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Abstract

The Hobson and Rogers model for option pricing is considered. This stochastic
volatility model preserves the completeness of the market and can potentially re-
produce the observed smile and term structure patterns of implied volatility. A
calibration procedure based on ad-hoc numerical schemes for hypoelliptic PDEs
is proposed and used to quantitatively investigate the pricing performance of the
model. Numerical results based on S&P500 option prices are discussed.

Key words: Option pricing, Hobson & Rogers model, Stochastic volatility,
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1 Introduction

Among non-constant volatility models in complete markets, the Hobson and
Rogers (HR) model [24] seems to be one of the more appealing. In this model
the volatility is a function of the trend of the underlying asset, defined as the
difference between the spot price and a weighted average of past prices of the
underlying asset. Since no exogenous source of risk is added, market complete-
ness is preserved and the standard arbitrage pricing theory applies. Moreover,
preliminary tests performed in [24] show that this model is potentially capable
to reproduce the observed smiles and volatility term structure patterns.
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A simplified version of the HR model is defined as follows: in a Wiener space
with one-dimensional Brownian motion W , we denote by S the stock price
and by D the deviation of prices from the trend, defined by

Dτ = Zτ −
∫ +∞

0
λe−λsZτ−sds, λ > 0, (1)

where Zτ = log(e−rτSτ ) is the discounted log-price and the parameter λ
amounts to the rate at which past prices are weighted. We assume that S
is the solution to the stochastic differential equation

dSτ = µ(Dτ )Sτdτ + σ(Dτ )SτdWτ . (2)

The coefficients µ and σ in (2) are positive functions satisfying usual hypothe-
ses in order to guarantee that the system of SDEs (1)-(2) is uniquely solvable
and the solution (Sτ , Dτ ) is a Markovian process.

We denote by U = U(S,D, τ) the price at time τ of an European option with
maturity T , expressed as a function of the state variables: time τ , asset price
S and deviation D. Then usual no arbitrage arguments lead to the pricing
PDE (cf. formula (4.4) in [24])

Uτ − rU + rSUS −
(
λD +

σ2

2

)
UD +

σ2

2

(
S2USS + 2SUSD + UDD

)
= 0, (3)

for (S,D, τ) ∈ R+ × R×]0, T [. As in the Black&Scholes framework, the drift
term in (2) does not enter in the valuation PDE while a key role is played
by the volatility function σ which is an input of the model and has to be
estimated in order to fit market observations.

Compared with the assumption σ = σ(τ, Sτ ) of the widespread local volatility
models, the path dependence property seems to be very realistic and natu-
ral. For instance it is well known that volatility increases after market rever-
sals: this is difficultly captured by a model which only takes into account of
the present price of the underlying and cannot relate past to present prices.
Moreover a path-dependent model incorporates information on the preceding
behavior of investors. Then, in some sense, the model “knows” how investors
behave in different market circumstances and can also keep into account of
the (positive or negative) trend of the asset. For this reason it seems that
the HR model does not need to be frequently recalibrated, which is a known
deficiency of local volatility models.

It should be recalled that the main advantages of the HR model against other
stochastic volatility models consists on the fact that only one source of uncer-
tainty drives both the price and the latent process. For this reason the model is
able to incorporate path-dependency without loosing the market completeness
property [24]. Recent works addressing the applications of stochastic volatility
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models to the pricing, hedging and calibration of options includes [3,27,37].
Additional references on estimation, selection and forecasting using stochastic
volatility model can be found in [2].

Another fine feature of the HR model is that, due to some invariance property
of (3), a simple change of variables allows to evaluate all plain vanilla op-
tion prices corresponding to different strikes and different time-to-maturities
in a single run (cf. Remark 1). This considerably speeds up the calibration
procedure by PDEs’ techniques. Actually that approach also has the natural
advantage of allowing to compute the derivatives with respect to the param-
eters of the solution which will be useful in the procedure.

For these reasons, the HR model raised some interest among researchers. We
recall that parameters calibration (λ in the average weight and the volatil-
ity function σ) was studied by Platania and Rogers [30], Figà-Talamanca and
Guerra [17], Hahn, Putschögl and Sass [22]. Sekine [31] obtained a closed-form

expression of the Laplace transform E
[
e−z logSτ

]
for a special parametriza-

tion of σ. More general path dependent volatility models were proposed by
Hubalek, Teichmann and Tompkins [25]; Foschi and Pascucci [19] proposed the
use of a more general weight function, possibly with compact support, in (1)
and analyzed the out-of-sample performance of the path dependent volatility
in comparison with standard stochastic volatility models. An extension to the
framework of term-structure modeling was given by Chiarella and Kwon [7].
Hahn, Putschögl and Sass [23] considered the HR dynamics in a portfolio op-
timization problem. The robustness of the HR model with respect to the data
and parameters was studied by Hallulli and Vargiolu [5]. Trifi [34] showed that
the HR model is the continuous time limit of an ARCH-type model. Recently
the free boundary and optimal stopping problems for American options in a
path dependent volatility model were studied in [29] and [14].

As a first goal of this paper, in Section 2 we provide accurate numerical schemes
ad hoc designed for the degenerate parabolic equation (3). These schemes ex-
ploit the intrinsic regularity properties of the PDE derived by the Hörmander
condition and allow for an efficient implementation.

In Section 3 the inverse problem arising in the calibration is stated as a simple
nonlinear least squares problem. Aiming to motivate the model, Hobson and
Rogers consider in [24] a volatility function of the form

σ(D) = min
{
η
√

1 + εD2, N
}
, (4)

for some large constant N and positive parameters ε, η: then they show that
the model can indeed exhibit smiles and skews of different directions. In this
note we aim to select σ without imposing a priori assumptions on its shape but
simply calibrating it to market prices of plain vanilla options. More precisely,
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in order to maintain the approach as much flexible as possible, we assume that
σ is approximated in a space of piecewise cubic Hermite polynomials.

