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Abstract

We prove Gaussian estimates from above of the fundamental solutions to a class of ultraparabolic
equations. These estimates are independent of the modulus of continuity of the coefficients and gen-
eralize the classical upper bounds by Aronson for uniformly parabolic equations.
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1. Introduction

We consider the second-order partial differential equation in divergence form

m N
Lu(x,t) = Z A, (@i (x, DBy u(x, 1)) + Z bijxid;u(x, 1) — du(x, 1) =0,
i,j=1 i,j=1
(1.2)
where(x, t) = (x1, ..., xy,t) = z denotes the point RN+l and 1< m < N.

In this paper, under some structural conditions which ensure the existence of a funda-
mental solution” of (1.1), we aim to prove a global upper bound foindependent of the
regularity of the coefficients. This bound is given in terms of the fundamental solution of
the “constant coefficients” operator

Li=A,+Y, 1.2
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whereA,, is the Laplace operator iR™ andY denotes the first-order part in (1.1),

N
Y= Z b,;,'xiaxj — 0. (1.3)
ij=1

This justifies the word “Gaussian” in the title. Indeed, we recall that an explicit fundamental
solution of Gaussian type for (1.2) has been constructed by Hérmander in [6] assuming the
classical rank condition that, in our setting, reads

rankLig(d,,, ..., 0y,.Y)(z) =N +1, VzeRM*

where Lig0d,,, ..., dy,, Y) denotes the Lie algebra generated by the first-order differential
operatorsy,, ..., dy,,, Y. If we set

In O
A1=<6” O) and B = (bij)i j=1,..N

wherel, is the identity matrix inR™ and we define

t
C(r) = / exp(—sBT)A1exp(—sB)ds, (1.4)
0

it is not difficult to see that the Hormander’s condition is satisfied if and ordyrif > O for
anyr > 0 (cf. Proposition A.1 in [10], see also [8]). In that case, the fundamental solution
I'1 of L1, with pole at the origin, is defined as follows:

(4m)=N/2 1,01 _ ;
Fl(x,t)z{«/me)(p(_“(c ()x,x) — ttr(B)), if >0,

0, if r <O.

In the case of Holder continuous coefficients, Eq. (1.1) has been studied by many au-
thors assuming the following basic conditions:

(H1) a;; =aji, 1<, j <m, and there exists a positive constarguch that

m

AHEP S Y aij)EiE; < AE (1.5)

ij=1

for everyz e RV*1 andé € R”. The matrixB is constant;
(H2) The “constant coefficients” operatby in (1.2) verifies the Hormander’s rank con-

dition and it is homogeneous of degree two with respect to some dilations group in
RN+1_
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We remark that (H2) is a requirement only on the coefficiégts of (1.1). Indeed, by
Propositions 2.1 and 2.2 of [10], hypothesis (H2) is equivalent to assume that for some
basis orR”, the matrixB has the form

O BB O .- O
0O 0 B --- O
S (16)
0 0 0 - B,
o o o .- o0

whereBy is anm_1 x my matrix of rankmy, k=1,2, ..., g, with
q
m=mo>=my>---2mg>1 and kazN,
k=0

Assuming (H1), (H2), and the Holder continuity of the coefficieniss, the Levi pa-
rametrix method has been used to prove the existence of a fundamental splutighe
papers by II'in [7], Weber [26], Sonin [25], Polidoro [21], Eidelman et al. [4]. In [21] the
following upper bound has been given:

[(x,t,6,7) <Cl(x, 1,8, 1), Vx,6§eRN 1>, (1.7)

whererl, (., -, &, t) denotes the fundamental solution, with polééatr), of the “constant
coefficients” operator

Ly=uln+Y, (1.8)

and p is any positive number greater tharappearing in (H1). The consta@tin (1.7)
depends upon the Holder norms of the coefficients and.on

Other known results concerning the casecohtinuous coefficientare the Harnack
inequality and mean value formulas for the solutions to (1.1) by Polidoro [21], a lower
bound for the fundamental solution by Polidoro [22], Schauder type estimates by Satyro
[24], Manfredini [15], Lunardi [14] and Pascucci [19], a theory for the Dirichlet prob-
lem for linear equations by Manfredini [15] and for quasilinear equations Lanconelli and
Lascialfari [9], Lascialfari and Morbidelli [11].

