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Abstract. A new analytical approximation tool, derived from the classical PDE theory, is introduced in order
to build approximate transition densities of diffusions. The tool is useful for approximate pricing
and hedging of financial derivatives and for maximum likelihood and method of moments estimates
of diffusion parameters. The approximation is uniform with respect to time and space variables.
Moreover, easily computable error bounds are available in any dimension.
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1. Introduction and motivation. The ability of approximating, with some explicit mea-
sure of error, the fundamental solution of a parabolic partial differential equation (PDE) has
become of paramount relevance for economical and financial applications. The origin of this
can be traced back to the 1960s with the widespread introduction of diffusion-based modeling.
In financial applications, transition densities play a central role in several instances from pric-
ing and hedging of financial derivatives to parameter estimation and calibration (by likelihood
or moment method based techniques) and solution of optimal control problems.

The early examples of diffusion models considered only very simple specifications, usually
in the class of linear diffusions, for which explicit transition densities are known. However,
the requirement of more statistical realism and the need for a multidimensional framework
stimulated more complex models whose explicit solutions are unavailable. This favored the im-
plementation of standard (in other fields) numerical procedures, e.g., finite differences or finite
elements methods, and the development of a number of very useful Monte Carlo techniques.

An alternative or, more precisely, a complement to the use of numerical methods is given
by the powerful machinery of analytical approximations. These, in fields like physics and
engineering, are the tools of choice for the study of the qualitative properties of a model and
for comparison between models. Moreover, these techniques provide the basis for efficient
numerical algorithms specific to each model. Today the literature concerning asymptotic
expansions and singular perturbation theory applied to finance is vast. We quote, among
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others, the papers by Whalley and Wilmott [34] in the study of transaction costs; Hagan and
Woodward [19] and Hagan et al. [18] for the implied volatility in CEV and SABR models;
Fouque, Papanicolaou, and Sircar [15], Fouque et al. [16], Howison [21], Widdicks et al. [35],
and Svoboda-Greenwood [32] for other local and stochastic volatility models; Barone-Adesi
and Elliott [3], Broadie and Detemple [5], and Kuske and Keller [27] in the study of Amer-
ican options; Widdicks et al. [36] in multiasset option pricing; Turnbull and Wakeman [33],
Zhang [37], and Dewynne and Shaw [10] concerning average (Asian) options; and Broadie,
Glasserman, and Kou [6] in the study of discrete barrier options. For other analytical or
partially analytical approximation methods we refer the reader to Aı̈t-Sahalia [1] and [2].

In this paper we propose a new technique, the parametrix method, for the analytical
approximation of the fundamental solution of a general parabolic PDE. As far as we know,
contrary to perturbation techniques, the parametrix has not been previously examined as a
numerical method, nor has it been already employed for approximation purposes in finance
or other fields. Indeed, the classical parametrix technique was introduced by Levi [28] as a
theoretical method to prove the existence of the fundamental solution of a parabolic PDE:1 as
such, it is not optimized for the purpose of numerical computation of solutions.

The first main contribution of this paper is the conversion and adjustment of this classical
tool in PDE analysis as a numerical method. In particular, we modify the parametrix tech-
nique to yield an approximation useful for computational purposes. Moreover, we introduce
the new concept of the backward parametrix and we show how it is both more appropri-
ate for computations and more useful for model interpretation purposes than the standard
parametrix. As we will see, the backward parametrix lends itself to a direct probabilistic
interpretation which is not readily available for the standard parametrix. This interpretation
is very useful when the backward parametrix is applied to the problem of pricing financial
derivatives as it allows a financial interpretation of the leading and the correction terms in
the expansion.

The second main contribution is the derivation, in the new context, of easy-to-compute,
a priori (i.e., independent of the solution), uniform bounds on the approximation error both for
the PDE solution and for its derivatives. The hypotheses under which the series approximation
uniformly converges and under which the evaluation of the error term for a truncated series
holds are very general. They can be checked by the sole knowledge of some general property
of the diffusion model and are substantially the same hypotheses commonly required for a
diffusion problem and a parabolic problem to be equivalent. While perhaps the most easy to
check, these hypotheses are not the most general. Indeed the proposed method also works
in cases where these hypotheses are not true: we show an example of this in section 3. The
results of the paper are then applied to a number of relevant particular cases and compared
with other numerical and seminumerical evaluation procedures known in the literature.

The rest of the paper is organized as follows. In section 2, we derive and slightly generalize
the classical parametrix expansion in the one-dimensional setting; moreover, we introduce the

1A comprehensive presentation of the classic parametrix method for uniformly parabolic PDEs can be
found, for instance, in [17]. We also quote the papers [11] and [26], where the parametrix method is applied to
a wider class of (possibly degenerate) equations that includes the pricing PDEs for Asian options. While well
known in the classical theory of parabolic PDEs, the parametrix series is, as far as we know, rather unknown
in the field of mathematical finance with the exception of [4] and of a quotation in [1].
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new backward parametrix. We also give a financial interpretation of the derivation of the
parametrix. In section 3 we find closed form approximate solutions in a general local volatility
model. In section 4 we perform some numerical tests and compare the performance of the
parametrix with other known approximate methods. In section 5, we derive a priori bounds
on the approximation error for both the forward parametrix and the backward parametrix.
The appendix contains a number of lemmas used in the proofs.

2. Forward and backward parametrix approximations. The aim of this section is to give
the main ideas by presenting our results in the simple case of a one-dimensional model. In
section 5 the parametrix is derived in its full generality and complete proofs are given. Our
contribution is twofold: first, we compute explicit error bounds for the classical parametrix
(hereafter called the forward parametrix ) approximation introduced by Levi [28]; second, we
introduce the so-called backward parametrix, an alternative expansion that is more significant
for the financial interpretation and from the computational point of view.

In what follows we denote by z = (x, t), ζ = (ξ, τ), and w = (y, s) the points in R×R and
consider the parabolic PDE

(2.1) Lu(z) := a(z)∂xxu(z) + b(z)∂xu(z) + c(z)u(z) − ∂tu(z) = 0.

The fundamental solution Γ = Γ(z; ζ) of L is a function such that the following hold:

(i) LΓ(·; ζ) = 0 in R
2 \ {ζ} for any ζ;

(ii) for every bounded and continuous function ϕ = ϕ(x) and τ ∈ R, a classical solution
to the Cauchy problem

(2.2)

{
Lu(x, t) = 0, x ∈ R, t > τ,

u(x, τ) = ϕ(x), x ∈ R,

is given by

(2.3) u(x, t) =

∫
R

Γ(x, t; ξ, τ)ϕ(ξ)dξ.

