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In the complete model with stochastic volatility by Hobson and Rogers, preference
independent options prices are solutions to degenerate partial differential equations
obtained by including additional state variables describing the dependence on past
prices of the underlying. In this paper, we aim to emphasize the mathematical
tractability of the model by presenting analytical and numerical results compara-
ble with the known ones in the classical Black–Scholes environment.
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1. Introduction

It is widely believed that the celebrated Black–Scholes model (Black & Scholes 1973)
cannot describe option prices dynamics in real markets. The characteristic observed
effects of ‘smiles’ and ‘skews’ contrast with the assumption of constant volatility of
the underlying asset. Indeed there is strong evidence that volatility depends in some
way on the present stock price (leverage effect) and on realization of past prices
(volatility persistence), as well as on the moneyness, time and maturity (volatility
term structure): we refer, for instance, to Tompkins (2001), Derman & Kani (1998),
Ghysels et al. (1996) and Bollerslev et al. (1992).

For this reason many authors have developed variations of the Black–Scholes
model, aiming to capture at least some of the above observed features. Within the
framework of continuous Itô processes, these alternative theories divide into two
broad classes: single-factor models, in which the volatility is a deterministic function
of present or past values of the underlying price, and multi-factor models, which allow
for exogenous stochastic influence (see, for instance, the monograph by Epps (2000)
and the recent papers by Barucci et al. (2003) and Davis (2004) for comprehensive
bibliographic references).

An apparent advantage of single- over multi-factor models is that the Brownian
motion which drives the asset price is the only source of randomness. Then the
arbitrage argument that underlies the Black–Scholes model is preserved and there
are unique preference-independent prices for contingent claims. The simplest single-
factor model is the so-called level-dependent volatility in which the underlying price
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St satisfies
dSt = µSt dt + σSt dBt, (1.1)

where B is a Brownian motion and σ = σ(t, St) is a deterministic function of the
current value St and time. Special cases are the CEV model by Cox & Ross (1976),
where σ(St) = Sα−1

t , α ∈ ]0, 1[, and the implied tree models by Derman & Kani
(1998), Dupire (1997) and Rubinstein (1994).

Empirical analysis has shown that level-dependent volatility still fails to price
derivative securities better than the usual Black–Scholes model does. This is the
conclusion of the study by Dumas et al. (1998), who suggest a volatility related to
past changes of the underlying prices, as the last candidate model before resorting
to fully stochastic volatility.

An interesting class of such models was proposed by Hobson & Rogers. In Hobson
& Rogers (1998) a specific version is examined in which the volatility is defined in
terms of the difference between the current price and an exponential average of past
prices. As in the discrete-time ARCH and GARCH environments, this is designed
to reflect the perception that large movements of the asset price in the past tend
to forecast higher future volatility. In Hobson & Rogers (1998) it is shown that
the model indeed exhibits a wide variety of smiles and skews, and can account for
volatility term structures as the average of prices evolves through time (see also
the study by Figà-Talamanca & Guerra (2000)). Hobson & Rogers claim to solve
numerically the associated partial differential equation (PDE) by a finite-difference
method: unfortunately no scheme is explicitly given in Hobson & Rogers (1998),
nor are convergence results proved. Actually, it is difficult to obtain these results
by the ‘classical’ theory of parabolic PDEs. Indeed, incorporating past prices enters
an additional state variable on which the derivative’s arbitrage-free price depends.
Then, as in the case of path-dependent contingent claims such as Asian or look-back
options, the augmented PDE associated to the model is strongly degenerate and
standard analytical and numerical techniques for uniformly parabolic equations do
not apply.

On the other hand, we recall that Barucci et al. (2001) successfully studied the
problem of pricing Asian options in the framework of PDEs of Kolmogorov type.
This class of degenerate diffusion PDEs, whose precise definition is given in § 2,
shares most of the prominent features of classical parabolic equations.

In this paper we present analytical and numerical results on Kolmogorov PDEs
with variable coefficients which apply to the Hobson–Rogers model for European
and Asian-style derivatives. Consequently, we wish to emphasize the mathematical
tractability of this model. Indeed our results are comparable with those known for
the classical Black–Scholes environment. In particular, we aim to propose a finite-
difference scheme for the Hobson–Rogers model and prove convergence results.

Let us recall that nonlinear Kolmogorov equations have also been recently consid-
ered by Peszek (1995) for pricing options with memory feedback and by Antonelli &
Pascucci (2002) and Pascucci & Polidoro (2003) for a stochastic differential utility
problem.