In Section 3, we also introduce what we call the Hobson-Rogers recalibrated
model which is a refinement of the standard HR model: in this alternative, as
suggested by Hobson and Rogers, the level of the offsetDt used to evaluate new
derivatives is inferred from the current cross section of option prices, instead
of using the observed trajectory of St for its estimation. This new approach
seemingly overcomes possible observation or model errors and gives a better
fit to market prices.

Finally, in the last part of the paper, the results of the calibration are tested
on a set of S&P500 index options prices and experimental results regarding
the fitting of the model to observed prices are presented.

Acknowledgement. We thank two anonymous referees for their valuable
remarks that improved the paper.

2 Kolgorov schemes

For an European call option with strike K, equation (3) is coupled with the
initial condition

U(S,D, T ) = (S −K)+. (5)

We simplify the pricing PDE by a simple change of variables. We rewrite
equation (3) as

Lu := a(∂xxu− ∂xu) + (x− y)∂yu− ∂tu = 0, (6)

where u = u(x, y, t) is determined by the transformation

U(S,D, τ) = Ke−r(T−τ)u(r(T−τ)+log(S/K), r(T−τ)+log(S/K)−D,λ(T−τ)),
(7)

and

a(x, y) =
σ2(x− y)

2λ
. (8)

By this change of variables, problem (3), (5) is equivalent to the Cauchy
problem for (6) in the strip R2 × [0, λT ] with initial condition

u(x, y, 0) = (ex − 1)+, (x, y) ∈ R2. (9)

Remark 1 Problem (6)-(9) is independent of K. Therefore formula (7) gives
option prices corresponding to different strikes by solving a unique PDE.

4
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Due to the additional state variable D on which the option price depends,
equation (6) is of degenerate type since the quadratic form associated to the
second order part of L is singular. However (6) belongs to the noteworthy sub-
class of Hörmander PDEs today called of Kolmogorov or Ornstein-Uhlenbeck
type. For this class a very satisfactory theory has been developed and many
sharp analytical results are available even under weak regularity assumptions:
see, for instance, [26] for an exhaustive survey on this topic. In particular, in
[12] conditions are given for the existence and uniqueness of a classical solu-
tion to the Cauchy problem (6)-(9); moreover sharp estimates for u and its
derivatives are provided.

2.1 Finite difference schemes of Kolmogorov type for the pricing PDE

Since the natural framework for the study of the properties of equation (6) is
the theory of subelliptic PDEs, also for the numerical approximation the best
results are obtained in a non-Euclidean setting. Indeed it is known that the
differential operators

Xu := ∂xu, Y u := (x− y)∂yu− ∂tu (10)

are the main (in some intrinsic sense) directional derivatives and we can rewrite
equation (6) in the form

a
(
X2 −X

)
u+ Y u = 0.

Therefore, in the numerical solution of the pricing equation by finite differ-
ence methods, it is natural and more efficient to approximate the directional
derivatives X and Y rather than the usual Euclidean ones. Some “intrinsic”
schemes for the HR model were first introduced in [11]. Here we refine those
results and introduce some schemes, hereafter called Kolmogorov schemes,
whose main features are the following:

i) in the discretization of the PDE in a finite region, no boundary conditions
on the y-variable are required. This is a significant advantage since there
are no obvious financial motivations for imposing conditions on the option
price U(S,D, t) for some fixed D;

ii) solving the scheme only involves the inversion of a tri-diagonal matrix which
leads to a fast and easy implementation.

To be more specific, we consider the uniform grid

G = {(i∆x, j∆y, n∆t) | i, j, n ∈ Z, n ≥ 0}, (11)

5
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and approximate as usual the derivatives ∂xu and ∂xxu by the centered differ-
ences and the three-point schemes, respectively:

∂xu(x, y, t) ∼ D∆xu(x, y, t) =
u(x+ ∆x, y, t)− u(x−∆x, y, t)

2∆x

, (12)

and

∂xxu(x, y, t) ∼ D2
∆x
u(x, y, t) =

u(x+ ∆x, y, t)− 2u(x, y, t) + u(x−∆x, y, t)

∆2
x

,

(13)

Thus, the approximation

∂xxu(x, y, t)−∂xu(x, y, t) ∼ D2
∆x
u(x, y, t)−D∆xu(x, y, t)

= d1u(x−∆x, y, t) + d2u(x, y, t) + d3u(x+ ∆x, y, t), (14)

with d1 = 1/∆2
x + 1/(2∆x), d2 = −2/∆2

x and d3 = 1/∆2
x− 1/(2∆x), is of order

∆2
x.

The second main derivative Y is approximated either by

Y u(x, y, t) ∼ Y +
∆t
u(x, y, t) =

ũ(x, y, t)− ũ(x, y − (x− y)∆t, t+ ∆t)

∆t

, (15)

or by

Y u(x, y, t) ∼ Y −∆t
u(x, y, t) =

ũ(x, y + (x− y)∆t, t−∆t)− ũ(x, y, t)

∆t

, (16)

where ũ(x, y, t) denotes the linear interpolation of u at the point (x, y, t) based
on the two nearest grid points. Specifically,

ũ(x, y, t) = (1− γ)u(x, ỹ, t) + γu(x, ỹ + ∆y, t), (17)

where γ = (y − ỹ)/∆y and ỹ = [y/∆y] ∆y denoting by [·] the integer part.
Since ũ(x, y, t) approximates u(x, y, t) with an error of the order of ∆y, then
the approximations (15) and (16) are of the order of ∆t+ ∆y. We remark that
interpolation (17) is necessary because (x, y, t) and (x, y − (x− y)∆t, t−∆t)
cannot both belong to the same uniform grid. In [10] a different change of
variables has been proposed in place of (7). That approach allowed for both
the points to belong to the grid, but at the cost of imposing the grid size
condition ∆y = ∆x∆t.

