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ON THE HARNACK INEQUALITY FOR A CLASS
OF HYPOELLIPTIC EVOLUTION EQUATIONS

ANDREA PASCUCCI AND SERGIO POLIDORO

ABSTRACT. We give a direct proof of the Harnack inequality for a class of
degenerate evolution operators which contains the linearized prototypes of the
Kolmogorov and Fokker-Planck operators. We also improve the known results
in that we find explicitly the optimal constant of the inequality.

1. INTRODUCTION
We consider the second order partial differential operator
(1.1) L = div(AD) + (z, BD) — 0y, z=(z,t) € RNV xR,

where D and div respectively denote the gradient and the divergence in RY. We
assume that A = (a;;) and B = (b;;) are N x N real constant matrices in the form

0O B, 0 --- 0
0 0 By --- 0
(1.2) A—<%° 8) and  B=|: o1,
O 0 0 - B,
o o o - 0

where Ag is a mg X mg symmetric and strictly positive definite matrix, and By, is
a mp_1 X my matrix of rank my, k=1,2,...,r, with

T
mo>mq > >my > 1 and ka:N.
k=0

We recall that (L1l) arises in the description of wide classes of stochastic processes
and kinetic models (we refer to the classical monographies [4], [7] and [5]) and in
mathematical finance (see [2] and [17]).

Before stating our results, it is worthwhile to make some few comments on the
structural condition ([2)). We recall that, by Propositions 2.1 and 2.2 of [14],
hypothesis (I.2) implies that the operator L verifies the classical Hormander’s rank
condition [10]:

(1.3) rank Lie (0;,,...,0 Y) (z,t) =N +1, V(z,t) € RVHL

) -',C',no)
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where Lie((‘)xl, e ,&EMO,Y) denotes the Lie algebra generated by the first order
differential operators 0y, ,...,0;,, and Y = (x, BD) — 0, which is the first order
part of L. Hence L is a hypoelliptic operator.

Moreover, ([2) implies that L is homogeneous with respect to the dilations

group on RV defined by

(1.4) 6y = diag(Apmg, N2 Iy s -, A7), A >0,
where I,,,, is the my x my identity matrix; that is, we have

(1.5) L(u(0xw, \2t)) = N2 (Lu)(drzw, \2t)

for any smooth function u, (x,t) € R¥*1 and A > 0. We recall that (TZ) is also a
necessary condition: indeed, any hypoelliptic and homogeneous operator L of the
form () verifies condition (IC2) for a suitable basis of RN+ (see [14]).

In view of expression ([.4) of the dilations 4y, it is convenient to denote the
components of z € RY by

(1.6) (2O, W M),
where z(¥) € R™* for k = 0,...,r. Moreover, the natural number
Q=mo+3my+ -+ 2r+1)m,

is usually called the homogeneous dimension of RN with respect to dy.

The following Harnack inequality for positive solutions w of ([I]) has been proved
by Kupcov [13], Garofalo and Lanconelli [§] and Lanconelli and one of us [I4], by
using some mean value formulas:

(1.7) u(za,t2) > c u(z1,t1),

for (z1,t1), (v2,t2) € RNVF! with ¢; < to and for some positive ¢ = c(z1, 72,11, t2).
In this paper we aim to give a short and intuitive proof of the Harnack inequality
by using an original variational argument due to Li and Yau [15]. In Corollary [2]
we also refine the known results in that we find explicitly the optimal constant in
(CA). Our proof is based on the following gradient estimate for positive solutions
to L in a strip RV x]0, T[, T > 0 (cf. Proposition E2):

Q (ADu, Du)
(1.8) Yu+ 5 Y > " .
A Harnack inequality can be directly derived from estimate (LE)). Indeed, let
W = W (x,t) denote a vector field in RY; by adding 2(ADu, W) + u(AW, W) to
both side of (L)), we deduce

(1.9) —Yu+ 2%“ + 2(ADu, W) + u(AW, W) > 0.
Now we make a suitable choice of W. Fix z; = (z;,t;) € RV x]0,T], j = 1,2, with
t1 < t, and let us call any integral curve of the vector fields 0y,,...,0;,, ,—Y
connecting z1 to zo an L-admissible path. More precisely, we set
(1.10)
mo
Az = {ve Cw([tl’tQ];RN+l) | 7= 2718% -Y(v), W(tj) =2z, L= 1,2}
i=1

as the class of the L-admissible paths. We remark that A, ., is not empty by
Hormander’s rank condition and Chow’s Theorem [6] (see also Nagel, Stein and
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Wainger [16] for a general theory of metrics associated to vector fields). Fix v €
A, »,, and put

