∂xjψ − (Y u)ψ


 dz =

∫

Ω

p0∑

i=1

Fi∂xiψdz,

for every ψ ∈ C∞
0 (Ω). The main results in [34] and [44] are summarized in the following

theorem.

Theorem 5.2 Let u be a weak solution to (5.7). Assume the matrix (aij) satisfies the pos-
itivity condition (4.2) and the weak continuity property (5.2). We also assume the matrix
Bsatisfies the above structural hypotheses. Then, for every open set Ω1 ⊂⊂ Ω, 1 < q < ∞,
0 ≤ µ < Q + 2, there exists a positive constant c = c(Ω1, Ω, L, q) such that

‖∂xju‖Lq,µ(G,Ω1) ≤ c

(
‖u‖Lq,µ(G,Ω) +

p0∑

i=1

‖Fi‖Lq(G,Ω)

)
,

for every j = 1, . . . , p0. Moreover, if p > Q + 2− µ, then

|u(z)− u(ζ)| ≤ c (dG(z, ζ))α

(
‖u‖Lq,µ(G,Ω) +

p0∑

i=1

‖Fi‖Lq(G,Ω)

)
, (5.8)

for every z, ζ ∈ Ω1. Here

α = 1− Q + 2− µ

q
.

We want to stress again that the constant c in (5.8) depends on the “VMOG moduli” of the
coefficients aij .

The above Hölder estimates for weak solutions to (5.7) have been used in [30] for studying
a boundary value problem for the non linear equation

p0∑

i,j=1

∂xi

(
aij(z, u)∂xj

)
+ Y u = 0. (5.9)

However, the dependence of the constant c in (5.8) on the regularity of the coefficients aij

forces quite restrictive hypotheses on the nonlinearity. In order to remove such restrictions,
regularity results for solutions to linear equations with merely measurable aij ’s are needed.
For instance, when studying existence problems for non linear Kolmogorov-Fokker-Planck
equations as in (3.3) and (3.5), pointwise properties of the weak solutions to (5.9) with
aij ∈ L∞loc could be crucial. A first result in such a direction have been very recently proved
by the second and the third author. In [38], they prove the local boundedness of the weak
solutions to (5.9) only assuming the uniform positivity condition (4.2) for the matrix (aij).
The main result in [38] is the following theorem.
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Theorem 5.3 Suppose
1
λ
|ξ|2 ≤

p0∑

i,j=1

aij(z)ξiξj ≤ λ|ξ|2

for every ξ = (ξ1, . . . , ξp0) ∈ Rp0 and for every z ∈ RN+1. Let u be a weak solution to

p0∑

i,j=1

∂xi

(
aij(z)∂xj

)
+ Y u = 0 (5.10)

in an open set Ω ⊆ RN+1. Then we have

sup
H%(z0)

|u| ≤ c


 1

(r − %)Q+2

∫

Hr(z0)

|u|p



1
p

,

for every p ≥ 1 and r, % > 0 such that r
2 ≤ % < r and Hr(z0) ⊆ Ω. Here Hr(z0) is the

G-cylinder defined in (4.7). The constant c only depends on p, λ and the matrix B.

This theorem is proved in [38] by using an iterative procedure analogous to the one introduced
by Moser in the classical elliptic and parabolic cases. As it is well known, the Moser technique
is based on a combination of Caccioppoli type estimates with the classical Sobolev inequality.
Now, the weak solutions to (5.10) satisfy a Caccioppoli type estimate. However, it only gives
L2

loc bound of the first order derivatives ∂xju, j = 1, . . . , p0 and does not give any information
on the others (N − p0) spatial derivatives. Thus, if p0 < N , this lack of information cannot
be restored by the usual Sobolev embedding theorem.

The key idea in [38] is to prove a Sobolev type inequality for non negative sub- and super-
solutions to (5.10), good enough to be successfully combined with the previous “weak” Cac-
cioppoli inequality. To be more specific, let us first recall the definition of weak sub- and
super-solution to (5.10). We say that a function u ∈ L2

loc(Ω), Ω open subset of RN+1, is a
weak sub-solution to (5.10) if the weak derivatives ∂x1u, . . . , ∂xp0

u, Y u exist, belong to L2
loc(Ω)

and ∫

Ω

−〈ADu, Dϕ〉+ ϕY u ≥ 0, ∀ϕ ∈ C∞
0 (Ω), ϕ ≥ 0.

If −u is a weak sub-solution, we say that u is a weak super-solution. Then, the following
Caccioppoli type estimate holds (cf. [38], Proposition 3.2)

Theorem 5.4 Let u be a non-negative weak sub-solution of (5.10) in Ω. Let %, r > 0,
r
2 ≤ % < r, and Hr ⊆ Ω. Then, there exists a constant c, only dependent on λ in (4.2) and
on the homogeneous dimension Q, such that

‖∂xju
p‖L2(H%) ≤

c
√

1 + ε

ε
‖up‖L2(Hr), where ε =

|2p− 1|
4p

, (5.11)

for every j = 1, . . . , p0 and p < 0 or p ≥ 1. The same inequality holds for non-negative weak
super-solutions and p ∈]0, 1/2[.
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The key Sobolev type inequality for weak sub- and super-solutions proved in [38] is the
following.