The discrete operators L+
G and L−G are defined by

L±Gu = a(D2
∆x
u−D∆xu) + Y ±∆x

u, (18)

6
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and approximate L in the sense that

‖Lu− L±Gu‖L∞ ≤ C

(
∆2
x + ∆t +

∆2
y

∆t

)
, (19)

for some positive constant C depending on the L∞-norms of a, ∂xxxu, ∂yu,
∂4
xu, Y 2u, ∂xxY u, and ∂xxyu.

Hereafter, we refer to L+
G and L−G respectively as explicit and implicit schemes

for the discretization of L. The implicit scheme is unconditionally stable, while

the stability condition for the explicit method is given by ∆t ≤ ∆2
x

2 sup a
and

∆x < 2.

In the Appendix we formulate the discretization of the PDE (6) by means of
(18), as the block bi-diagonal linear system (A.4). It is remarkable that the
solution of such a system only requires the inversion of a tri-diagonal matrix
which can be computed very efficiently.

2.2 Calibration and continuous dependence results

In the calibration procedure we consider the volatility σ as a smooth function
of a parameter vector α ∈ Rp

+ for some p ∈ N: more precisely, we assume that
σ = σ(d;α) ∈ C1(R× Rp

+) and that there exist two positive constants C1, C2

such that

C1 ≤ σ(d, α) ≤ C2, |∂αkσ(d, α)| ≤ C2 (d, α) ∈ R× Rp
+, k = 1, . . . , p.

Thus we rewrite the dynamics (2) of the price as

dSt = µ(Dt)Stdt+ σ(Dt;α)StdWt, (20)

and denote by u(·;α) the solution to (6)-(9) with a(x, y;α) = σ2(x−y;α)
2λ

. For
what follows, it will be useful to compute the derivatives of u with respect to
the parameters α. A linear system, similar to (A.4), derives from the discretiza-
tion of the corresponding PDE. Indeed the following result about continuous
dependence with respect to the parameters holds.

Theorem 2 Let L(α) be the operator defined by (6) with diffusion coefficient
a = a(·;α) and consider the solution u to the Cauchy problem




L(α)u(·;α) = 0, in R2×]0, λT [,

u(x, y, 0;α) = u0(x, y), in R2,
(21)

where the initial datum u0 is Hölder continuous and such that |u0(x, y)| ≤
C3e

C4(x2+y2) with C4 suitably small. Then, u(z; ·) ∈ C1(Rp
+) for every z =

7
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(x, y, t) ∈ R2× [0, λT ]. Moreover for k = 1, . . . , p, the derivative v = ∂αku(·;α)
satisfies the PDE

L(α)v = −(∂αka(·;α))(∂xxu(·;α)− ∂xu(·;α)), (22)

in R2×]0, λT [, with initial condition

v(x, y, 0) = 0, for (x, y) ∈ R2. (23)

The proof of the theorem is based on the following

Lemma 3 Under the above assumptions, ∂xu, ∂xxu are continuous functions
w.r.t. the variables (x, y, t, α) and there exist some positive constants C5, C6

and δ > 0, only dependent on C1, . . . , C4 and the Hölder constant of u0, such
that

|∂xu(x, y, t;α)|+ |∂xxu(x, y, t;α)| ≤ C5
eC6(x2+y2)

t1−δ
, (24)

for every (x, y, t) ∈ R2×]0, λT [ and α ∈ Rp
+.

A detailed proof of Lemma 3 is given in [13]. The proof is rather delicate since
it involves the study of some singular integrals related to degenerate parabolic
PDEs. We only mention that the continuity of ∂xu and ∂xxu can be proved
by using the techniques in [12] (see, in particular, Chap. 5 regarding some
potential estimates); estimate (24) can be proved as Theorem 8.2, Chap. V
in [15], by using the pointwise estimates for the fundamental solution and its
derivatives provided in [12], Theorem 1.4.

Proof of Theorem 2. For simplicity, we only consider the case p = 1. We set
z = (x, y, t) ∈ R2×]0, λT [ and denote by Γ(α) the fundamental solution of L(α).
Since v(z) := u(z;α)− u(z;α0) is solution to the problem



L(α0)v = −(a(·;α)− a(·;α0))(∂xxu(·;α)− ∂xu(·;α)), in R2×]0, λT [,

v(x, y, 0) = 0, in R2,

we have

u(z;α)− u(z;α0)

α− α0

=
∫ t

0

∫

R2
Γ(α0)(z; ξ, η, s)·
a(ξ, η;α)− a(ξ, η;α0)

α− α0

(∂ξξ − ∂ξ)u(ξ, η, s;α)dξdηds.

Therefore, as α goes to α0, by the dominated convergence theorem combined
with Lemma 3, we infer that u is differentiable w.r.t. α and it holds

∂αu(z;α0) =
∫ t

0

∫

R2
Γ(α0)(z; ξ, η, s)∂αa(ξ, η;α0)(∂ξξ − ∂ξ)u(ξ, η, s;α0)dξdηds.

This concludes the proof. 2

8
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2.3 Boundary conditions

The numerical solution of (6) by finite-difference methods requires the dis-
cretization of the equation in a bounded region and the specification of some
initial-boundary conditions. More precisely, we approximate the Cauchy prob-
lem (6)-(9) in the cylinder

Q = {(x, y, t) | |x| < µ, |y| < ν and 0 < t < λT}, (25)

for some suitably large µ, ν. By transformation (7), this corresponds to the
initial-boundary value problem for (3) in the domain of the points (S,D, t)
such that

Ke−µ−r(T−t) < S < Keµ−r(T−t), |D − log
(
er(T−t)S/K

)
| < ν and 0 < t < T.