In this note we prove an upper bound analogous to (1.7), with the corStadiepen-
dent of the moduli of continuity of the coefficients. It is well known that, in the case of
classical parabolic operators in divergence foumiformglobal upper (and lower) bounds
for the fundamental solution have been proved by Nash [18], Aronson [1], and Davies [2].
The proofs of the lower bound by Aronson and Davies rely on the Moser’s parabolic Har-
nack inequality [16,17]. However, as Fabes and Stroock emphasized in [5], the upper bound
is an important tool for using the ideas of Nash in order to directly obtain the lower bound
and then to derive the Harnack inequality and the local Holder continuity of weak solutions.
The main motivation of our work is to follow the same procedure and prove analogous re-
sults for (1.1).

The interest in the study of Eq. (1.1) is motivated by the kinetic theory and by the theory
of stochastic processes. For instance, (1.1) contains the family of kinetic equations of the
form

uf—(, Vi) f=0(f), t=20 xeR" veR", (1.9
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where f is a density function an@ () is a quadratic operator which describes some kind
of collisions. Meaningful examples are the linear Fokker—Planck operator (cf. [3,23])

Q(f) = duju, f-

j=1
the Boltzmann—Landau operator (cf. [12,13])

m

Q(f) =Y 3y (aij . £)du;),

i,j=1

where the coefficients;; depend on the unknown function through some integral expres-
sions.
Our main result is the following

Theorem 1.1. Under hypothesdg#i1l) and (H2), there exist two positive constartfsand,
only dependent on in (1.5)and onB, such that

[(x,1,6,7)<Cl(x,t,6,1), Vx,6eRY r>1.

Here I',, is the fundamental solution of the operator(in8).

We remark that if (1.1) is an uniformly parabolic equation (ir2.= N and B = 0),
then (H2) is clearly satisfied. Indeed, (1.2) simply becomes the heat operator which is
hypoelliptic and homogeneous with respect to the parabolic dilaians ) = (rx, r?).

Then our result recovers Aronson’s upper bound proved in [1].

This note is organized as follows. In Section 2 we set the notations and we describe the
natural geometry underlying operatbr which is determined by a suitable homogeneous
Lie group structure oRV+1, In Section 3 we recall the main results brihat are needed
in the sequel and we prove a Nash type upper bound. Section 4 is devoted to the proof of
Theorem 1.1.

2. The geometric framework

In this section we set the notations and recall some known facts about Eq. (1.1).

We denote by = (d,,, ..., dxy), (-, -), respectively, the gradient and the inner product
in RN and we recall notation (1.3). For greater convenience, we rewrite opéraic.1)
in the compact form

L =div(AV) +7, 2.1)

whereA = (a;;)1<i, j<n iIStheN x N matrix witha;; =0if i > m or j > m.
The constant coefficients operatby, in (1.8) has the remarkable property of being
invariant with respect to a Lie product &V *1. More precisely, we let

E(s) =exp(—sBT), seR, (2.2)
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and we denote by, ¢ € RV*1, the left translatiort, (z) = ¢ o z in the group law
Do E ) =(E+E@x,t+1), (0, 1)eRV (2.3)
then we have
Ly(uoly)=(Lyu)ol;.

Let us explicitly note that the Lie product™ does not depend on > 0.
If L satisfies hypothesis (H2), it is not restrictive to assume that the mathas the
form (1.6). Then the dilations associatedtp are given by

8- (x,t) = (D(r)x,r%), r>0, (x,r) e RN (2.4)
where
D(r) = diag(r Ing, Iy, ..., r? ) (2.5)

and I,, denotes then; x my identity matrix. In the sequel we shall need the following
simple identity:

r’D(r)B = BD(r), Vr>0. (2.6)
By reader’s convenience, we write more explicitly the second assertion in hypothesis (H2):
Lﬂ(uoér)zrz(LMu)oér, Vr,u > 0. (2.7)

Remark 2.1. A transformation of the form
£+ 2008:(¢), r>0, zge RVFL (2.8)

preserves the class of differential equations considered. More preciselys i weak
solution of L then the function