Under the assumption that L is uniformly parabolic (i.e., the coefficient a is greater than a
constant a0 > 0) and has bounded and Hölder continuous coefficients, it is well known that
a fundamental solution for L exists: this theoretical result can be proved by the parametrix
method. We now aim to investigate the potentiality of the parametrix as a numerical method.

Coming back to the financial interpretation, formula (2.3) gives the forward price at time
to maturity t−τ of a European option with payoff ϕ. Suppose now that problem (2.2) cannot
be solved explicitly. It is then inviting to find an approximation formula for (2.3) whose
principal term is given by (or is at least similar to) the Black–Scholes formula. This is what
the parametrix method allows us to do.

2.1. Forward parametrix. The classical forward parametrix method is based on two ideas.
The first is to approximate Γ(z; ζ) by the so-called parametrix defined by

Z(z; ζ) = Γζ(z; ζ),
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where, for fixed w ∈ R
2 and for b̄, c̄ arbitrarily fixed real constants, Γw is the fundamental

solution to the constant coefficient operator

(2.4) Lwu(z) := a(w)∂xxu(z) + b̄∂xu(z) + c̄u(z)− ∂tu(z).

Note that Lw is a heat operator and the explicit expression of Γw is known:

Γw(z; ζ) =
1√

4πa(w)(t − τ)
exp

(
− (x− ξ)2

4a(w)(t− τ)
− b̄

2a(w)
(x− ξ)−

(
b̄2

4a(w)
− c̄

)
(t− τ)

)(2.5)

for t > τ .

In the standard parametrix method (cf., for instance, [17]) the constants b̄ and c̄ are chosen
to be null. However, the context of this paper suggests using as a parametrix the fundamental
solution of the heat equation which is “most similar” to the equation under analysis. This
flexibility in the choice of the operator may result in considerably sharp approximations; see,
for instance, section 4, where the some local volatility models are examined.

The second idea is that of supposing that the fundamental solution Γ of L is in the form

(2.6) Γ(z; ζ) = Z(z; ζ) +

∫ t

τ

∫
R

Z(z;w)Φ(w; ζ)dw.

In view of the financial applications, in what follows we assume ζ = (ξ, 0). In order to identify
Φ in (2.6), we notice that, since

LΓ(·; ζ) = 0 in R× ]0,+∞[

for any ζ, we get

(2.7) 0 = LZ(z; ζ) + L

∫ t

0

∫
R

Z(z;w)Φ(w; ζ)dw.

But formally we have

L

∫ t

0

∫
R

Z(z;w)Φ(w; ζ)dw =

∫ t

0

∫
R

LZ(z;w)Φ(w; ζ)dw − ∂t

∫ t

0

∫
R

Z(z;w)Φ(w; ζ)dw

=

∫ t

0

∫
R

LZ(z;w)Φ(w; ζ)dw − Φ(z; ζ)

(2.8)

so that

(2.9) Φ(z; ζ) = LZ(z; ζ) +

∫ t

0

∫
R

LZ(z;w)Φ(w; ζ)dw.

Notation 2.1. To avoid confusion, when necessary, we write L(z) instead of L in order to
indicate that the operator L is acting in the variable z.
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Formula (2.9) can be solved iteratively and yields

(2.10) Γ(z; ζ) =
+∞∑
n=0

Zn(z; ζ),

with Z0(z; ζ) = Z(z; ζ) and

Zn(z; ζ) =

∫ t

0

∫
R

Z(z;w)(LZ)n(w; ζ)dw, n ∈ N,

where, recalling the notation w = (y, s),

(LZ)1(w; ζ) = L(w)Z(w; ζ),

(LZ)n+1(w; ζ) =

∫ s

0

∫
R

L(w)Z(w; z0)(LZ)n(z0; ζ)dz0, n ∈ N.

As we foretold, our first main result consists in the computation of explicit global error bounds
of the parametrix approximation. These bounds, provided in Theorem 5.2, are of the following
form: for any T > 0 there exist two positive constants C,M such that

(2.11)

∣∣∣∣∣Γ(z; ζ)−
n∑

k=0

Zk(z; ζ)

∣∣∣∣∣ ≤ C
(t− τ)

n
2(

n
2

)
!

ΓM (z; ζ), n ≥ 0,

for any z, ζ ∈ R
2 such that 0 < t− τ < T , where ΓM is the fundamental solution of the heat

operator
M∂xx − ∂t.

Moreover, the constants C and M can be explicitly estimated.

2.2. Backward parametrix. Before examining the financial interpretation, we introduce
what we call the backward parametrix, which is based on the use of the adjoint operator
of L. As we shall see shortly, the backward parametrix is more convenient than the forward
parametrix from several points of view: first, it allows us to derive an approximating expansion
whose first term is given exactly by the Black–Scholes formula, while the subsequent terms can
be expressed as solutions to suitable Cauchy problems related to constant coefficient operators
that have a clear financial interpretation as well. Second, the approximating terms generated
in this way are convolutions of a Gaussian function, and this is convenient from a numerical
point of view since we may rely upon several known efficient numerical techniques.

Remark 2.2. The backward parametrix method does not simply consist in the standard para-
metrix method applied to the backward PDE: indeed, that would give the same problems as in
the forward case. On the contrary, the idea is to use the backward parametrix as an approxi-
mation for the forward PDE.

The formal adjoint operator of L in (2.1), acting in the variable ζ, is defined as

(2.12) L̃(ζ) = a(ζ)∂ξξ + b̃(ζ)∂ξ + c̃(ζ) + ∂τ ,

where
b̃(ζ) = −b(ζ) + 2∂ξa(ζ), c̃(ζ) = c(ζ) + ∂ξξa(ζ)− ∂ξb(ζ).
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It is known that, under suitable assumptions, L̃ has a fundamental solution Γ̃ and the following
duality formula holds:

Γ̃(ζ; z) = Γ(z; ζ);

in particular, L̃(ζ)Γ(z; ζ) = 0 for z �= ζ. We define the backward parametrix as the fundamental
solution of a constant coefficient dual operator: more precisely, for w ∈ R

2 we set

(2.13) L̃(ζ)
w = a(w)∂ξξ + b̄∂ξ + c̄+ ∂τ ,

where b̄ and c̄ are arbitrarily fixed constants, and consider its fundamental solution

Γ̃w(ζ; z) =
1√

4πa(w)(t − τ)
exp

(
− (x− ξ)2

4a(w)(t− τ)
+

b̄

2a(w)
(x− ξ)−

(
b̄2

4a(w)
− c̄

)
(t− τ)

)(2.14)

for t > τ . Then we define the backward parametrix as

P (z; ζ) = Γ̃z(ζ; z),

so that in particular we have

(2.15) L̃(ζ)
z P (z; ζ) = 0.