Theorem 5.5 Let u be a non-negative weak sub-solution to (5.10) and let r, % be as in the
previous Theorem 5.4. Then u ∈ L2κ

loc(H%), κ = 1 + 2
Q , and there exists a constant c, only

dependent on Q and λ, such that

‖u‖L2κ(H%) ≤
c

r − %


‖u‖L2(Hr) +

p0∑

j=1

‖∂xju‖L2(Br)


 . (5.12)

The same inequality holds for non-negative super-solutions.

Inequalities (5.11)-(5.12) allow to start up an iterative procedure like to the classical Moser’s
one and to prove Theorem 5.3.

6 Ultraparabolic equations with non linear total derivatives
terms

We end this survey by recalling some recent results concerning the Kolmogorov equation with
a non linear total derivative term

∆xu + h(u)∂yu− ∂tu = f(·, u), (x, y, t) ∈ Rp0 × R× R. (6.1)

As said before, this equation arises in combustion theory, see [18], and in mathematical
finance, see [2].

Due to the lack of diffusion in the y-direction, (6.1) has mixed parabolic and hyperbolic
features. Indeed, when h(u) = u, f ≡ 0 and the solution only depends on y, it becomes
the Burger’s equation. For this reason, Escobedo, Vazquez and Zuazua [18] consider the
Cauchy problem related to (6.1) in the framework of the conservation laws, and prove that,
under a suitable entropy condition, there exists a unique distributional solution which is not
necessarily a continuous function. On the other hand, Antonelli, Barucci and Mancino in [2]
find a (local in time) Hölder continuous viscosity solutions to that Cauchy problem.

The existence and regularity problem for the above weak solutions has been studied in
[14], [37], [39]. These results improve and generalize the preceding ones in [18] and [2]. In
[14] the following natural definition of classical solution to (6.1) is introduced:

We say that u is a classical solution to the equation in (6.1) if:
(i) ∂xixiu, i = 1, . . . , p0 exists and it is a continuous function;
(ii) the directional derivative

∂u

∂νz
(z), νz = (0, h(u(z)),−1),

exists at every point and it is a continuous function of z = (x, y, t);
(iii) equation (6.1) is satisfied at every point.
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The main idea in the study of the regularity of the solutions to (6.1) is a modification of
the classical freezing method. To be more specific, if h is a Lipschitz continuous function, we
consider

Lz̄ = ∆xu + (h(u(z̄)) + x1 − x̄1) ∂yu− ∂tu

which is a “good” approximation to the left hand side of (6.1). Note that, up to a straight-
forward change of coordinates, Lz̄ is the Kolmogorov operator (1.2) with N = p0 +1 and the
matrices A,B as in (3.7).

It has to be noticed that the rank condition (1.10) is satisfied. Then Lz̄ has a fundamental
solution which takes the explicit form (1.7)-(1.8). Starting with this remark and by using
analysis on Lie groups combined with standard techniques in degenerate parabolic problems,
in [39] the following existence and uniqueness theorem is proved:

Theorem 6.1 Let f, g and h be Lipschitz continuous in their domains. Then, there exists
T > 0 and a unique function u : RN×]0, T [−→ R, classical solution to

{
∆xu + h(u)∂yu− ∂tu = f(·, u) in RN×]0, T [,
u(·, 0) = g,

(6.2)

and such that

|u(x, y, t)− u(x′, y′, t)| ≤ c0(|x− x′|+ |y − y′|),
|u(x, y, t)− u(x, y, t′)| ≤ c0|t− t′| 12 (1 + |x|+ |y|),

for every (x, y, t), (x′, y′, t), (x, y, t′) ∈ Rp0 × R× R.

A weaker version of Theorem 6.1 was previously proved in [3] by some probabilistic
technique.

Further regularity properties of the solution found in [39] can be obtained under some
additional condition. We would like only mention the following optimal regularity result
which follows from Theorem 3.1 in [37].

Theorem 6.2 Let u be a classical solution to the equation (6.1) in an open set Ω ⊆ Rp0 ×
R×R. If f and h are C∞ functions on their domains, and b′(u)Dxu 6= 0 at any point of Ω,
where Dx = (∂x1 , . . . , ∂xp0

), then
u ∈ C∞(Ω).

This theorem is an extension of a previous result in [14] and it is proved by using a suitable
freezing method introduced by Citti [12] in a different context. Such a method is based on
the following remark. Let us define

Xj = ∂xj , j = 1, . . . , p0, and Z = h(u)∂y − ∂t. (6.3)

Then, if
b′(u)Dxu 6= 0, at any point of Ω,

the condition

dim (span{X1, . . . , Xp0 , Z, [X1, Z], . . . , [Xp0 , Z]}) = p0 + 2 (6.4)
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holds everywhere in Ω. In (6.4), [Xj , Z] denotes the Lie bracket of Xj and Z. Condition (6.4),
which is a kind of Hörmander rank condition of step two, in [37] and [14] is the starting point
of a bootstrap argument in suitable spaces of Hölder continuous functions. These spaces are
modeled on the vector fields X1, . . . , Xp0 and Z in (6.3), and depend on the function u. We
directly refer to [37] and [14] for more details on such a bootstrap argument which has been
used in [12] and [13] to prove the C∞ smoothness of solutions to a Levi curvature equation.
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