(&) =u(z008,(£))
is a solution ofL ; whereA(z) = A(z0 0 8,-(¢)). Note thatL ; satisfies hypothesis (H1)
and (H2) with the same constanbf L and it has the same first-order pért

We next give the explicit expression of the fundamental solufiprof L, with pole at
the origin. By using notation (1.4) we have

(4rp)~N/? 1 el .
a1 = mexp( a7 (C (Hx,x)), ifr>0,

0, if r <O.
In view of the invariance properties éf,, it is not difficult to show that
Fu(z,0) =T o) =r 2, (8, (¢ o2) (2.9)
for everyz € RV*1\ {0}, r, u > O, where
Q=m+3m1+---+ (29 +Dmy. (2.10)

The natural numbeQ + 2 is usually called thévomogeneous dimension &f'*+1 with
respect to(s,),-o. This denomination is proper since the Jacohldnequals 0+2,

We next show that any Gaussian function which is homogeneous with respect to the
dilation group(s,),~0 can be bounded by a suitable fundamental solufipn
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Remark 2.2. A simple consequence of tl{,),..o-invariance off, is the following iden-
tity (see Eq. (1.22) in [10]):
C(1)=D1CA)DW1), Vi>0.

Then, since (1) is a strictly positive symmetric matrix, we find that for every positive
there exist two positive constar@sand ., only dependent ok and B, such that

e o)) e en(-fe ()l

< CF;,L(xa t)
forany (x,r) e RN+1,

We finally introduce a norm which is homogeneous of degree one with respect to
(6)r>0- Letas, ..., ay be the positive integers such that

D(r) = diagr®, ..., rov) (2.11)

with D(-) defined in (2.5). We sdlz|| = ¢ if z # 0 andp is the unique positive solution to
the equation

2 2 2
2_ X ) N
‘81/Q(Z)‘ - QZO(]_ +97++ QZDtN =1

Itis clear that|z|| = 1 if and only if |z| = 1, moreover

l8-@ | =rlzl, r>0, zeRVFL

3. Some known results

In this section we recall the main known results concerning the opdtataith variable
coefficients, that are needed in the sequel. We also prove an upper bounadfadogous
to the one by Nash [18].

The first result, proved in [21], concerns the case of Holder continuous coefficients.

Theorem 3.1. Let L be as in(2.1) verifying hypothese@H1), (H2), and assume that the
matrix A has Holder continuous entries with respect to the homogeneous|hgfnThen
there exists a fundamental solutidn for L, which is a function defined ofRN*1 x
RN\ {(z, 2): z € R¥N*1} which satisfies the following conditions

(i) Forfixeds e RN+ (., ¢) is a solution to(2.1)in RV+1\ {¢};
(i) For every continuous functiopin RV, if x e RV then

lim / P 1,8 D) dE = p(x).

t—>tt
RN



402 A. Pascucci, S. Polidoro / J. Math. Anal. Appl. 282 (2003) 396—409

MoreoverI” has the following properties

/F(x,t,“;‘,t)d“;‘:l, t>T1, (3.2)

RN

F(x,t,é,t):/F(x,t,y,s)F(y,s,E,r)dy, T<s<t. (3.2
RN

The function"* (¢, z) = I'(z, ¢) is the fundamental solution to the adjoint operatof
of L, defined by

L* =div(AV) — Y,

and it satisfies the dual statements(df (ii), (3.1), and(3.2).
The second result was proved in [20] and it is& bound for the solutions tau = 0.
For the next statement, we have to introduce a family of cylinders defined in terms of the

Lie product (2.3) and the dilations (2.4) &V ** naturally associated th. Consider the
Euclidean cylinder

Ri={(,neRY xR x| <1, |t| <1}.

For everyzo = (xo, f10) € R¥+1 andr > 0, we set

Rr(z0) =200 (8:(RD)) = {z e RV | 2 =200 6,(¢). ¢ € Ry} (3-3)
and

R, (z0) = Rr(z0) N {t < t0}. (3.4)
We recall that aveak solutiorof (1.1) is a function such thais, dy,u, ..., dy,u, Yu € Lﬁ)c
and

/—(AVu,Vgo)—i—goYu:O, Yo e C3°. (3.5)

In this note we only need to consider classical solutions which are, obviously, solutions
also in the weak sense.