The paper is organized as follows. In the next section, we present theoretical
results about Kolmogorov PDEs which allow us to treat a variety of path-dependent
contingent claims. In § 3, we prove numerical results by suitably adapting finite-
differences schemes to the degenerate setting.
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2. Kolmogorov equations

Degenerate PDEs of Kolmogorov type naturally arise in the problem of pricing path-
dependent contingent claims. The simplest significant example is given by Asian-style
derivatives: if we assume that the stock price St is a lognormal stochastic process,
i.e. a solution to the stochastic differential equation (1.1) with µ and σ being fixed
constants, then the price U of a geometric average Asian option is a solution to the
equation

∂tU + rS∂SU + 1
2σ2S2∂SSU + log(S)∂AU = rU, (2.1)

where ‘A’ denotes the path-dependent variable and r is the risk-free rate (see, for
example, Wilmott et al. 1993). By an elementary change of variables, (2.1) can be
reduced to the following PDE in R

3:

∂x1x1u + x1∂x2u − ∂tu = 0. (2.2)

Although (2.2) is strongly degenerate, in the sense that there is a complete lack of
diffusion in the x2-direction, Kolmogorov (1934) constructed an explicit fundamental
solution to (2.2) of Gaussian type, which is a C∞ function outside the diagonal (cf.
(2.12)). Consequently, equation (2.2) has a closed-form solution and is hypoelliptic,
that is, every distributional solution to (2.2) is a C∞ function. As we shall see later,
the Kolmogorov method can be applied in a very general framework.

In the Hobson–Rogers model (Hobson & Rogers 1998), the stock price St is
described by an Itô process of the form

dSt = µ(Dt)St dt + σ(Dt)St dBt, (2.3)

where Dt represents the deviation from the trend and is defined as the difference
between the current value and a geometric, exponentially weighted average of past
prices. More precisely, if Zt = log(e−rtSt) denotes the discounted log-price, then

Dt = Zt −
∫ +∞

0
λe−λτZτ − τ dτ,

where λ is a positive parameter. Hobson & Rogers prove the existence of an equivalent
probability measure under which the discounted price e−rtSt is a martingale. Then
usual no-arbitrage arguments can be used to determine the price of the derivative.

In Hobson & Rogers (1998), it is proved that the price Ut of a European-style
contingent claim with terminal pay-off UT = ϕ(ST ) is given by

Ut = u(log(St), log(St) − Dt, T − t),

where u = u(x1, x2, t) is the solution to the following degenerate PDE with variable
coefficients in R

3:

1
2σ2(x1 − x2)(∂x1x1u − ∂x1u) + λ(x1 − x2)∂x2u − ∂tu = 0, (2.4)

with initial datum u(x1, x2, 0) = ϕ(ex1).
The same argument can be used for the more general case of a geometric average

Asian option. Let At be the path-dependent process describing the geometric average
of the underlying:

dAt = log(St) dt.
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The price Ut of a derivative with terminal pay-off UT = ϕ(ST , AT ) is then given by

Ut = u(log(St), log(St) − Dt, At, T − t),

where u = u(x1, x2, x3, t) is the solution to the PDE
1
2σ2(x1 − x2)(∂x1x1u − ∂x1u) + λ(x1 − x2)∂x2u + x1∂x3u − ∂tu = 0, (2.5)

with initial datum u(x1, x2, x3, 0) = ϕ(ex1 , x3). We emphasize that (2.5) is a PDE in
R

4 with diffusion only in the x1-direction.
The above examples motivate the study of the following class of degenerate PDEs.

Definition 2.1. We call the Kolmogorov equation (in short, KE) a PDE of the
form

Ku ≡
p∑

i,j=1

(aij(x, t)∂xixj
u + ci(x, t)∂xi

u) +
N∑

i,j=1

bijxi∂xj
u − ∂tu = 0, (2.6)

where (x1, . . . , xN , t) ≡ (x, t) ≡ z ∈ R
N+1, under the following structural conditions:

(i) there exists µ > 0 such that

µ−1|ξ|2 <

p∑
i,j=1

aij(z)ξiξj < µ|ξ|2 (2.7)

for every ξ ∈ R
p and z ∈ R

N+1;

(ii) the matrix B = (bij) is constant and has the following block form:⎛
⎜⎜⎜⎜⎜⎝

∗ B1 0 · · · 0
∗ ∗ B2 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · Bm

∗ ∗ ∗ · · · ∗

⎞
⎟⎟⎟⎟⎟⎠ , (2.8)

where the Bj-valued blocks are pj−1 × pj matrices of rank pj , j = 1, 2, . . . , m,
and the blocks denoted by ‘∗’ are arbitrary. Moreover, the pj values are positive
integers such that

p = p0 � p1 � · · · � pm � 1, and p + p1 + · · · + pm = N.