Ag '

W = 5

in (L9) (recall notation (I6])) to obtain

d

Do)+ 2

1, 4. . .
L) + )14 A0) 20, in [t )

Dividing by u(7) and integrating in the variable ¢ over the interval [¢1, t2], we finally
prove the first assertion of the following

Theorem 1.1 (Harnack inequality). Let u be positive solution to Lu = 0 in
RN x]0,T[. Let 1,20 € RN and 0 < t; <ty <T. Then

S8

2

(1.11) u(xz,t2) > (i—l) u(z1,t1)exp (—iinﬁﬁ(v)) ;

where

to

(112) B(y) = / (A5 (5),4O(s))ds, 7y € Asy -y,

t1

and the infimum in (11)) is taken over all L-admissible paths connecting (x1,t1)
to (xe,ta2). Moreover, there exists a unique polynomial function v € A, ,, which is
the minimum of ®.

The argument used above is quite general and applies to many different prob-
lems: parabolic equations on manifolds (Li and Yau [15]), porous medium and
p-diffusion equations (Auchmuty and Bao [1]), and sum of squares of vector fields
(Cao and Yau [3]). The new difficulty in our problem is due to the fact that ® is a
strongly degenerate functional since it involves only the first m components of ~.
This is clearly related to the degeneracy of the differential equation (II)). On the
other hand the Hérmander condition ensures that ® has the usual coercivity and
compactness properties on the family of the L-admissible curves. The last assertion
and the existence of the minimum of ¢ will be proved in Section 2.

Although the exponent in (LIT]) has an implicit expression, it can be written
explicitly in the most interesting cases. For instance, in [1] it is proved that

N
t1\? 1 |2
u(@s, t2) > (t_1> u(w1,t1) exp (——M) :
2

4 to—1

for every non-negative solution to the heat equation. This is a sharp version of the
classical parabolic Harnack inequality by Pini [I8] and Hadamard [9].

In Section 3, we extend the above inequality to the case of a Lie algebra of step
two (considered by Garofalo and Lanconelli in [§]) and three (considered by Sonin
[20] and Tvasishen and Voznyak [I1]) and we prove the following corollary.
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Corollary 1.2. Let u be a positive solution to Lu = 0, where L is as in ([L1I)-(T2)
with r = 1,2. Then

s8]

(1.13) (s, ta) > (%)

; u(z1,t1) exp (—i(Cl(tg —t1)(x2 — E(t2 — t1)z1),

(332 — E(f,g — t1)1‘1)>>
holds, where C and E are defined in equation ([LID) below.
We emphasize that estimate (I3)) is sharp since, in the general case r > 0, the

fundamental solution of L in (| is

Co

(1.14) F(ZQ,Zl) = Q exp (_i<cl(f/2 — tl)(xg — E(tg — f,l)l‘l),

(t2 —t1)2
(1‘2 — E(tg — ﬁ1)$1)>) s

for to > 1, and T'(z2,21) = 0 for t3 < ¢;. In (LI4)), we denote
(1.15) E(t) = exp(—tBT) and C(t /E YAET (s
0

where BT is the transpose matrix of B and ¢y = (47)~ 2 (det C(1))~ 2. Note that
Hormander’s condition ensures that C(t) > 0 for any ¢ > 0 (cf. Proposition A.1 in
[14], see also [12]).

The paper is organized as follows. In Sections 2 and 3, we prove respectively
Theorem [T and Corollary[2l In Section 4, we prove the gradient estimate (L])
for positive solutions to L.

2. PROOF oF THEOREM [[L1]

The purpose of this section is to complete the proof of Theorem [Tl by showing
that the functional ® in (I2) has a unique minimum which is a polynomial L-
admissible path. To this end, we characterize the minima of ® as critical points:

we set
to

(21) a0 = [ (4515 (6),i0 () ds,
t1
and we say that + is a critical point of ® in A, ., if
(2.2) d®(y,n) =0 for every 1€ Agp.
We claim: v is a minimum of ® in A, ., if and only if it is a critical point of ®.
The “only if” part of the claim is standard, while the “if” part is a consequence

of the fact that ® is quadratic. Indeed, let v be a critical point of ® in A, .,.
Then, for every ¥ € A, .,, we have

() = (y) +2d® (v, 7 =) + 2(v = 7) = 2(v),
since (y — ) € Ago and ®(y —4) > 0. This proves the claim.