As before, we set τ = 0 so that ζ = (ξ, 0), and, proceeding as in the forward case, we have

(2.16) Γ(z; ζ) = Γ̃(ζ; z) = P (z; ζ) +

+∞∑
n=1

∫ t

0

∫
R

P (w; ζ)(L̃P )n(z;w)dw,

where, recalling the notation w = (y, s),

(L̃P )1(z;w) = L̃(w)P (z;w),

(L̃P )n+1(z;w) =

∫ t

s

∫
R

L̃(w)P (z0;w)(LZ)n(z; z0)dz0, n ≥ 1.

In Theorem 5.7 we give explicit global error estimates, completely analogous to (2.11), for the
backward approximation truncated at the nth term.

2.3. Parametrix expansions. In section 5, Theorems 5.4 and 5.7, we prove that the so-
lution to the Cauchy problem (2.2) has “forward and backward” expansions of the following
form.

• The expansion obtained using the forward parametrix is given by

(2.17) u(z) =

∞∑
n=0

un(z),

where

(2.18) u0(z) =

∫
R

Z(z; ξ, 0)ϕ(ξ)dξ,
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and, in general, for n ∈ N,

(2.19) un(z) =

∫ t

0

∫
R

Z(z; ζ)LUn−1(ζ)dζ, Un−1(z) :=

n−1∑
k=0

uk(z).

• Similarly the expansion obtained using the backward parametrix is of the form (2.17),
where now

(2.20) ũ0(z) =

∫
R

P (z; ξ, 0)ϕ(ξ)dξ,

and, in general, for n ∈ N,

(2.21) ũn(z) =

∫ t

0

∫
R

P (z; ζ)LŨn−1(ζ)dζ, Ũn−1(z) :=

n−1∑
k=0

uk(z), n ∈ N.

The main differences between the two parametrix expansions hinted at before are now
clear. Each term in the expansion is an “expected value” with respect to the distributions
with density Z(z; ζ) or P (z; ζ). But, while P (z; ζ) is the same Gaussian density for each value
of the integration variable (z is frozen and the integration is performed varying ζ) and so is a
true PDF, Z(z; ζ) is a different Gaussian (different variance) for each value of the integration
variable ζ.

More precisely, let us examine the first term of the expansion for the forward parametrix Z:

(2.22) u0(z) =

∫
R

Z(z; ξ, 0)ϕ(ξ)dξ.

Since the explicit expression of Z(z; ξ, 0) = Γ(ξ,0)(z; ξ, 0) is known, we see that u0 in (2.22)
is very similar to the solution of a Cauchy problem for a constant coefficient operator. On
the other hand, the integration in (2.22) is performed with respect to the variable ξ which
also appears in L(ξ,0) as the point where the operator L is frozen. Hence, roughly speaking,
the first term of the expansion is an “expected value” of the terminal payoff which uses as
density a Gaussian with a different volatility (corresponding to the “true” diffusion coefficient)
for each point in the integration range. This seems a quite sensible starting point and can
obviously be compared with standard “implied volatility” approximations where a different
Gaussian distribution (for log S) for each strike is used. Here the suggestion is to use the same
distribution but with a different volatility for each terminal value of the stock.

Let us now pass to the backward parametrix expansion zero order term:

ũ0(z) =

∫
RN

P (z; ξ, 0)ϕ(ξ)dξ.

Here the interpretation is straightforward: the zero order term is simply a Black–Scholes
option price. Indeed, since

P (z; ζ) = Γ̃z(ζ; z),
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the parametrix P (z; ζ) is the terminal log-price density corresponding to starting point (x, t).
Notice, however, that a different “volatility” value is used for each initial pair (x, t). Accord-
ingly, if we compute the derivative of the option with respect to the price S = ex, we have
that the Delta for the zero order approximation is given, with the obvious notation, by

Δ = ΔBS + vega ∗ ∂σ
∂S

.

This Delta computation derived from the parametrix expansion is interesting because it is a
direct reinterpretation of one of the ad hoc modifications of the Black–Scholes model used by
practitioners in order to get the “correct” answer from the “wrong” model. In fact, this is an
example of a “skew correction” for the computation of Delta.

This correction, which can take various shapes (see, e.g., [9]), tries to account for the
change of implied volatility which may accompany the change in moneyness of a given option.
In a particular specification, often termed “sticky delta,” if ΔBS is the Black–Scholes delta,
vega is the standard Black–Scholes vega, and σ(K/S)S is the derivative, with respect to the
price, of the volatility used for evaluating the option with strike K with moneyness K/S, then
we have a skew corrected delta computed as

Δ = ΔBS + vega ∗ σ(K/S)S .

Strictly speaking, this correction is inconsistent as it implies different risk neutral dis-
tributions for different strikes at the same date. However, if we read this correction in the
framework of the parametrix, we can justify it consistently as an approximation of the “true”
delta by a truncated expansion.

Next we consider the subsequent terms in the expansions. Both expansions are similar in
that each new term can be interpreted approximately as an expected value. The difference that
makes the backward parametrix more readable is that each term in the backward expansion
is a true expected value (with respect to the same Gaussian function P (z; ζ)), while in the
case of the standard parametrix, Z(z; ξ, 0) does not correspond to a real density.

Since each new term can be read as the value (exact or approximate) of a new option in
a Black–Scholes world, it is interesting to understand the meaning of such options. To this
end, it suffices to recall (2.19) and (2.21) and note that the operator L in the term of order n
acts on the “option approximation” derived up to order n − 1. Therefore, each action of the
L operator can be interpreted as a check of the fact that the approximation of order n − 1
satisfies

(2.23) LŨn−1 = 0.

In other words LŨn−1 is a measure of the error implied in supposing that Ũn−1 satisfies
(2.23). This error term is known (as it depends on the n− 1 approximation) and if added to
the original PDE as an inhomogeneous term makes the n − 1 approximation exact. In the
classic literature concerning parabolic equations and, in particular, the heat equation, such
terms model the existence of additional heat sources (or sinks). In financial theory similar
terms may arise as the result of transaction costs: we refer, for instance, to the asymptotic
expansion setting for optimal hedging under transaction costs in [34].
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We see how the parametrix expansion partitions the value of a given option computed in
a non–Black–Scholes world into a series of option values each computed in the Black–Scholes
world. This is exact in the case of the backward parametrix and approximately exact, if we
recall that Z is not a density, in the classical forward parametrix case. In section 5 we prove
how it is possible to bound the overall error derived by truncating the series at the nth term
with explicit and easily computable bounds uniformly decreasing as n goes to infinity and as
time to maturity decreases.