Example 2.2. Equation (2.2) is obviously a KE; in this case

B =
(

0 1
0 0

)
.

It is also clear that every parabolic equation is a KE.

To verify that equations (2.4) and (2.5) of the Hobson–Rogers model are KEs, it
is convenient to recall that the structural assumptions of definition 2.1 are equivalent
to the following classical Hörmander condition (Hörmander 1967) (see, for instance,
Lanconelli & Polidoro 1994). The well-known Hörmander condition gives a charac-
terization of hypoelliptic degenerate PDEs with smooth coefficients. In our setting
it reads as follows.
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Condition 2.3 (Hörmander condition). The first-order differential operators

∂x1 , . . . , ∂xp
and Y =

N∑
i,j=1

bijxi∂xj
− ∂t, (2.9)

together with their commutators, span R
N+1 at every point.

Example 2.4. Equation (2.4) is a KE. Indeed, for every λ > 0, the first-order
differential operators

X ≡ ∂x1 , Y = λ(x1 − x2)∂x2 − ∂t, [X, Y ] ≡ XY − Y X = λ∂x2 (2.10)

are linearly independent at every point and form a basis of R
3. Analogously, equa-

tion (2.5) is a KE since

X = ∂x1 , Ỹ = λ(x1 − x2)∂x2 + x1∂x3 − ∂t,

[X, Ỹ ] = λ∂x2 + ∂x3 , [Ỹ , [X, Ỹ ]] = λ2∂x2

span R
4 at every point.

Definition 2.5. A KE in the form (2.6) with constant aij and ci ≡ 0 for i, j =
1, . . . , p is called a ‘Kolmogorov equation with constant coefficients’.

The denomination ‘KE with constant coefficients’ stems from the theory of
parabolic PDEs. Indeed, a constant-coefficients parabolic equation is nothing more
than a translation-invariant equation on the Euclidean space. Similarly, a constant-
coefficients KE in the form (2.6) has the remarkable property of being invariant with
respect to the non-Euclidean left translations in the Lie group law

(x, t) ◦ (y, s) = (y + E(s)x, t + s), (x, t), (y, s) ∈ R
N+1, (2.11)

where E(t) = exp(−tBT), and BT denotes the transpose of the matrix B.
In this case, the explicit expression of Γ (z; ζ), the fundamental solution of (2.6)

evaluated in z with a pole at ζ, is given by Γ (z; ζ) = Γ (ζ−1 ◦ z; 0), where

Γ (x, t; 0, 0) =
(4π)−N/2√

det C(t)
exp(−1

4〈C−1(t)x, x〉 − t tr(B)), (2.12)

for (x, t) ∈ R
N × R

+ and C(t) is the positive definite matrix

C(t) =
∫ t

0
E(s)AET(s) ds, t > 0. (2.13)

As usual, a solution to the Cauchy problem for (2.6) can be expressed in closed
form, as the convolution of the initial datum with the fundamental solution Γ . As
in classical theory, constant-coefficients KEs serve as an essential class of prototypes
and many results can be extended to the general situation of variable coefficients by
perturbation arguments (see, for example, the survey by Lanconelli et al. (2002)).

Among constant-coefficient KEs, a particularly important role is played by equa-
tions for which all the ∗-blocks in (2.8) are zero matrices. Indeed these KEs have the
remarkable property of being homogeneous with respect to the dilations (δλ)λ>0 in
R

N+1 defined by
δλ = diag(λIp0 , λ

3Ip1 , . . . , λ
2m+1Ipm , λ2), (2.14)
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where Ipj
denotes the pj × pj identity matrix. More precisely, it holds that

K ◦ δλ = λ2(δλ ◦ K), ∀λ > 0. (2.15)

Subelliptic operators on homogeneous Lie groups were first studied by Folland (1975).
Note that equation (2.2) is homogeneous with respect to the dilations

δλ(x1, x2, t) = (λx1, λ
3x2, λ

2t).