The conditions on the parabolic boundary of Q, defined by

∂PQ = ∂Q ∩ {(x, y, t) | t < λT},

are set as follows:

u(x, y, 0) = (ex − 1)+, for x ∈ [−µ, µ], y ∈ [−ν, ν]; (26)

moreover, we set

(∂xxu− ∂xu)(±µ, y, t) = 0, for y ∈ ]− ν, ν[, t ∈ ]0, λT [. (27)

We note explicitly that (27) corresponds to condition ∂SSU = 0 in the original
variables, that imposes linearity on U at the border. This condition is standard
in the Black&Scholes framework [33,35] and it has been analyzed in [28,36].

It is remarkable that the Kolmogorov schemes avoid imposing conditions on
the lateral boundary {y = ±ν}, provided that ν is suitably large. To be more
specific, let us first introduce some notation. Fixed i0, j0,n ∈ N for n ∈ N∪{0},
we denote

uni,j = u(i∆x, j∆y, n∆t), i, j ∈ Z, |i| ≤ i0, |j| ≤ j0,n. (28)

Applying the discrete operator in (14) to uni,j for |i| ≤ i0 − 1 gives

D∆2
x
uni,j −D∆xu

n
i,j = (d1u

n
i−1,j + d2u

n
i,j + d3u

n
i+1,j). (29)

Consider now the discretization (16) and assume that (x, y, t) = (i∆x, j∆y, n∆t)
belongs to the grid. Then we have

ũ(x, y + (x− y)∆t, t−∆t) = (1− γ)un−1
i,j+k + γ un−1

i,j+k+1

9
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and

Y −∆t
uni,j =

1

∆t

(
uni,j − (1− γ)un−1

i,j+k − γun−1
i,j+k+1

)
, (30)

where k and γ are, respectively, the integer and fractional part of (x−y)∆t/∆y,
that is

k =

[
(x− y)∆t

∆y

]
=

[(
i
∆x

∆y

− j
)

∆t

]
and γ =

∣∣∣∣∣
(x− y)∆t

∆y

− k
∣∣∣∣∣ . (31)

Applying the discrete operator L−G to uni,j we have

aij
(
D∆2

x
uni,j −D∆xu

n
i,j

)
+ Y −∆t

uni,j = 0, |i| ≤ i0 − 1, |j| ≤ j0,n, (32)

where aij = a(i∆x, j∆y). On the other hand, assuming µ = i0∆x, condition
(27) is equivalent to

Y −∆t
uni,j = 0, i = ±i0, |j| ≤ j0,n. (33)

Next we fix j0,N ∈ N and examine the domain of dependence of the set of
values

UN =
{
uNi,j | |i| ≤ i0, |j| ≤ jN0

}
;

more precisely, for 0 ≤ n ≤ N − 1, we specify j0,n as the maximum of the set
of the indexes j’s such that UN depends on uni,j through conditions (32)-(33).
Moreover we set νn = j0,n∆y. Since, by (30) and (31), it holds

j0,n−1 = j0,n +

[
j0,n∆t + i0

∆x∆t

∆y

]
+ 1 ≤ j0,n(1 + ∆t) + i0

∆x∆t

∆y

+ 1,

it follows that

νn−1 ≤ νn(1 + ∆t) + µ∆t + ∆y,

and thus νN−n ≤ zn, where zn is defined by the difference equation

zn+1 = (1 + ∆t)zn + µ∆t + ∆y, z0 = νN ,

which has solution zn = (1+∆t)
n(y0 +µ+∆y/∆t)−µ−∆y/∆t: indeed, recall

that the solution of the difference equation zn+1 = αzn + β, with initial value
z0 and α 6= 1, is given by zn = αn(z0 − z∗) + z∗, where z∗ = β/(1 − α) is the
equilibrium value. Finally, we deduce

νn = (1 + ∆t)
(N−n) (νN + µ+ ∆y/∆t)− µ−∆y/∆t

10
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and

ν0 = (1 + ∆t)
λT/∆t (νN + µ+ ∆y/∆t)− µ−∆y/∆t

≤ eλTνN + (eλT − 1)(µ+ ∆y/∆t).

Thus we have proved the following result.

Theorem 4 Assume that
∆y

∆t

= C0, (34)

for some constant C0. Then, in order to approximate the solution u(x, y, λT )
for |x| ≤ µ and |y| ≤ νN , conditions on the lateral boundary {y = ±ν̃}, where
ν̃ = eλTνN + (eλT − 1)(µ+ C0), are superfluous.

Remark 5 Notice that, under condition (34), the approximation error of L±G
in (19) reduces to an order of ∆2

x + ∆t.

Moreover, condition (34) ensures that the width of the initial region can be
chosen independently of the refinement of the grid. Alternatively, one can solve
(6) in the prism

{(x, y, t) | |x| < µ, |y| < eλT−tνN + (eλT−t − 1)(µ+ C0), 0 < t < λT},

rather than in the whole cylinder Q.

3 Calibration

In this section we consider the calibration of the HR model, that is the esti-
mation of the volatility function σ from observed market prices of European
options. As u is observed only at a finite number of points, specific restric-
tions should be imposed on σ in order to obtain a well posed problem. For
this reason, as in Subsection 2.2, we assume that σ = σ(·;α) depends on a
vector α = (α1, . . . , αp) of real positive parameters and denote by u(x, y, t;α)
the solution to the Cauchy problem (6)-(9) corresponding to

a =
σ2(x− y;α)

2λ
.