Theorem 3.2. Let u be a weak solution of1.1) in a domains2. Letzg € £2 andr, o,
0<r/2< o <r, besuchthaR,(z0) C 2. Then there exists a positive constghwhich
depends only ok and on the matrix3, such that

c 1/p
sup Jul < (W / |u|p> ., Vp=1l (3.6)

R (z0) R (z0)

As a straightforward application of Theorem 3.2, we get the following
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Theorem 3.3 (Nash upper bound)l.et I be a fundamental solution of the operatbr
satisfying the hypothes@d41) and(H2). Then there exists a positive constéhdependent
only oni and B, such that

c

m, VX,E ERN, tr>r. (37)

I'(x,t,§,71)<

Proof. We simply rely on Theorem 3.2 and on (3.1) of Theorem 3.1. Indeed,

I'(x,t,§,71)< sup I'(,-&,1) (byTheorem3.2)
R ji=/22)

C
< (I_-QW // F(.X/, t/,é,‘r)dx/dt/
R\/,,—T(Z)

C
< (1 —7)(0+2/2 // re', v & vydx"dr

RN x Jt,742(t—1)[
_ 2C(t —1)
Tt —1)(Q+2/2"

This completes the proof.O

Corollary 3.4. There exists a positive constatit dependent only oh and B, such that

/ r?(x,t,6,1)dé < ﬁ, / M2, 6,1)dx <

RN RN

C
(t—1)2/2

foranyx,£ eRY,t > 1.

4. The Aronson type bound

In this section we adapt the Aronson’s method to prove Theorem 1.1. In the sequel,
the letterC denotes a positive constant, dependent only @md on the matrix3, which
is not always the same. Then, to avoid confusion, we use the symbpéspectively<)
instead of= (respectivelyg), to warn the reader of the change of valu&€ah subsequent
expressions.

We first give some preliminary results.

Theorem 4.1. Letug be anL2(R") function such thato(x) = Ofor |x —y| < o, wherey €
RY ando > 0 are fixed. Suppose thatis a bounded solution t(l.1)in RN x 1, n + 02]
with initial valueu (x, n) = uo(x). Then, for any which satisfie® < s — n < min{1, o2},
we have

2

lu((v.m o (0,5 —m)| < C(s — )~ exp| — lluoll 2y (4.1)
)

Cls—n
where the constant > 0 depends only upoh and B.
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Proof. We first prove the thesis in the cage ) = (0, 0).
Proceeding as in the proof of Theorem 2 in paper [1] by Aronson, our first goal is to

show that

/ez’m2|,:, dx —2 // e u?(2(AV,uh, Viuh) — Yh) dx dt

RN RN x10,7[

< /eZhuzl,:odx, 4.2)
RN

where the functiork is defined as follows (recall notation (2.11)):

N xZ
h(x, 1) = —|D((ke@) )x[P ==Y —L_ 0<r<s,
]X::l(kfp(l)) i

ande(t) = 2s —t. To prove (4.2), we consider, fat > 2, a functionyg € C5° RV, [0,1))
such thatygr(x) =1 for |x| < R — 1, yr(x) =0 for |x| > R, and|Vyg| is bounded by
a constant independent &. Then we multiply both sides of (1.1) byre?u and we
integrate oveR”" x 10, 7[, 0 < t < 5. After some standard computations, we get

/ y,%eZhuzbzf dx —2 // y,%eZhuz(Z(Ath, Vih) — Yh) dxdt

RN RN x10,7[
< / y,%eZhuzl,:odx + // eZhu2(4A|Vn1yR|2 + ‘Yy,% )dx dt.
RN RN x10,7[

We next letR go to infinity in the above equation. Sineeis bounded an@?-1) <
e~I¥2/(2k) the last integral tends to zero and we get (4.2).
We now claim that, by a suitable choiceiof 0 only dependent ok and B, we have

2(AVyuh,Viuh) —Yh <0, inRYx]10,s]. (4.3)

Indeed, sincei1 =---=a,,, =1 and

By, h(x, 1) = ji=1...m,

_
ko(t)’
we have

(AVy,h, Viuh) < e i xfz' < . |h(x, 1)
k] X X .x, .
T T ke S ko) ko)

On the other hand,

—Yh(x, 1) =—(x, BYA(x, D)) + dh(x, 1) = 2[x, BD((kp()) " *)x) + d;h(x, 1).
By (2.6), we have

(v, BD((kg(0) )x) (D((kp(0)*)x. BD((ke ) )x).