2.4. Computing the second term in the backward parametrix expansion. Formula
(2.14) gives the first term of the backward approximation of the fundamental solution of
L in (2.1). We now illustrate a method for approximating the second term of the expansion
(2.16). Recalling that ζ = (ξ, 0), we have

P1(z; ζ) :=

∫ t

0

∫
R

P (w; ζ)L̃(w)P (z;w)dw.

It turns out that a convenient choice of the coefficients b̄, c̄ in (2.13) is

(2.24) b̄ = −b(z), c̄ = c(z),

and therefore we set

(2.25) L̃(ζ)
z = a(z)∂ξξ − b(z)∂ξ + c(z) + ∂τ .

Note that, by (2.24), L̃
(ζ)
z is the adjoint of the frozen (forward) operator

(2.26) L(ζ)
z = a(z)∂ξξ + b(z)∂ξ + c(z) − ∂τ .

This fact will be used in section 3. We also performed numerical tests that show that, for a
local volatility model, the choice (2.24) is indeed optimal in the sense that it minimizes the
pricing error among all other possible choices of b̄, c̄.

Recalling the notation w = (y, s) and setting

(2.27) I(s) =

∫
R

P (y, s; ζ)L̃(y,s)P (z; y, s)dy,

the idea is to use the trapezoidal method to approximate

P1(z; ζ) =

∫ t

0
I(s)ds � t

2
(I(0) + I(t)) .

This allows us to exploit the fact that

I(0) = L̃(ζ)P (z; ζ)

since P (y, 0; ζ) is a Dirac delta centered at ζ. Note that this approximation avoids the compu-
tation of the spatial integral I(s) in (2.27) for any s: this results in a significant simplification
especially for high dimensional models.
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By (2.15) we have

L̃(y,s)P (z; y, s) =
(
L̃(y,s) − L̃(y,s)

z

)
P (z; y, s)

for t > s; then

I(s) =

∫
R

P (w; ζ)
(
L̃(w) − L̃(w)

z

)
P (z;w)dy

(by parts, for L
(w)
z as in (2.26))

=

∫
R

P (z;w)
(
L(w) − L(w)

z

)
P (w; ζ)dy,

and, passing to the limit as s goes to t, thanks to the choice (2.24), we obtain

I(t) = 0.

In conclusion, we have the following explicit formula for the backward parametrix approxi-
mation with two terms:

(2.28) Γ(z; ζ) � P (z; ζ) + P1(z; ζ) � P (z; ζ) +
t− τ

2
L̃(ζ)P (z; ζ).

By using this technique, it is not difficult to determine explicit expressions for higher order
approximations. However, we do not report them here since the preliminary experiments we
performed in local volatility models (cf. section 4) show a negligible contribution of the terms
of order higher than two.

3. Analytic formulae in local volatility models. By using the parametrix method, in this
section we derive analytic (closed form) approximation formulae for one-dimensional local
volatility models. This result seems significant on its own; however, we would like to emphasize
that analogous results are valid for general local or stochastic volatility models even in high
dimensions and possibly in a degenerate setting (i.e., for instance, for Asian options): we refer
the reader to the forthcoming paper [12] for more results in this direction.

Let us consider a local volatility model where the dynamic of the underlying asset is given
by the SDE

(3.1) dSt = μ(St, t)Stdt+ σ(St, t)StdWt,

where W is a one-dimensional Brownian motion and μ, σ are sufficiently regular coefficients.
Assuming a constant riskless interest rate r, the price V (S, t) of a European call option with
strike K and maturity T is the solution to the Cauchy problem

(3.2)

{
σ2(S,t)S2

2 ∂SSV (S, t) + rS∂SV (S, t)− rV (S, t) + ∂tV (S, t) = 0, S > 0, t ∈ ]0, T [ ,

V (S, T ) = (S −K)+, S > 0.

By the standard change of variables

(3.3) V (S, t) = e−r(T−t)u(r(T − t) + log S, T − t),
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we have that V solves (3.2) if and only if u solves

(3.4)

{
a(x, t)(∂xxu(x, t)− ∂xu(x, t))− ∂tu(x, t) = 0, x ∈ R, t ∈ ]0, T [ ,

u(x, 0) = (ex −K)+ , x ∈ R,

where

(3.5) a(x, t) =
1

2
σ2
(
ex−rt, T − t

)
.

In particular, the option price at t = 0 is given by

(3.6) V (S, 0) = e−rTu(rT + logS, T ),

where

(3.7) u(x, T ) =

∫
R

(
eξ −K

)+
Γ (x, T ; ξ, 0) dξ

and Γ is the fundamental solution of the PDE in (3.4).
Proceeding as in subsection 2.4, we consider the frozen operator corresponding to (2.25)

(3.8) L̃(ζ)
z = a(z)(∂ξξ + ∂ξ) + ∂τ .

Then the related backward parametrix is given by

(3.9) P (x, t; ξ, τ) =
1√

4πa(x, t)(t − τ)
exp

(
− (x− ξ)2

4a(x, t)(t − τ)
+

1

2
(x− ξ)− 1

4
a(x, t)(t− τ)

)
for t > τ .

With this choice the first term in the backward parametrix expansion (2.20)–(2.21) cor-
responds exactly to the Black–Scholes price computed with (constant) volatility:

(3.10) ũ0(x, t) =

∫
R

(
eξ −K

)+
P (x, t; ξ, 0) dξ = exΦ(d+)−KΦ(d−),

where

d± =
x− logK ± a(x, t)t√

4a(x, t)t

and

(3.11) Φ(x) =
1√
π

∫ x

−∞
e−y2dy.

Next we derive the explicit expression of the backward expansion with two terms.
Theorem 3.1. The second order parametrix approximation of the call price in (3.6) in the

local volatility model (3.1) is given by

(3.12) u(x, t) � ũ0(x, t) +
tK

2

(
a(logK, 0) − a(x, t)

)
P (x, t; logK, 0),

where a is as in (3.5) and ũ0 is as defined in (3.10).
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Proof. By (2.28) we have

Γ(x, t; ξ, τ) � P (x, t; ξ, τ) +
t− τ

2
L̃(ζ)P (x, t; ξ, τ),

where L̃(ζ) is the adjoint operator of L, acting in the variable ζ = (ξ, τ), and P is the backward
parametrix in (3.9). We first remark that

(3.13)
(
L(ζ) − L(ζ)

z

)(
eξ −K

)
= (a(ζ)− a(z)) (∂ξξ − ∂ξ)

(
eξ −K

)
= 0.