This defines a mapping from Rp
+ to C∞(R2×]0, λT [). The aim of this section

is to develop and test a numerical procedure to “invert” that function.

Let f̂i be the observed option value at the point zi ≡ (xi, yi, ti), for i =
1, 2, . . . ,M , and let fi(α) be the price given by (7) in terms of the solution
u(xi, yi, t;α) of the PDE (6) for a given α at the observation point zi. Since the
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point zi may not belong to the grid G, the value of fi(α) is approximated by
using a linear interpolation of the nearest points of the grid. The error made
in fitting the i-th observed value for a given α is denoted by

εi(α) = fi(α)− f̂i.

We aim to find α that best fits the data by solving the nonlinear least squares
(NLLS) problem

min
α∈Rp+

M∑

i=1

ε2
i (α)/wi + ρ(α), (35)

where wi is some weight given to the i-th observation which will be specified
later in Subsection 3.2 and ρ is positive definite regularization function intro-
duced to penalize large estimates of σ and to render the objective function
free of non-optimal stationary points. The NLLS problem (35) is solved using
the Matlab routine lsqnonlin which is a trust-region method based on the
interior-point method described in [8]. The algorithm needs the first order
derivatives ∂αku at the points zi, for i = 1, . . . ,M , which are computed by
solving a set of p+ 1 PDEs (6) and (22): thus the computational cost linearly
increases with the number p of parameters involved. In the experiments per-
formed, the non-convexity of the objective function affected only the speed of
convergence of the method, but not its robustness.

3.1 The dataset

The calibration procedure here described is applied to a set of European
options quotations on the S&P 500 index from the Chicago Board Options
Exchange (CBOE). Only calls with time-to-maturity from two weeks to six
months are considered, moreover the average of bid and ask prices is used as
reference. Observations have been taken each 15 minutes from 11:00 to 14:00
of each trading day in the period from Nov-15-2002 to May-23-2003. The em-
pirical distribution of this dataset, which contains 190397 observations, w.r.t.
absolute time, deviation from the trend, time-to-maturity and moneyness is
shown in Figure 1.

Following Ait-Sahalia and Lo [1] we do not use quotations on the underlying St
and realized dividends δt, because the first ones are affected by synchronization
errors and the second ones are not necessarily equal to the expected rates at
the time the option is priced. In order to avoid pricing anomalies that can
arise from these problems the following procedure is used: at each time t and
for each maturity T and strike K, in order to avoid arbitrage opportunities,

12
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Figure 1. Distribution of observations. The four panels show the number of obser-
vations plotted against time (measured in weeks), deviation from the mean, time to
maturity (measured in months) and moneyness.

the following parity relations hold:

FT−t = Ste
(rt,T−δt,T )(T−t),

and

U call
T−t(St, K, rt,T , δt,T ) +Ke−rt,T (T−t) = Uput

T−t(St, K, rt,T , δt,T ) + FT−te
−rt,T (T−t),

where FT−t, U call
T−t and Uput

T−t denote, respectively, the future, call and put prices
with expiration at T , rt,T and δt,T the corresponding interest and dividend
rates. Thus, future prices can be inferred from synchronous quotations of put

13
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and call options with the same strike and maturity. In order to obtain reliable
values, FT−t is computed as the weighted average of the implied futures over
all the available strikes. Log of volumes plus one are used as weights, even if a
simple average produces similar results. Next, in order to reduce the number
of input parameters of the calibration procedure, we use the homogeneity
relation

ert,T (T−t)UT−t(St, K, rt,T , δt,T ) = UT−t(FT−t, K, 0, 0) = f(FT−t,Mt, T − t),

to replace option prices U(St, K, rt,T , δt,T ) with ex-rates prices U(FT−t, K, 0, 0).

Notice that many authors modify each cross section before the calibration. For
example in [6] implied volatilities curves are computed by smoothing splines
from market observations and in [4] constrained cubic splines are used to
smooth market prices and to enforce non-arbitrage conditions. In both cases
the reported results refer to the modified values. Here, we only infer the un-
derlying future price and use raw data for the fitting. Furthermore, differently
from other investigations, where transactions or daily closing prices are used,
we use a dataset built from intra-day observation of bid-ask prices which do
not necessarily correspond to some transaction.

To compute the exponential trend Mt and the corresponding deviation Dt we
have used closing day prices from October 1982 to September 2002 and then
intra-day prices until May 2003. Index and trend computed with λ = 1 are
shown in Figure 2. We have chosen λ = 1 as it gives the best reproduction of
the term structure of implied volatilities. The period considered in the dataset
has an initial decreasing phase followed by sharp rise of the index level.

Jul97 Jan00 Jul02 Jan05
600

800

1000

1200

1400

Figure 2. Price of the S&P 500 index St and the corresponding exponential trend
computed with λ = 1 for the years 1997-2004.

The dependency of the option prices on Dt is evident from Figure 3. The
four panels plot the implied volatilities against the adjusted log-moneyness
log(F/K)/

√
T − t: as it was noted by Foque et al. [18] the implied volatility

smile of a cross section of index options is a function of log(F/K)/
√
T − t

only. This relation captures the term structure of option implied volatilities.
Each panel refer to a different range of Dt. The base of the smile shifts from
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Figure 3. Effects of the deviation from the trend on marked implied volatilities. The
implied volatilities are plotted against adjusted log-moneyness log(F/K)/

√
T − t

and grouped by different ranges of D as shown by the bar in the top of each panel.

an implied volatility of 0.22 to one of 0.15 and from a log-moneyness of -0.5
to one of -0.25. Notice that, the observations of Dt, like St, are affected by
errors, due to synchronization or to market inefficiencies.