" ko)
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then

N2

2 -1/2 1/2 J
—Yh(x,1) = ——(D((ke(®)) " )x, BD((ke(®)) " )x)—0; ) —1—
k(1) ; (kg (1))

1 1/2 x5
< (2o —kZ—(W)a,)

< |h(x, 1)l
ko(t)
Consequently, we get

(21IB|| — k).

h(x,t
QA b, Vyhy — Yh < XD
ke(t)

and therefore (4.3) obviously follows with= k (A, B).
From (4.3) and (4.2), we derive the inequality

(81 +2||B|| — k),

max / 2D 2(x ydx < max/ 20425 1) dx
te10,s[ 10,s[
ID(2//5)x|<1 RN
< / 2002y dx. (4.4)
[x|Zo

As a consequence, we obtain the followinéC estimate which is a weak version of
(4.2):

Co?

2 1/(2k) 2

max , 1) dx < expl ——— . 4.5

nax / u(x,fdx <e p( - )nuoan(RN) (4.5)
ID(2/+/5)x|<1

To prove (4.5) we observe that,|iD(2/./s)x| <1, then

o ) Ao(2 o 2)

for everyr €10, s]. On the other hand, ifc| > o, we have

2
1
<= 4.6
o (4.6)

2

1
—2h(x,0)=2‘D< )x
' 2ks
(since, by our assumption < 1, there exists a consta@it= C (4, B) > 0 such that)
C 2 2
®  Ccof (4.7)
ks ks

Plugging (4.6) and (4.7) in (4.4), we easily obtain (4.5). We next rely on Theorem 3.2
in order to get the desired estimate (4.1):
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2 C
‘”(075)| < sup |M|Z<W // uz(xyf)dde

R~ (O,s)
s/4 -
i/ R 5(0.9)

C N
:W/ / u’(x,1)dxdt (by (4.5))

3s/41D(2//5)xI<1
2

C o
< _ 2
~ SQ/2 eXp< CS)HMO”LZ(RN),

where the constartf = C (A, B). This yields (4.1) in the casg, n) = (0, 0).
For the general case, fixedandug as in the statement ard, ), we set

v, ) =u((y,mo(x,0), volx)=uolx+y), xeRY r>0.

We observe thatg(x) = 0 for [x — y| < o. Moreover, by Remark 2.1, il = A o Liy,m)»
we have

L;v=0, and wv(,0)=vo.
Thus, as in the preceding case, we get

C o?
‘M((ya 77) © (O,S - 77))‘ = ‘U(O’S - T})’ g (S — 77)Q/4 exp(_c(s — n))HUOHLZ(RN)

and this yields the thesis.O

Theorem 4.1 has the following dual version. The proof follows exactly the same lines
and, for this reason, will be omitted.

Theorem 4.2. Letug, y, ando be as in the previous statement. Supposeittist bounded
solution to the adjoint operatok* in RY x |n — o2, n] with final valueu (x, ) = ug(x).
Then, for any which satisfie® < n — s < min{1, o2}, we have

2

_ o
lu((y,m) 0 (0,5 —m)| < C(y—s5)~2/* eXp(—m) luoll 2wy, (4.8)

where the constant > 0 depends only upoh and B.
As a simple consequence of the above Theorems 4.1 and 4.2 we obtain the following

Lemma4.3.1f ¢ >0and0 < s — n < min{1, 62}, then
2

C o
r2(x,s,&n)dé < exp| — o xeRY (49
(x,s,8,m)d§ (s — 1)2/2 p( C(s—n)) *e )
[E—E(m—s)x|>0

for some constard = C (%, B) > 0. Analogously, iD < n — s < min{1, o2}, we have
C o2
r?E n,x,s)dé < exp — , xeRM. (4.10
€129 48 < G 5ore p( C(n—S)> R (610
|E—E(m—s)x| =0
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Proof. We only give the proof of (4.9), since the one of (4.10) is analogous. Setting
(v,n) = (x,5) 0 (0,n —s), estimate (4.9) reads