In contrast, in the KEs arising in the Hobson–Rogers model, not all the ∗-blocks are
null.

The main result of this section is the following theorem, proved in Di Francesco
& Pascucci (2004) (see also Polidoro (1994) for the case of null ∗-blocks). In the
next statement, ∂̄x = (∂x0 , . . . , ∂xp

) denotes the gradient in the first p variables, Yz

and Yζ , respectively, denote the first-order differential operators in (2.9) acting on
the variables z = (x, t) and ζ = (y, s). Moreover, we say that a function ϕ is slowly
increasing if

|ϕ(x)| � αeβ|x|2 , ∀x ∈ R
N , (2.16)

for some positive constants α, β.

Theorem 2.6. Assume that the coefficients of the KE (2.6) are infinitely differ-
entiable in R

N× ]0, T [ and that all the derivatives are bounded functions. Then (2.6)
has a fundamental solution Γ : in particular, for every ϕ ∈ C(RN ), slowly increasing
with suitably small β in (2.16), the function

u(x, t) =
∫

RN

Γ (x, t; y, 0)ϕ(y) dy (2.17)

is the unique slowly increasing, classical solution to the Cauchy problem

Ku = 0 in R
N× ]0, T [ ,

u(·, 0) = ϕ in R
N .

}
(2.18)

Moreover, the function Γ (z; ζ) is infinitely differentiable for z �= ζ and we have the
following estimate of the derivatives:

|∂̄h
x ∂̄k

yY m
z Y n

ζ Γ (x, t; y, s)| � c(t − s)(−(|h|+|k|)/2)−m−nΓµ(x, t; y, s), (2.19)

where Γµ is the fundamental solution of the constant-coefficients KE with (aij) = µIp

and µ as in (2.7). The explicit expression of Γµ is given in (2.12). The constant c
depends on the multi-indexes h, k and on the non-negative integers m, n.

Remark 2.7. The hypotheses on the regularity of the coefficients in the previ-
ous statement can be considerably relaxed. For the existence of Γ , it is sufficient
to assume that the coefficients are bounded and Hölder continuous. Analogously,
estimate (2.19) still holds true under the usual hypotheses: the regularity of order
m + α, α > 0, of the coefficients implies an estimate of the derivatives of order
m + 2 of Γ . Note that estimate (2.19) involves only the first p spatial derivatives
∂x1 , . . . , ∂xp and the vector field Y . If we consider ∂̄x as first-order derivatives, then
Y weighs as a second-order derivative, in perfect analogy with the classical parabolic
case. Estimates for the other spatial derivatives can be obtained from (2.19) by the
Hörmander condition: for instance, in the case of equation (2.4), by (2.10) we have
∂x2 = ∂x1Y − Y ∂x1 so that ∂x2 should be considered as a third-order derivative.
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3. A numerical scheme

We are concerned with the numerical solution to the Cauchy problem for the KE
(2.4). Here we extend some results by Barucci et al. (2001) for the homogeneous KE
(2.2) with constant coefficients. As we shall see below, the main new difficulties in
treating the Hobson–Rogers equation (2.4) are due to the lack of homogeneity. Our
scheme allows us to consider the problem

a∂xxu + b∂xu + (αx + βy)∂yu − ∂tu = 0 in ST ≡ R
2× ]0, T [ , (3.1)

u(·, 0) = ϕ in R
2, (3.2)

where a = a(x, y, t) � a0 > 0 and α, β ∈ R, α �= 0. Preferring straightforwardness to
generality, we assume that the coefficients a, b are smooth functions with bounded
derivatives. We remark explicitly that the condition α �= 0 ensures that (3.1) is a
KE, since it verifies the Hörmander condition.

We first consider the case of the model equation

Ku ≡ ∂xxu + (x − y)∂yu − ∂tu = 0, (3.3)

corresponding to a = α = 1 = −β and b = 0 in (3.1). In view of the theory of
KEs, it seems natural to consider and approximate the first-order operators related
to the equation as in (2.9), rather than the Euclidean derivatives as usual. Thus,
as in example 2.4, we consider, for fixed x, y, the first-order part of K as a unique
‘directional’ derivative, which we denote by Y :

Y = (x − y)∂y − ∂t. (3.4)

We aim to approximate operator K by finite differences on the uniform grid

G = {(j∆x, k∆y, n∆t) | j, k, n ∈ Z}.