Then, recalling the notation z = (x, t), the second term in the parametrix expansion (2.21) is

u1(x, t) =
t

2

∫
R

(
eξ −K

)+
L̃(ζ)P (x, t; ξ, 0)dξ

(by (2.15))

=
t

2

∫ +∞

logK

(
eξ −K

)(
L̃(ζ) − L̃(ζ)

z

)
P (x, t; ξ, 0)dξ

(integrating by parts)

=
t

2

∫ +∞

logK

(
L(ζ) − L(ζ)

z

)(
eξ −K

)
P (x, t; ξ, 0)dξ

− t

2

[
P (z, ζ)∂ξ

(
(a(ζ)− a(z))

(
eξ −K

))]ξ=+∞
ξ=logK

(by (3.13))

= − t

2

[
P (z, ζ)

(
eξ (a(ζ)− a(z)) + ∂ξa(ζ)

(
eξ −K

))]ξ=+∞
ξ=logK

=
tK

2

(
a(logK, 0) − a(x, t)

)
P (x, t; logK, 0).

4. Numerical experiments. Although the results of this paper, i.e., the introduction of
the backward parametrix and the estimation of error bounds, are mainly theoretical, in this
section we aim to present some numerical experiment which should convince the reader of
the effectiveness of the parametrix method. While more complicated models could have been
considered, here we aim only to present some preliminary tests and refer the reader to a
forthcoming paper for a more detailed and extensive analysis of the numerical efficiency of
the parametrix method for computing option prices and the related sensitivities or Greeks.

In this section we consider the parametrix approximation with only two terms and evaluate
its performance by comparing it with several other numerical and analytical approximations
in some local volatility models. Specifically we consider three classes of models:

• the constant elasticity of variance (CEV) model by Cox and Ross [8];
• local volatility (LV) models of quadratic and hyperbolic form (cf., for instance, Iacus

[23], Jäckel [24], and Kahl and Jäckel [25]); and
• the path-dependent (two-dimensional) Hobson–Rogers model [20].
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4.1. CEV model. We first consider a particular one-dimensional local volatility model,
the well-known CEVmodel, where the dynamics of the underlying asset, under the risk neutral
measure, is given by

(4.1) dSt = rStdt+ σS1−α
t dWt.

Here r and σ are constants and α ∈ [0, 1]. Then (4.1) corresponds to (3.1) with μ(S, t) ≡ r
and σ(S, t) = σS−α: in this particular case we have

(4.2) a(x, t) =
σ2e−2α(x−rt)

2

in the approximation formula (3.12).
We opted for this model since there is a vast literature concerning the approximation of

CEV option prices so that we may compare the parametrix performance with several other
techniques. Moreover, very accurate formulae are available, and therefore we have reference
numbers for an (almost) exact comparison with our approximation. Let us remark explicitly
that the CEV pricing PDE is not uniformly parabolic, and, in particular, it does not satisfy the
nondegeneracy condition (5.3); nevertheless, at least formally, the parametrix method applies,
and we shall see that, as a matter of fact, for a wide range of values of the parameters, it
provides very accurate approximations.

We compare the parametrix with six different approximation techniques: note that some
of these techniques were introduced specifically for the CEV model, while the parametrix is a
quite general method.

We distinguish numerical from closed form approximations. In the first group we consider
• Cox [7] (see also Hsu, Lin, and Lee [22]; Cox and Ross [8]; and Schroder [30]);
• Shaw [31] (cf. Chapter 28); and
• Monte Carlo (MC).

In the second group, that of analytic approximations, we consider
• Hagan and Woodward [19] (see also Obloj [29]);
• Howison [21]; and
• Svoboda-Greenwood [32].

We aim to compare the performance of the parametrix with respect to the above methods in
the pricing of European call options for different values of the parameters α, σ, T , and K:
typically we consider α ranging from 1

4 to 3
4 and the maturity T from one week to one year.

We also consider different values of the strike price K, from 1 to 100.
Remark 4.1. In the CEV model, the strike K and the volatility coefficient σ are inversely

correlated. Indeed, by the transformation Yt =
St
K , from (4.1) we get

dYt = rYtdt+
σ

Kα
Y 1−α
t dWt,

which shows that K and σ are inversely proportional quantities: increasing the value of the
strike corresponds to decreasing the value of the volatility.

Regarding the numerical approximations, we recall that the formulae by Cox [7] express
the price of a call option as the sum of a series of Gamma cumulative distribution functions.
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0.05

0.10

0.15

0.20

0.25

Option Price

Figure 1. CEV-expansion option price by Cox [7] in the case α = 1
4
and T = 1

3
with a number n of terms

in the series expansion equal to n = 400, 420, 440, 460.

It is known that these formulae give a good local (at-the-money) approximation of the option
price. For instance, Figure 1 shows the Cox option prices in the case α = 1

4 and T = 1
3 with

a number n of terms in the series expansion equal to n = 400, 420, 440, 460: it is evident that
for far-from-the-money options this approximation gives wrong prices unless we consider a
high number of terms in the series expansion. This is particularly sensible for short times to
maturity.

On the other hand, the approximation by Shaw [31] expresses the payoff random variable
in terms of Bessel functions and then uses numerical integration to provide the option price.
Since it is an adaptive method, the representation of prices is valid globally even if the method
may become computationally expensive when we have to compute deep out-of- or in-the-
money option prices. We implemented both methods and found that in most cases they are
essentially equivalent and provide reliable reference prices. However, as we shall see shortly,
the approximation by Hagan and Woodward [19] also seems to be very accurate for all the
values of the parameters: since this last approximation gives closed form solutions, we decided
to use it to produce the reference values for the computation of the errors.

Concerning Monte Carlo (MC), it seems that it is not competitive with any of the other
approximations. In particular, the parametrix and the other analytic approximations we
considered, when suitably used, are generally much more accurate than MC solutions, and,
what is more, they give explicit algebraic formulae for option prices. For instance, in Figure 2
we represent the Hagan–Woodward price, obtained by (4.4), minus the MC price (continuous
line) and the parametrix price minus the MC price (dashed line) scaled to the at-the-money
price in the CEV model with α = 1

4 (left) and α = 1
2 (right). In the experiments, 500.000 MC

simulations, combined with an Euler discretization of the SDE with 100 steps, are performed.
The values of the other parameters are T = 0.25, σ = 30%, r = 5%, and K = 1. We
marked by green (respectively, red) the confidence regions where prices differ no more than
2 (respectively, 2.57) standard deviations from the simulated MC prices: this means that
with probability 95% (respectively, 99%) the true price (scaled to the at-the-money price)
belongs to the green (respectively, red) region. According to the standard interpretation of a
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0.002
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Figure 2. Hagan–Woodward minus MC price (continuous line) and parametrix minus MC price (dashed
line) scaled to the at-the-money price in the CEV model with α = 1

4
(left) and α = 1

2
(right). A 100-step

Euler discretization of the SDE and an MC with N = 500.000 simulations have been used. Moreover, T = 0.25,
σ = 20%, r = 5%, and K = 1. The 95% and 99% confidence regions for MC estimates are marked, respectively,
by green and red.

confidence interval, any price inside the bands can be the true price and is compatible (at the
given level of confidence) with the MC estimate.