3.2 Calibration results

Since the observations are not homogeneously distributed with respect to time-
to-maturity, moneyness and deviation from the trend, we adopt the following
strategy to choose the weights wi in (35). We divide option transactions in 18
groups based on maturity ([0, 3] or ]3, 6] months), log-moneyness (]−∞,−.1],
] − .1, .1] and ].1,∞[) and deviation from trend (] − ∞,−.2], ] − .2,−.15],
]− .15,−.1], ]− .1,∞]). The weight wi of the ith observation has been chosen
equal to the number of elements in the corresponding group.

The HR model has been calibrated to the data for two different choices of the
volatility function σ2(D). Following [20], the first choice consists in a piecewise
cubic Hermite polynomial σ2

Spline(D) interpolating the abscissae σ2
Spline(Di) =

αi, for 1 ≤ i ≤ 7 at the knots Di ∈ {−1,−2/3,−1/3, 0, 1/3, 2/3, 1}. In Figure
4 the interpolating polynomial and the knots are represented by a dashed line
and by circles, respectively. The function σ2

Spline(D) is chosen linear outside the
interval [−1, 1] continuous up to the first derivative in D = 1 and D = −1.
Further, its positiveness is ensured by the constrains αi ≥ 0, 1 ≤ i ≤ 7, in the
NLLS problem (35). Hereafter, we refer to this function as the Spline volatility
function and to the corresponding model as the Spline model.
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Figure 4. Calibrated Volatility functions σ2
HR and σ2

Spline.

The second choice consists in

σ2
HR(D) = min

{
α1 + α2(D − α3)2,

√
5
}
,

with the constrains αi ≥ 0, for i = 1, 2 and α3 unconstrained. We refer to
this function as the HR volatility function and to the corresponding model
as the HR model. The calibrated parameters of the two functions and their
standard deviations are reported in Table 2. Figure 4 shows the graphs of the
two volatility functions.

In order to overcome possible observation or model errors in Dt, we have
re-calibrated the offset parameter α3 of the HR model for each day of the
dataset. More precisely, the parameters α1 and α2 have been kept fixed to
the previously estimated values, that is to the values reported in Table 2 and
the parameter α3 is calibrated using the observations of each given day: this,
results in a series of estimates α

(3)
t which allows to recover the option implied

deviations defined by D̃t = Dt + α3 − α
(3)
t . The two time-series Dt and D̃t

are shown in Figure 5, where it can be noticed that the difference is often
substantial. We refer to this calibration as the HR re-calibrated model.

To analyze the quality of the fit, four kinds of errors are considered:

• absolute or dollar (valuation) error: εi = fi − f̂i;
• percentage or relative error: ε̂i = εi/f̂i;
• error outside the bid-ask spread, or simply outside error:

εOEi = sign(εi) max(fi − f̂aski , f̂ bidi − fi, 0);

• percentage or relative outside error: ε̂OEi = εOEi /f̂i;

where f̂aski and f̂ bidi are the bid and ask prices of the ith observation (cf. [16]).
In order to partially eliminate the bias in percentage errors, only calls with
price larger than 10$ are considered when computing statistics for relative
errors (note that the value of the underlying is 887$ in mean).
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Figure 5. Comparison of two estimators for Dt. The thin line represents the time
series computed from historical data by discretizing (1). The thick line corresponds
to the value for Dt implied from each daily cross sections of options.

Table 1 contains the following resuming statistics for the three models and
the four types of errors: mean error, standard deviation, extreme values, Root
Mean Square Error (RMSE)

RMSE(εi) =

(
M−1

M∑

i=1

ε2
i

)1/2

,

and Mean Absolute Error (MAE),

MAE(εi) = M−1
M∑

i=1

|εi|.

The four panels in Figures 6 and 7, respectively, plot the RMSEs of absolute
and relative outside errors for different ranges of absolute time, deviation from
the trend, time-to-expiration and moneyness.

We first compare the fits of the HR and Spline specifications. The overall
performances of both models are good, also considering the length of the
period and that the volatility function, and thus the pricing kernel, is kept
constant. The good results are confirmed by the histograms of absolute and
percentage errors for the HR and Spline calibrations shown in Figure 8. From
the third panel of Figures 6 and 7 it should be noticed that both the models
well explain the term-to-maturity structure of option prices. This has been
pointed as a deficit of stochastic volatility models in [18,21,32].

The Spline model obtains slightly better results than those of the HR model,
but the difference is so small that the HR model should be preferred for its
parsimony. It can be seen from Figure 4 that the two volatility functions differ
only on their tails and especially on the right ones. However, as indicated by
the standard deviations reported in Table 2, σ2

Spline is completely imprecise
in that region. In fact, the last two parameters of σ2

Spline are not identifiable
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Absolute Errors

Model RMSE MAE Mean Std. Dev. Minimum Maximum

Spline 1.853 1.458 -0.757 1.692 -5.944 7.049

HR 1.857 1.463 -0.789 1.681 -6.113 7.131

HR Recal. 1.532 1.229 -0.613 1.403 -4.948 4.81

Absolute Outside errors

Model RMSE MAE Mean Std. Dev. Minimum Maximum

Spline 1.153 0.740 -0.366 1.094 -5.532 6.043

HR 1.154 0.741 -0.387 1.087 -5.846 6.125

HR Recal 0.852 0.533 -0.271 0.808 -4.131 3.976

Percentage Errors

Model RMSE MAE Mean Std. Dev. Minimum Maximum

Spline 5.16% 3.29% -0.71% 5.11% -34.40% 33.08%

HR 5.19% 3.34% -1.05% 5.09% -36.56% 32.05%

HR Recal. 4.33% 2.73% -0.47% 4.30% -26.00% 34.06%

Percentage Outside Errors

Model RMSE MAE Mean Std. Dev. Minimum Maximum

Spline 3.37% 1.70% -0.34% 3.35% -29.57% 29.69%

HR 3.37% 1.73% -0.56% 3.33% -31.72% 28.66%

HR Recal. 2.62% 1.19% -0.26% 2.60% -23.01% 31.62%
Table 1
Statistics for absolute (relative) errors and outside errors for the calibrations with

the Spline, HR and HR re-calibrated models.

because they do not significantly affect the solution u(x, y, t) of (6) at the
observation points.