In the sequel we assume for simplicity, since it is not restrictive, that Ay = I, -
Aiming to further simplify the proof, we recall that the operator L in (LI) has
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the remarkable property of being invariant with respect to a Lie product in RN+
More precisely, we denote by £¢, ¢ € RN*!, the left translation ¢¢(z) = ( o z in the
group law

(@,t)0 (&,7) = (€ + BNz, t+71),  (2,1),(§,7) e RVFY
then we have
L(uol:)=(Lu)ole.
Hence it is sufficient to put z = 21_1 oz and prove Theorem [[T]in the case of z; =0
and zo = z. We also recall that the explicit expression of z is
(2.3) z = (l‘,t) = (xg — E(tg — tl)l‘l,tg — tl).

We next introduce some notations in order to rewrite d® in the more convenient
form (211]); then we characterize the critical points in terms of differential equa-
tions. Lastly, we show that the Euler-Lagrange equation has a unique polynomial
solution in A », which is the minimum of ®.

We remark that an L-admissible path  is a solution to the system

(2.4) 4B = _BTy(k=1), k=1,...,r
Thus, if we set My = I,,,, and
(2.5) My, = (0Bl ---BY,  k=1,...,n
we have

d* 0
(2.6) ﬁ’y( ) = My, k=0,...,r

Next, we denote Vy = Ker(M;) and by V,. the orthogonal space of the kernel of M,
in R™o  that is,
V. = (Ker(M,))™*.

Moreover, we define inductively the linear subspace Vi of R™° by the following
formula:

Vk@Vk+1@"'€BVr:(Ker(Mk))J', k=1,...,r

Then R™0 is the direct sum of Vj, for k =0,...,r, and any L-admissible path ~ has
the following unique representation

(2.7) A0 = 400 Ly O OR) ey k=0,

We remark that, since the matrix M} has maximum rank my, then dimV, = m,
and

(2.8) dim Vi, = my — mp1, k=0,...,7r—1.
Moreover, by formula (2:6)), we have

d -
S W =M YA, k=0
h=k

If we denote by M, ' the (unique) right inverse of Mj, such that M, '(R™*) =
(Ker(Mjp,))*, then from (2:9) we infer that

(2.9)

T

_y d”
(2.10) A (0F) — M, 1ﬁ'y(k) — Z A0, k=0,...,m
h=k+1
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Therefore, it is clear that we can rewrite the functional d® as follows:

L d
2.11) dd(v,n Z/ ’fldsk+17(k) Z 500 (4

h=k+1

dit
~1 ®) (s 7(Oh) (s
M35 .y EZ "
h=k+1

Next, we prove existence and uniqueness of the critical point of ® in Ay .. We
need the following

Lemma 2.1. Let v € Ay, and n € Apo be such that 77(0)(8) € Vi for some
k=0,...,7 and for any s € [0,t]. Then

dk+2 -
(2.12) dd(v,n) = (—1)’““/ (g™ (), M0 (s)) ds.
Proof. Since n(®) = n(%%) by @I0) we clearly have
d" ML) if h =k
0h) — pp-1 (0,5) — k dt’“n )
" h dth77 ]zh;ln {O, otherwise.

Then, it holds that

‘ 1 d k - - (0,h korl
#007) = [ ) = 30 A0 (), M A ) ds
h=k+1

t L dR " _, dr ")
= [ ey ) M ™ s s

(by (239) and integrating by parts, since there is no contribution at the boundary
due to the fact that n € Ag )

k41 ! k2 (0,h) -1, (k)
= (SR s O (), M ) s
h=Ek

Finally, the thesis follows since, by hypothesis, M, In®) e v O

Now, by making a suitable choice of the path 7 in (2:2)), we derive some necessary
and sufficient conditions for the existence of a critical point v of ® in Ay .. Fixed
ke{0,1,...,r}, v e Vi and ¢ € C5°([0,1]), we consider

dk dk—1
(d;a " sk sloMlv""aSQMkv,O,...,O),

Clearly n € Ago and n(® € Vj.. Then we can apply Lemma [ZT] that gives

t dk+2
a0 (1) = (-0 [ (59O ). v)pla)as =0

(recall that M,;ln(k) = @uv € Vi). Thus, being ¢ and v arbitrary, we deduce the
following necessary condition for v to be a critical point of ® in Ay ,:
(2.13)

'y(o’k) s a polynomial of degree less than or equal to k+ 1, for k=0,1,...,7r.