Next we consider the analytic approximations. We recall that Hagan and Woodward in
[19], by using singular perturbation techniques, obtain explicit formulae for the approximated
implied volatility σB in a local volatility model where the forward price Ft of the asset obeys
an SDE of the form

(4.3) dFt = γ(t)A (Ft) dWt

for some deterministic and suitably regular functions γ and A. Equation (4.1) can be reduced
to (4.1) through the transformation Ft = er(T−t)St: in this case we also have

γ(t) = σerα(T−t) and A(F ) = F 1−α.

Therefore, the Hagan–Woodward approximation formula reads

(4.4) σB =
a

fα

(
1 +

1

24
α(3 − α)

(
erTS0 −K

f

)2

+
1

24

α2a2T

f2α

)
,

where

a =

√
1

T

∫ T

0
γ(t)2dt = σ

√
e2rαT − 1

2rαT
and f =

erTS0 +K

2
.

It is then sufficient to insert the implied volatility σB into the Black–Scholes formula to get
the option prices. Figure 3 shows the Hagan–Woodward call value minus the Cox call value,
scaled with the at-the-money value, as a function of S for different times to maturity and
values of α. Since the Hagan–Woodward approximation seems to be quite accurate, hereafter,
as already mentioned, we shall use it for computing the “true” (or reference) values in the
experiments.
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Figure 3. Hagan–Woodward approximate value minus Cox approximate value (with n = 1000 terms in the
series expansion), scaled with the at-the-money value, as a function of S, for T = 2, 6, 12 months and α = 1

4

(left), α = 3
4
(right), σ = 30%, r = 5%, and K = 1.
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Figure 4. Scaled errors of the parametrix approximation, as a function of S ∈ [0, 2], for T = 7, 15, 45 days
(left) and T = 4, 8, 12 months (right). α = 1

4
, σ = 30%, r = 5%, and K = 1.
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Figure 5. Scaled errors of the parametrix approximation as a function of S ∈ [0.2, 2] for T = 7, 15, 45 days
(left) and T = 4, 8, 12 months (right). α = 3

4
, σ = 30%, r = 5%, and K = 1.

We next test the computational performance of the parametrix approximation. Figure 4
compares the error relative to the at-the-money option value (in short, the scaled error) in the
case α = 1

4 for different times to maturity: T = 7, 15, 45 days in the left panel and T = 4, 8, 12
months in the right panel.

Figure 5 exhibits analogous results for α = 3
4 : in this case, we have bigger errors than in the

case α = 1
4 which is “closer” to the standard Black–Scholes model. For α = 3

4 , we also separate
the case S ∈ [ 2

10 , 2
]
from the case S ∈ [0, 2

10

]
, which we represent in Figure 6. The reason

is that, as previously remarked, the CEV diffusion operator is not uniformly parabolic and
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Figure 6. Scaled errors of the parametrix approximation as a function of S ∈ [0, 0.2] for T = 7, 15, 45 days
(left) and T = 4, 8, 12 months (right). α = 3

4
, σ = 30%, r = 5%, and K = 1.
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Figure 7. Relative errors as a function of K ∈ [1, 10] (left) and K ∈ [10, 100] (right) of the at-the-money
prices in the parametrix approximation. Here T = 1

2
, σ = 30%, r = 5%, and α = 1

4
, 1
2
, 3
4
.

degenerates at the boundary. In particular, in this case, the price process reaches the origin
with positive probability and this can be difficultly captured by a nondegenerate diffusion.
However, as reported in Figure 6, this fact seems to produce relevant errors only for extremely
out-of-the-money options; that is, S ∼ 1

100 when K = 1.
Finally, we examine the accuracy of the parametrix approximation as the strike K varies

or, equivalently, by Remark 4.1, the volatility σ varies. Figure 7 shows the relative errors,
defined as

CHW − CP

CHW
,

where CP , CHW are, respectively, the call prices given by the parametrix expansion and by
the Hagan–Woodward formula. Here we consider at-the-money options prices as functions
of K ∈ [10, 100]. Moreover, T = 1

2 , σ = 30%, r = 5%, and the values of α = 1
4 ,

1
2 ,

3
4

are considered. Experiments with other choices of the parameters give essentially the same
results and show that the parametrix prices basically coincide with the Hagan–Woodward
prices for K large (or σ small): in this case the approximation for α = 3

4 is even better than
it is for α = 1

4 .
Next we consider the matched asymptotic expansion (MAE) proposed by Howison [21].

In this case we can directly employ the approximation formula in [21, page 392] to compute
option prices. We also consider the recent paper by Svoboda-Greenwood [32], where another
approximated formula for CEV prices is obtained by performing a small time expansion of
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Figure 8. Scaled errors of parametrix (dashed line), MAE (thick line), and Svoboda-Greenwood (continuous
line) as a function of S, with α = 1

4
; at-the-money volatility is σ = 30% (left) and σ = 15% (right). Moreover,

T = 0.25, r = 5%, and K = 1.
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Figure 9. Scaled errors of parametrix (dashed line), MAE (thick line), and Svoboda-Greenwood (continuous
line) as a function of S, with α = 1

2
; at-the-money volatility is σ = 30% (left) and σ = 15% (right). Moreover,

T = 0.25, r = 5%, and K = 1.

the option prices around the forward-at-the-money value of the underlying. More precisely,
we consider the SDE

dYt = γ(t)f(Yt)dWt,

which corresponds to (4.1) after the transformation Yt = e−rtSt, with γ(t) = σe−rαt and
f(Y ) = Y 1−α. Actually, in [32], only the case of time independent γ = γ(t) is considered.
However, by using the same technique we generalize the result in [32, section 2.2] and obtain
the following formula for the approximated call option price with strike K and maturity T :

C(S, T ) ∼ (S − y0)Φ

(
S − y0

y1−α
0 σ0

)
+

((
1 +

(S − y0)
1−α

2y0

)
y1−α
0 σ0 +

(1− α)2

4

(S − y0)
4

σ0y
3−α
0

+
1

6
(S − y0)

2 σ0y
−1−α
0 (1 + α(2α − 3)) +

1

12
σ30y

1−3α
0 (1− α) (9α − 8)

)
Φ′
(
S − y0

y1−α
0 σ0

)
,

where y0 = Ke−rt, σ0 = σ
√

1−e−2rαT

2rα , and Φ is the standard normal cumulative density

function in (3.11).
In Figures 8, 9, and 10 we compare the scaled errors of the parametrix (dashed line),

MAE (thick line), and Svoboda-Greenwood (continuous line) approximations. It turns out
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Figure 10. Scaled errors of parametrix (dashed line), MAE (thick line), and Svoboda-Greenwood (contin-
uous line) as a function of S with α = 3

4
; at-the-money volatility is σ = 30% (left) and σ = 15% (right).