Since K is strongly degenerate, it is known that the classical parabolic boundary-
value problem for (3.3) is not well posed. In order to comply with the non-Euclidean
geometry naturally associated to K (see, for example, Manfredini 1997), we impose

∆y = ∆x∆t. (3.5)

Since equation (3.3) is not homogeneous (in the sense of (2.15)), the discrete operator
that one might naively associate to K is not well defined on G because it involves
points not belonging to the grid. However, it is possible to approximate K efficiently
by the following ‘corrected’ operator:

KGu(x, y, t) = D2
hu(x, y + δ(x − h[y/h]), t − δ)

− u(x, y, t) − u(x, y + δ(x − h[y/h]), t − δ)
δ

, (3.6)

where δ, h > 0, [x] denotes the integer part of x ∈ R and

D2
hu(x, y, t) =

u(x + h, y, t) − 2u(x, y, t) + u(x − h, y, t)
h2

is the usual second-order central difference. Indeed we have the following lemma.

Proc. R. Soc. Lond. A (2004)
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Lemma 3.1. Operator KG is well defined on the grid G with ∆x = h, ∆t = δ
and approximates K in the sense that, for every smooth function u, it holds that

‖KGu − Ku‖L∞ � ∆x‖∂yu‖L∞ + ∆t(‖Y 2u‖L∞ + ‖Y ∂2
xu‖L∞)

+ ∆2
x‖∂4

xu‖L∞ + ∆x∆t‖∂xxyu‖L∞ . (3.7)

Proof . By (3.5), the first assertion is obvious. To prove (3.7), we first observe that

0 � y − h

[
y

h

]
< h, h > 0, y ∈ R. (3.8)

Then we have∣∣∣∣u(x, y + δ(x − h[y/h]), t − δ) − u(x, y, t)
δ

− Y u(x, y, t)
∣∣∣∣

�
∣∣∣∣u(x, y + δ(x − h[y/h]), t − δ) − u(x, y + δ(x − y), t − δ)

δ

∣∣∣∣
+

∣∣∣∣u(x, y + δ(x − y), t − δ) − u(x, y, t)
δ

− Y u(x, y, t)
∣∣∣∣

(by the mean value theorem and (3.8))

� h‖∂yu‖L∞ + δ‖Y 2u‖L∞ . (3.9)

An analogous estimate for the second-order part of K completes the proof. �

Lemma 3.2 (maximum principle). Let v be a solution to the discrete Cauchy
problem

KGv = f in ST ∩ G, (3.10)
v(·, 0) = ψ in G0, (3.11)

where f , ψ are bounded functions and G0 = G = {(j∆x, k∆y) | j, k ∈ Z}. If the
stability condition

∆t

(∆x)2
� 1

2
(3.12)

holds, then
sup

G∩ST

|v| � sup
G0

|ψ| + T sup
G∩ST

|f |. (3.13)

Proof . Let us denote

vn
j,k = v(j∆x, k∆y, n∆t), j, k, n ∈ Z.

Once we have observed that (3.10) is equivalent to

vn+1
j,k =

(
1 − 2

∆t

(∆x)2

)
vn

j,k+j−[k∆t]

+
∆t

(∆x)2
(vn

j,k+j−[k∆t] + vn
j,k−j−[k∆t]) − ∆tf

n
j,k+j−[k∆t],

for j, k, n ∈ Z with 0 � n∆t < T , the thesis follows by a standard induction argu-
ment. �

Proc. R. Soc. Lond. A (2004)
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Lemma 3.3. If ϕ is Lipschitz continuous in R
N and u is a solution to problem

(2.18), then for every s ∈ ]0, T [ we have

|u(x, t + s) − u(x, t)| � c(1 + |x|)
√

s, ∀(x, t) ∈ ST−s, (3.14)

where the constant c only depends on K, T and the Lipschitz constant of ϕ.

Proof . By the representation formula (2.17) it suffices to consider the case t = 0.
Then, if C = C(t) denotes the matrix in (2.13) with A = µIp, by (2.17) and (2.19)
we infer that

|u(x, s) − ϕ(x)| � c√
det C(s)

∫
RN

e−〈C−1(s)(x−E(s)y),x−E(s)y〉/4|ϕ(y) − ϕ(x)| dy

= c̄

∫
RN

e−|ξ|2/4|ϕ(E(−s)(x − C1/2(s)ξ)) − ϕ(x)| dξ

(by the change of variables ξ = C−1/2(s)(x − E(s)y)) and the thesis follows by the
Lipschitz continuity of ϕ. �

We are now in a position to prove the following convergence result.