Actually, (ZT3)) is also sufficient for v to be critical. Indeed it is clear that, again by
Lemma [ZT] condition (ZI3) implies d®(v,n) = 0 at least for i of the special form
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required by Lemma 2], that is, n € Ag ¢ such that n© €V, for some k=0,...,r.
On the other hand, every n € Ao can be uniquely represented as a sum of paths
of the special form above, so that the thesis follows from the linearity of d®(~, -).
In order to prove that there exists a unique path v in Ay , satisfying condition
(Z13)), we introduce the linear subspace W}, of RYV defined by the following formula:

Wi =Vi @B Vi@..0 (BY) Vi, k=0,..m

Note that, by condition (Z), RY is the direct sum of Wy, for k = 0,..., 7. We next
show that that there exists a unique path 7 in A . satisfying condition (2.13)). For
k =0,...,r we consider the component of v in W}, namely

A OR) LR (R ~Uk) ¢ (BT)j Vi, j=1,... k.
Since v is L-admissible, from (2.4]) we have

d" _ _
(2.14) ﬁ'y(k’k) = MM, k) h=0,...,k.

In view of ZI3), v(**) is of the form

2k+1

BB () = Z ;s s €10,1],
7=0

for some a; € R+~ ™k+1. Requiring v(0) = 0, we get from (ZI4)

dk
0= (kvk) 0) = '(kvk) 0)=:--= — (kvk) 0
7 H(0) = 4M(0) a1 (0),
that is,
a():al:"':ak:()'

Hence v(*F)(s) = sk+1g(s), for some polynomial function

koo _
g(s)zzf{(s—t)j, s € [0,t].

The coefficients 3; can be uniquely determined by imposing the condition v(t) = «.
Indeed, by (ZI4)), we obtain the system of linear equations

) = 40 () = 5+ i,
—Brat Tt = 40 = (k+ 1)1 + 17 By,

k

d* B\ (k+1)!
_1)k (0,k) = (k,k) — J+lg.
(1) M@ = Lk Z(J s,

which is clearly uniquely solvable. Then there is a unique polynomial path - satis-
fying (ZI3)), thus the proof of Theorem [[Tlis accomplished.
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3. PROOF OF COROLLARY [I.2]

In this section we prove Corollary [[.2] by computing explicitly the minimum -~y
of ®. As in the previous section, it is sufficient to put z = 27 1o 25 and prove the
claim in Ap .. A natural candidate seems to be the path

n(s) = C(s)C™ (1)

which connect the origin to x and satisfies condition (2:13). Moreover, as we shall
see later,

/0 17 (3)2ds = (€ (t), z),

which is the exponent appearing in (see also ([2.3))). Unfortunately, 7 is not L-
admissible. However, we look for the minimizing path v by a suitable perturbation
of n. More precisely, we set

A(s) = (/<<>+q doMl// o))dods, ...
A@AL “A ww+mmw~dwmﬁ) se 0,1,

ps) = (e wn) @, se o

and ¢ is a suitable polynomial function. By imposing v € Ay ., we determine ¢ and
it turns out that it verifies the condition

(3.2) B() = / 1p(s) + q(s) Pds = / 1p(s)?ds.

This proves the corollary, since at the end of this section we shall prove the following
identity:

(3.3) / Ip(s)ds = (€ (t)z, ).

(3.1)

where

In the sequel, we shall use the following non-standard notation: given an n X m
matrix M and 1 < ¢ < j < n, we denote by [M];; the (j — ¢+ 1) x m matrix
obtained from M eliminating the rows from 1 to ¢ — 1 and from j + 1 to n.