Moreover, T = 0.25, r = 5%, and K = 1.

that, at least for α ≤ 2
3 , the parametrix gives the best results: this is confirmed also by other

experiments that we do not report here. For α = 3
4 , parametrix and Svoboda-Greenwood

errors are of the same order even if the latter seems slightly better. In general the MAE is not
competitive with the other two approximations; this is particularly evident when σ is small
or K is large. We also remark that the MAE is not correct asymptotically for large S (see
also Figure 3 in [21]).

4.2. Parabolic and hyperbolic LV models. We consider two specifications of the volatility
function in the general local volatility (LV) model

dSt = rStdt+ σ(St, t)StdWt,

namely, the quadratic LV

σ(S, t) = σ0min
{
2,
√

1 + (S − β)2
}

and the hyperbolic LV, as defined in [24],

σ(S, t) = σ0

(
1− β + β2

β
S +

β − 1

β

(√
S2 + β2(1− S)2 − β

))
,

where σ0 and β are suitable parameters.

We remark that, if r is strictly positive, then both models cannot be reduced in the form
(4.3) where the coefficient A is independent of time. Consequently in this case the Hagan–
Woodward and Svoboda-Greenwood approximations do not apply. Therefore, we compare
the parametrix with an accurate MC method.

In Figure 11 the black line represents the parametrix call price minus an MC call price,
scaled to the at-the-money price, in the quadratic LV model (left) and hyperbolic LV model
(right). We set T = 0.25, r = 5%, and K = 1. Moreover, in the quadratic LV, we put β = 1
and σ0 = 20% so that in this model the volatility varies from the minimum 20% at-the-money
to the maximum 40%. In the hyperbolic LV, we consider the typical values (cf. [24]) σ = 20%
and β = 1

2 .
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Figure 11. The black line represents the difference, scaled to the at-the-money price, between the parametrix
call price and an MC call price in the quadratic (left) and hyperbolic (right) local volatility models. The 95%
and 99% MC confidence regions are marked, respectively, by green and red. A 100-step Euler discretization of
the SDEs and an MC with 500.000 simulations have been used. Moreover, T = 0.25, r = 5%, and K = 1.

In the experiments, a 100-step Euler discretization of the SDEs and an MC with 500.000
simulations have been used. As before, we marked by green (respectively, red) the confidence
regions where prices differ no more than 2 (respectively, 2.57) standard deviations from the
simulated MC prices; in other words, the true price (scaled to at-the-money price) belongs to
the green (red) region with probability 95% (99%).

Since in Figure 11 some errors appear corresponding to in-the-money options, for a more
comprehensive comparison, we report in Table 1 the MC and parametrix prices (not scaled)
for S ∈ {1.2; 1.3; 1.4; 1.5; 1.6}.

Table 1
MC and parametrix call prices in quadratic and hyperbolic LV models with σ0 = 20%, T = 0.25, r = 5%,

and K = 1. Moreover, β = 1 in the quadratic LV and β = 1
2
in the hyperbolic LV.

Call prices

Quadratic LV Hyperbolic LV

MC Parametrix MC Parametrix

S = 1.2 0.21352 0.213547 0.318564 0.318545
S = 1.3 0.312533 0.312535 0.417773 0.417748
S = 1.4 0.412432 0.412433 0.517571 0.517548
S = 1.5 0.512423 0.512423 0.61752 0.617503
S = 1.6 0.612422 0.612422 0.717507 0.717495

Clearly, in view of an extensive use of the parametrix approximation, a deeper analysis
of the performance for a wide range of parameters is in order. However, these preliminary
results seem promising.

4.3. Hobson–Rogers model. The Hobson–Rogers model [20] was introduced as an ex-
tension of the local volatility. In this model the volatility is defined as a function of the whole
trajectory of the underlying asset and not only in terms of the spot price. The model was fur-
ther generalized to a more flexible path dependent volatility model by two of the authors [13].
The main feature is that it generally leads to a complete market. We refer the reader to [14]
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for an empirical analysis which shows the effectiveness of the model and compares the hedging
performance with respect to standard stochastic volatility models.

We consider an average weight ψ that is a nonnegative, piecewise continuous, and inte-
grable function on ]−∞, T ]. We assume that ψ is strictly positive in [0, T ], and we set

Ψ(t) =

∫ t

−∞
ψ(s)ds.

Then we define the average process as

At =
1

Ψ(t)

∫ t

−∞
ψ(s)Zsds, t ∈ ]0, T ],

where Zt = log(e−rtSt) denotes the log-discounted price process. The standard Hobson–
Rogers model corresponds to the specification ψ(t) = eλt for some positive parameter λ.
Then by the Itô formula we have

dAt =
ϕ(t)

Φ(t)
(Zt −At) dt.

In a path dependent volatility model the log-price Zt = log St has the dynamics

dZt = μ(Zt −At)dt+ ν(Zt −At)dWt,

where μ = μ(·) and ν = ν(·) are suitable functions. Then, by usual no-arbitrage arguments,
we obtain the pricing operator

(4.5) Lu =
ν2(z − a)

2
(∂zzu− ∂zu) +

ϕ(t)

Φ(t)
(z − a)∂au+ ∂tu, (t, z, a) ∈ ]0, T [ × R

2.

We remark that L is not uniformly parabolic (i.e., does not satisfy condition (5.3) in R
2).

However, if we assume that ν is smooth and bounded from above and below by positive
constants, then L is a hypoelliptic operator belonging to the general class of Kolmogorov
operators for which the parametrix method has been successfully employed in [11] to construct
a fundamental solution. Therefore, it is possible to extend all the theoretical results of this
paper to include L in (4.5).

As in the previous examples, we tested the parametrix against the MC method, and in the
experiments a 100-step Euler discretization of the SDEs and 500.000 simulations have been
used. In Figure 12 we compare the parametrix and MC approximations for typical values of
the parameters, assuming different values for the initial average A0—specifically A0 = Z0 in
the left panel and A0 = Z0 − 1

5 in the right panel. In Table 2 we also report some of the
corresponding MC and parametrix prices.