Theorem 3.4. Let u be a solution to the Cauchy problem (3.3), (3.2) with initial
datum ϕ bounded and Lipschitz continuous. Let uG be a solution to the correspon-
dent discrete problem (3.10), (3.11) with f = 0 and ψ = ϕ. Assume the stability
condition (3.12). Then uG tends to u uniformly on compacts.

Proof . For a fixed suitably small s > 0, we define

us(x, t) = u(x, t + s), (x, t) ∈ ST−s

and we denote by us
G the solution to (3.10), (3.11) with f = 0 and ψ = us(·, 0). Let

M be a compact subset of R
2× ]0, T [. By lemma 3.3, we have

sup
z∈M

|u(z) − us(z)| � c
√

s. (3.15)

Moreover, keeping in mind that ∂y = [∂x, Y ] is a third-order derivative, by the
representation formula (2.17) and estimate (2.19), we have

sup
ST −s

|∂yus| � cs−3/2 sup |ϕ|,

sup
ST −s

(|∂4
xus| + |Y ∂xxus| + |Y 2us|) � cs−2 sup |ϕ|,

sup
ST −s

|∂xxyus| � cs−5/2 sup |ϕ|,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.16)

with c independent of s. Now, the function v = us − us
G is a solution to (3.10),

(3.11) with f = KGus − Kus and initial datum ψ = 0. Therefore, applying to v
the maximum principle and lemma 3.1 combined with the estimates (3.16) and the
stability condition (3.12), we get

sup
G∩ST −s

|us − us
G| � c(∆xs−3/2 + ∆2

xs−2 + ∆3
xs−5/2), (3.17)

with c = c(ϕ).

Proc. R. Soc. Lond. A (2004)
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Finally, us
G − uG is a solution to (3.10), (3.11) with f = 0 and initial datum

ψ = u(·, s) − ϕ. By (3.15), |ψ| � cs1/2. Hence, by the maximum principle, we have

sup
G∩ST −s

|us
G − uG| � c

√
s. (3.18)

Combining (3.15), (3.17) and (3.18), we deduce

sup
G∩M

|u − uG| � c(
√

s + ∆xs−3/2 + ∆2
xs−2 + ∆3

xs−5/2),

and, by choosing s =
√

∆x, we get

max
M∩G

|u − uG| � c(∆x)1/4, (3.19)

where the positive constant c only depends on K, M and ϕ. �
Remark 3.5. The rate of convergence of the scheme is given explicitly in (3.19).

Clearly, it is not comparable with the classical results for parabolic PDEs and it is
consequent to the correction made in the definition of KG in (3.6). As a refinement
of the above scheme, one can use linear interpolation and approximate K by the
discrete operator

θKG + (1 − θ)K̃G, θ = θ(x, y, t) ∈ [0, 1],

where K̃G is formally defined as in (3.6) with the term [y/h] replaced by [y/h] + 1.
The above technique can also be adapted straightforwardly to implicit difference
schemes.

Theorem 3.4 can be generalized straightforwardly to problem (3.1), (3.2). In the
definition of the grid, (3.5) should be replaced by ∆y = |α|∆x∆t, and the approxi-
mating operator becomes

KGu(x, y, t) = a(x, y, t)D2
hu(x, ỹ, t − δ)

+ b(x, y, t)
u(x + h sgn(b(x, y, t)), ỹ, t − δ) − u(x, ỹ, t − δ)

h sgn(b(x, y, t))

− u(x, y, t) − u(x, ỹ, t − δ)
δ

, (3.20)

where

ỹ = y + δ

(
αx + |α|h

[
βy

|a|h

])
.

In (3.20), the first-order term bux is approximated by the usual upwind difference,
that is, by using the forward difference where b is positive and the backward difference
where it is negative. We then have the following theorem.

Theorem 3.6. Let u be a solution to (3.1), (3.2) and uG a solution to (3.10),
(3.11) with f = 0 and ψ = ϕ. Under the stability condition

∆t

(∆x)2
� 1

2 sup a + sup |b| ,

for every compact subset M of R
2× ]0, T [ there exists a positive constant c such that

sup
M∩G

|u − uG| � c(∆x)1/4.
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