We need the following preliminary

Lemma 3.1. Fork=1,.

sy [ / - dsadsy ~ §%<_U%1m<m.
h=0

Proof. We first recall (I.I5) and remark that

35 26 = g | BB @)hmodo €70 = [E7 ()]s (0

Moreover we note that, for h=1,...,7 and s € R,

(3.6) th[E (8)1mo = [B(8) I B ()l y 41,1
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Then, we have

t gh
Mh/ —p(s)ds
e

(by @B.3))
tgh .
:Mh/o E[E ($)]1,meds C™*(t)x
(by B.0))
(3.7) O I s P L)

We are now in a position to prove the thesis. We have

t S1 Sk t t t t
/ / / p(s)ds---dsadsy = / p(s)/ / / dsy - -dsp_1dspds
0 0 0 0 s Sk S2
k

:/O (t ;f) p(s)ds

and, by 1), we obtain (3.4). O

Next we determine ¢ by imposing that v in ([8I) belongs to Ag .. In particular,
since 7y is L-admissible and «(0) = 0 by construction, we determine ¢ by requiring
that v*) (t) = 2®) for k = 0,...,r; this leads to the conditions (B3)-(Z3) below.
Indeed, since obviously

t
/ p(s)ds = :c(o),
0

we infer that v(9(t) = z(9) is equivalent to

(3.8) /0 q(s)ds = 0.

Furthermore, by Lemma B, 7¥)(t) = ) for k = 1,...,r, is equivalent to

k _
tkh

t(t— g)k _
(39) /0 ( Kl Eafayds = 2 - & =1

h=0

The proof of [B:3) is straightforward:

()Mt s e 0,1,

/ Ip(s)|?ds = { / E(8) o E7 (s)ds €~} (8)z,C (1)) = (€ (t)a, ).
0 0

We now conclude the proof of Corollary [C2 and we apply the above results to
the cases r = 1 and r = 2. In both cases it is easy to verify that the conditions

(B3)-(33) determine the polynomial

qls) = 76(2;_ 2

Then, a direct computation shows that ([B2)) holds and this completes the proof.

(tz® 4+ 2(BI)~tgW),
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4. GRADIENT ESTIMATES

In this section we prove that the positive solutions to L verify the gradient esti-
mate (C8). Here we use the explicit expression ([LI4]) of the fundamental solution
I of (). As a first result of this section, we show that I" verifies the equation

ADT, DT’
» yry Qo PO

in RV x]0, +oc[. Then we prove the gradient estimate (LS) by means of a repre-
sentation formula for positive solutions.

Proposition 4.1. The fundamental solution T' of L satisfies (@) in RN x]0, +oo.
Proof. We first recall that (see [14])
C(t) = 0,4,C(1)d 4, Vi > 0.
Therefore, if we set R
C7H(1) = C = (&),

then the fundamental solution takes the form
_Q 1 =
[(z,t) = wnt™ 2 exp <—Z<C(5\kx,5%x>> , t>0,

for some dimensional constant wy. Therefore, if 1 < 14,5 < mg, we have

0. (o t) =~ (Co .
L (z,t)

4t

_ A (E5 1 . G :
Oz, T(,1) = (Céﬁx)l(CWWx)j 5 L (z,t);

consequently
, ADD,DIY T <& .
(4.2) le(ADF) = % — % Z AijCij-
i,j=1
On the other hand, we have

(4.3)

Evaluating equation
(4.4) div(ADI(z,t)) = =YT(x,t)
at © = 0, we get from ({2) and (3

(4.5) > aiE; = Q.

ij=1
Hence, () follows from (@2), (A4]) and (EH). O

Proposition 4.2. Let u be a positive solution of Lu = 0 in a strip RN x]0, T,
T > 0. Then u satisfies the gradient estimate ([8)), that is,

Yu+ %u < (ADu, Du)

u
in RN x]0,T7.
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Proof. 1t is known (see [19]) that, fixed to €]0,T[, u > 0 has the representation

(4.6) u@aw::/&x%ayJMu@JMd% (2, 1) € RN x]t, T
RN

Then, by Proposition BTl we have

YVu+ 2%“ - / <—YF(-, y,to) + 2%F(-,y, to)> u(y, to)dy

RN
_ <ADF("y7tO)’DF('7y,tO)>
_]R[ ( L'(-y,to) ) u(y, to)dy

(by the Holder inequality, since u is positive)

—1

> <A/DF(-7y,to)U(y,to)dy7/Df(vy,to)U(y,to)dw /F(-,yvto)U(yJo)dy
]RN

RN RN

and this concludes the proof. O

Remark 4.3. The previous result can be straightforwardly generalized to the case of
positive super-solutions u of L, i.e. positive solutions to Lu < 0. Indeed it suffices
to represent u by

t
umoz/f@m%mw%m@—//f@@%amm@@@

RN to RN

and proceed as above.
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