2 _ _ ¢ _ o?
((y.mo(O,s n),é,n)déé(s 77)Q/zexp( G 77))’ (4.11)
E—y|Z0

We consider the function

u(x' 1) = / P&t &) ((v.m) 0 (0.5 — ). &, ) dE,
[E=y|=0o

which is a non-negative solution to (1.1) in the &t 5}, with initial conditionu(x’, n)
=0for |x' —y| <o andu(x’,n) = I'((y,n) o (0,s —n),x’,n) for |x' — y| > o. By
choosing(x’, 1) = (v, n) o (0, s — ) and by Theorem 4.1, we obtain

r?((y.mo (0.5 —n).& n)dé =u((y.n) o (0,5 — 1))
E=y|=0o

C o? ) 1/2
g(s—77)Q/4exp(_c(s_,]))(/AF ((y’”)o(o’s—n),é,n)d«?) )

and we get the thesis by Corollary 3.4

We are now in position to give the

Proof of Theorem 1.1. We start by proving that
I(x,1) < Ce /€ (4.12)

for everyx € RN with C = C(x, B) > 0. As noticed in Remark 2.2, it follows that there
exist two positive constar andu such that

I'(x,1)<Crl,(x,1), VxeRN. (4.13)
"

Here, I, denotes the fundamental solutiontg in (1.8) with pole at the origin. We first
prove (4.12), then we will conclude the proof of Theorem 1.1 by using the invariance of
L, andrl, with respect to the dilations and the translations groups.
Fixedx € RV, we set
S 1
21E1/2)|’

whereE (-) is defined in (2.2) and we assume that 1. By the reproduction property (3.2)
we have

F(x,l):/]"(x,l,é, 1/2)I'(£,1/2,0,0)d¢.
RN
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We split the integral oveR” into an integral/; over|é — E(—1/2)x| > o and an integral
Jo over|§ — E(—1/2)x| < o. By the Schwartz inequality, we have
(J1)? < f r(x,1,¢,1/2) dk f r?&,1/2,0,0)d¢
E—E(=1/2)x|>0 |E—E(—-1/2)x|>0

(using (4.9) of Lemma 4.3 to estimate the first integral on the right and Corollary 3.4 to
estimate the second one)

< Ce /€ < ceP/C
Aiming to use (4.10) of Lemma 4.3 to estimatg we first remark that
|E—E(-1/2x|<0 = |§|>o0. (4.14)
Indeed, we have
Ix|=|E(1/2)E(-1/2)x| < |E(1/2)||E(-1/2)x
so that

)

_ 20
I1E@/2 ’
and this proves (4.14). Thuk is dominated by the integral ovéf| > o which can be
estimated with the same argument used above, by means of (4.10) of Lemma 4.3 and by
Corollary 3.4. Therefore we have completed the proof of the bourd iofthe casdx| >
2||E(1/2)]. On the other hand, ifc| < 2||E(1/2)|, then (4.12) is a direct consequence of
Theorem 3.3.

The above argument proves (4.13). We next use (4.13) to deduce that

I(x,t)<Cl(x,1), VYxeRY r>0. (4.15)

|E(=1/2)x| >

Set
r'’=r2ros,, r>0.

By Remark 2.1]"") is a fundamental solution of the operator
div(AVV)+Y, AV =403,

which satisfies (H1) with the same constantTherefore we have, by (4.13) and (2.9),
[, 1) =1=22r¥D(pa=Y?)x, 1) < 12721, (Dt Y?)x, 1) = CTy,(x, 1),

and then (4.15) follows.
We next conclude the proof of the theorem by using the invariance with respect to the
translations. Let = (x, 1), ¢ = (£, 7) € RVt with r > 7. We set

F(Z.0)=T(0Z,¢00).

ThenI(-, 7) is a fundamental solution of the operator
div(AV) +Y, A=Aol,,

which satisfies (H1) with the same constantherefore, by (4.15) and (2.9) we have
M@ )=r@¢toz,00<Cru(roz,0=Cru(. ),

and this completes the proof of Theorem 1.13
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