Next we discuss the performance of the HR re-calibrated model. This approach
allows for a further improvement in the fit: both the absolute and relative
outside errors are reduced of one third (cf. Table 1). Furthermore, implying Dt

from option prices allows to better capture the term structure of option prices
(see the third panel in Figures 6 and 7). While the distribution of the residuals
of the HR and Spline models, shown in Figure 8, is clearly not normal, that
of the HR re-calibrated model seems to be a normal one. This should point
out a misspecification of Dt in the first two models that almost disappears in
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Figure 6. Plot of RMSEs of absolute outside errors against observation time (mea-
sured in weeks), deviation from the mean, time to maturity (measured in months)
and moneyness. Results for the Spline, HR and HR re-calibrated models are repre-
sented by circles, squares and diamond, respectively.

the HR re-calibrated model. This also suggests that further investigation in
the model with respect to the specification of the state variable Dt is needed.
With this respect, we mention the extensions considered in [19] and [25] and
the use of an additional deviation Dλ2,t with a faster decay (a shorter memory)
or a second order offset function

D
(2)
t =

∫ ∞

0
λe−λτ (Zt − Zt−τ )2dτ,

as already considered in [24], to better explain the market behavior.
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Figure 7. Plot of RMSEs of relative outside errors against observation time (mea-
sured in weeks), deviation from the mean, time to maturity (measured in months)
and moneyness. Results for the Spline, HR and HR re-calibrated models are repre-
sented by circles, squares and diamond, respectively.

Figure 9 shows implied volatilities for the HR model using the daily calibrated
deviations D̃t. As can be seen by comparing Figures 3 and 9, the model is not
able to fully reproduce the smiles for deep in- or out-of-the money options.
Furthermore, smiles implied by the market are more significant especially for
shorter maturities.
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Figure 8. Histograms of the errors in the calibration with the HR and Spline volatil-
ity models.

Spline HR

αi Std. dev. αi Std. dev.

α1 0.7791 (3.59e-2) 0.0272 (8.51e-5)

α2 0.4195 (2.01e-3) 0.7114 (2.11e-3)

α3 0.1308 (1.24e-4) 0.0616 (6.51e-4)

α4 0.0289 (4.17e-5)

α5 0.0050 (3.54e-4)

α6 9.9862 (2.46e+5)

α7 9.9927 (6.58e+5)
Table 2
Calibrated parameters for the volatility functions σspline and σHR.

3.3 Out-of-sample tests

In order to test out-of-sample performances, the HR model has been calibra-
ted on the observations ranging from Nov-15-2002 to Jan-14-2003 and tested
on the successive week, month and three months periods. The calibration
produces the volatility function

σHR(D)2 = 0.0297 + 0.9360(D − 0.0352)2,

and examples of the in- and out-of-sample fits are shown in Figure 10, where
the calibrated payoffs for different maturities are represented by the curves
and market prices f̂i by the crosses.

Statistics for in-sample and out-of-sample tests are given in Table 3 and RM-
SEs are plotted against time, deviation, maturity and log-moneyness in Figure
11. As expected, out-of-sample performances get worse as the horizon consid-
ered increases. Moreover, since the calibration is performed mainly on short
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Figure 9. Effects of the deviation from the trend on marked implied volatilities. The
implied volatilities are plotted against adjusted log-moneyness log(F/K)/

√
T − t

and grouped by different ranges of the deviation as shown by the bar at the top of
each panel.
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Figure 10. Market prices and call price curves on December 2nd (in sample) and
March 27th (out of sample). The calibration has been performed over the period
November 15th 2002 - January 14th 2003.

maturity options it does not give a very good prediction for longer maturi-
ties. Nevertheless the RMSEs in the first panel follow the same pattern of the
RMSEs in Figure 6, with an exception at week 17. Table 3 also confirms the
validity of the model which, contrary to local volatility models, seems to have
a good performance even if it is not continuously re-calibrated. In particular,
the quality of the fit seems to be quite acceptable even one month after the
calibration period, confirming the theoretical arguments.
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Absolute errors

RMSE MAE Mean Std. Dev. Minimum Maximum

in-sample 1.71 1.34 -0.46 1.65 -4.28 7.58

out-of-sample

1 week 1.58 1.18 -0.02 1.58 -3.17 5.46

1 month 2.23 1.49 0.18 2.22 -3.97 10.51

3 months 2.69 1.75 0.60 2.63 -5.16 13.29

Absolute outside errors

RMSE MAE Mean Std. Dev. Minimum Maximum

in-sample 0.99 0.58 -0.07 0.99 -3.29 6.52

out-of-sample

1 week 0.97 0.54 0.08 0.97 -2.18 4.45

1 month 1.67 0.84 0.35 1.63 -3.03 10.01

3 months 2.13 1.07 0.65 2.02 -5.06 12.28

Percentage errors

RMSE MAE Mean Std. Dev. Minimum Maximum

in-sample 4.06% 2.56% -0.17% 4.06% -20.17% 33.14%

out-of-sample

1 week 4.04% 2.64% 1.23% 3.85% - 5.33% 19.20%

1 month 5.84% 3.78% 1.15% 5.72% -17.36% 39.71%

3 months 8.19% 4.86% 2.23% 7.88% -33.17% 48.38%

Percentage outside errors

RMSE MAE Mean Std. Dev. Minimum Maximum

in-sample 2.50% 1.14% 0.13% 2.50% -15.27% 30.35%

out-of-sample

1 week 2.31% 1.16% 0.71% 2.20% - 2.16% 14.44%

1 month 4.12% 2.08% 1.16% 3.95% -14.75% 36.77%

3 months 6.45% 3.16% 2.01% 6.13% -28.16% 45.26%
Table 3
In-sample and out-of-sample statistics for percentage errors εi and absolute errors
ε̂i of the calibration over the period from Jan-17 to Feb-17-2003. Out-of-sample
statistics refers to the one week, one month and three months periods starting the
18-Feb-2003.
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Figure 11. Plot of RMSEs versus observation time (measured in weeks), deviation
from the mean, time to maturity (measured in months) and moneyness. In-sample
(from January 17th to February 16th) and out-of-sample (from February 17th to
May 23th) RMSEs are represented by circles and squares, respectively.
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4 Conclusions

In this paper we consider the path dependent volatility model proposed by
Hobson and Rogers. In this model option prices can be expressed in terms
of solution to a hypoelliptic parabolic PDE of Kolmogorov type. In order to
exploit the intrinsic regularity properties of the degenerate PDE, we intro-
duce a non-Euclidean finite differences scheme which allows for an accurate
approximation of option prices.

Aiming to test the effectiveness of the model we study its calibration as a
nonlinear least squares problem. In this approach we estimate the volatility
function both in a parametric and a semi-parametric framework. We perform
an empirical experiment on a large dataset of intraday S&P 500 option quo-
tations ranging from November 2002 to May 2003. The results show good
performances of the model even when not continuously recalibrated. For this
reason the model seems to be a valid alternative to the widely used local
volatility models.

A Appendix: discretization and linear systems

Throughout this Appendix we use the notations of Subsection 2.3. The aim
is to formulate the discretization of the partial differential equation (6) as a
block bidiagonal linear system. We define I = 2i0 + 1, Jn = 2j0,n + 1 and
denote by un ∈ RIJn the vector containing the values uni,j for |i| ≤ i0 and
|j| ≤ j0,n: those values are sorted by the couple of indices (j, i) in lexicografic
order.

Let us now consider the application of the discrete operator Y −∆t
in (30) to

the vector un. The generic element Y −∆t
uni,j is the linear combination of the

corresponding element in un and two elements, un−1
i,j+k and un−1

i,j+k+1 of un−1.
Thus, applying Y −∆t

to un is equivalent to the difference of two linear operators,
∆−1
t In and ∆−1

t Zn, applied respectively to un and un−1, where In denotes the
identity operator in RIJn . Specifically, the vector with elements Y −∆t

uni,j is given
by

1

∆t

(un − Znun−1),

where Zn ∈ RIJn×IJn−1 is the matrix such that the entry corresponding to the
index i, j of Zun−1 is given by

(1− γ)un−1
i,j+k + γun−1

i,j+k+1.
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Then it turns out that the linear system (32) can be rewritten in matrix form

(In + ∆tAnDn)un − Znun−1 = 0, (A.1)

for 1 ≤ n ≤ N , where A ∈ RIJn×IJn is the diagonal matrix with elements aij
and

Dn =




Ď 0 · · · 0

0 Ď · · · 0
...

...
. . .

...

0 0 · · · Ď




and Ď =




0 0 0 · · · 0

d1 d2 d3 · · · 0

0
. . . . . . . . .

...

0 · · · d1 d2 d3

0 · · · 0 0 0




, (A.2)

are tridiagonal matrices of order IJn and I, respectively.

Similarly, combining the forward and backward schemes allows to derive the
θ-method:

θ∆tAnDnu
n + (1− θ)∆tZnAn−1Dn−1u

n−1 − Znun−1 + un = 0,

or

Ān1u
n = Ān2u

n−1, 1 ≤ n ≤ N, (A.3)

with Ān1 = (In + θ∆tAnDn) and Ān2 = Zn(In− (1− θ)∆tAn−1Dn−1). As usual,
the θ-method reduces to the explicit, implicit or Crank-Nicholson schemes
when θ = 0, 1 or 0.5, respectively. Notice that the θ-method is unconditionally
stable for 0.5 ≤ θ ≤ 1. The matrices Ān1 and Dn have an identical structure,
specifically they are block diagonal with tridiagonal blocks. Thus, the compu-
tational cost required to solve (A.3) is of the order of IJn. Furthermore, the
structure of the matrices can be exploited to design computationally efficient
and/or parallel algorithms for the solution of the PDE (6).

Finally, by setting N = λT/∆t it turns out that considering (A.3) for n =
1, . . . , N and imposing the initial conditions u0 = v0 is equivalent to the linear
system




I 0 0 · · · 0

−Ā1
2 Ā

1
1 0 · · · 0

...
. . . . . .

...

0 · · · −ĀN−1
2 ĀN−1

1 0

0 · · · 0 −ĀN2 ĀN1







u0

u1

...

uN−1

uN




=




v0

0
...

0

0



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or, with the appropriate substitution,

Āū = v̄, (A.4)

where Ā is block bidiagonal and ū ∈ Rq where

q =
N∑

n=0

IJn. (A.5)

Existence and uniqueness of the solution are related to the non-singularity of
Ān1 and, in view of the expressions of d1, d2, d3, are clearly guaranteed if ∆t

∆x2
is

suitably small. Stability and numerical stability are driven by the properties
of the matrices Ān1 and Ān2 .
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