The last experiment in Figure 13 is similar, but we consider different maturities, namely,
1 month in the left panel and 6 months in the right panel.
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0.8 0.9 1.0 1.1 1.2 1.3
S

�0.006

�0.004

�0.002

0.002

0.004

0.006

Scaled Error

0.8 0.9 1.0 1.1 1.2 1.3
S

�0.006

�0.004

�0.002

0.002

0.004

0.006

Scaled Error

Figure 12. The black line represents the difference, scaled to the at-the-money price, between the parametrix
call price and an MC call price in the Hobson–Rogers model for S0 ∈ [

7
10
, 13
10

]
and ψ(t) = et, ν(x) = σ

√
2x2 + 1,

σ = 20%, T = 0.25, r = 5%, and K = 1. The 95% and 99% MC confidence regions are marked, respectively,
by green and red. A 100-step Euler discretization of the SDEs and an MC with 500.000 simulations have been
used. Moreover, A0 = Z0 (left) and A0 = Z0 − 1

5
(right).

Table 2
MC and parametrix call prices in the Hobson–Rogers model with ψ(t) = et, ν(x) = σ

√
2x2 + 1, σ = 20%,

T = 0.25, r = 5%, and K = 1 in the case A0 = Z0 (left) and A0 = Z0 − 1
5
(right).

Call prices

A0 = Z0 A0 = Z0 − 1
5

MC Parametrix MC Parametrix

S = 0.8 0.000646705 0.000679473 0.000612704 0.000696547
S = 0.9 0.00820041 0.00819487 0.00904307 0.00926125
S = 1 0.0400307 0.0399139 0.0430224 0.0429977
S = 1.1 0.0998243 0.0998026 0.102566 0.102507
S = 1.2 0.168063 0.168108 0.16929 0.169278
S = 1.3 0.230935 0.230946 0.231299 0.231269

0.90 0.95 1.00 1.05 1.10 1.15 1.20
S

�0.003

�0.002

�0.001

0.001

0.002

0.003

Scaled Error

0.90 0.95 1.00 1.05 1.10 1.15 1.20
S

�0.005

0.005

Scaled Error

Figure 13. The black line represents the difference, scaled to the at-the-money price, between the parametrix
call price and an MC call price in the Hobson–Rogers model for S0 ∈ [

8
10
, 12
10

]
and ψ(t) = et, ν(x) = σ

√
2x2 + 1,

σ = 10%, A0 = Z0, r = 5%, and K = 1. The 95% and 99% MC confidence regions are marked, respectively,
by green and red. A 100-step Euler discretization of the SDEs and an MC with 500.000 simulations have been
used. Moreover, T = 1

12
(left) and T = 6

12
(right).
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5. Error bounds. In this section we present the parametrix expansion in its full generality
and derive easily computable error estimates. We consider a parabolic differential equation in
the form

(5.1) Lu :=
N∑

i,j=1

aij(z)∂xixju+
N∑
i=1

bi(z)∂xiu+ c(z)u − ∂tu = 0, z = (x, t) ∈ R
N × R,

where A(z) = (aij(z)) is a symmetric and positive definite matrix. Throughout this section
we systematically denote by z = (x, t) and ζ = (ξ, τ) the points in R

N+1. We also denote by
λ1(z), . . . , λN (z) the eigenvalues of A(z) and set2

m := inf
i=1,...,N
z∈RN+1

λi(z), M := sup
i=1,...,N
z∈RN+1

λi(z)μ(z).

Our main hypotheses are the following.
[H1] m,M are positive and real numbers.
[H2] The coefficients of L are bounded functions and

(5.2) |aij(x, t)− aij(ξ, τ)| ≤ α
(
|x− ξ|+ |t− τ | 12

)
, (x, t), (ξ, τ) ∈ R

N+1,

for i, j = 1, . . . , N and for some positive constant α.
As a consequence of [H1] we have the usual uniform parabolicity condition:

(5.3) m|ξ|2 ≤
N∑

i,j=1

aij(z)ξiξj ≤M |ξ|2, ξ ∈ R
N , z ∈ R

N+1.

5.1. Forward parametrix. In this section for brevity we consider only the classical case,
corresponding to b̄ = c̄ = 0 in (2.4). Given w ∈ R

N+1, we denote by Γw(z; ζ) the fundamental
solution to the frozen operator Lw defined by

(5.4) Lw =

N∑
i,j=1

aij(w)∂xixj − ∂t.

We recall that Γw(z; ζ) = Γw(z − ζ), where

(5.5) Γw(x, t) := Γw(x, t; 0, 0) =
(4πt)−

N
2√

detA(w)
exp

(
−〈A−1(w)x, x〉

4t

)
, x ∈ R

N , t > 0.

We define the forward parametrix

(5.6) Z(z; ζ) = Γζ(z; ζ).

2Equivalently we may use m := infz∈RN+1 μ(z) and M := supz∈RN+1 μ(z), where μ(z) is the Euclidean
norm of A(z) in R

N+1 × R
N+1 (and also equal to the Euclidean norm of (λ1(z), . . . , λN(z)), the vector of the

eigenvalues of A(z)). This gives less precise, but more easily computable, estimates.
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We recall Notation 2.1 and remark explicitly that

(5.7) L
(z)
ζ Z(z; ζ) = 0 for z �= ζ.

The following classical result (cf., for instance, Theorem 1.4 in [11]) states the existence of a
fundamental solution Γ of operator L.

Theorem 5.1. Assume hypotheses [H1] and [H2]. Then for every ζ ∈ R
N+1, the function

defined by

(5.8) Γ(z; ζ) = Z(z; ζ) +

+∞∑
n=1

∫ t

τ

∫
RN

Z(z;w)(LZ)n(w; ζ)dw, t > τ,

is a fundamental solution of L in (5.1). In (5.8) we have

(LZ)1(w; ζ) = L(w)Z(w; ζ), w = (y, s),

(LZ)n+1(w; ζ) =

∫ s

τ

∫
RN

L(w)Z(w; z0)(LZ)n(z0; ζ)dz0, n ≥ 1,

and, for every T > 0, the series

(5.9) Φ(w; ζ) :=

+∞∑
n=1

(LZ)n(w; ζ)

converges uniformly for w ∈ R
N × ]τ, τ + T [.

Our first result is the following global estimate for the parametrix approximation truncated
at the nth term.

Theorem 5.2. Under the assumptions of Theorem 5.1, for every positive ε we have∣∣∣∣∣Γ(z; ζ)− Z(z; ζ)−
n−1∑
k=1

∫ t

τ

∫
RN

Z(z;w)(LZ)k(w; ζ)dw

∣∣∣∣∣
≤
√

2

π

(
M + ε

m

)N
2

fn

(
ηε,T

√
2π(t− τ)

)
ΓM+ε(z; ζ)

(5.10)

for t ∈ ]τ, τ + T [, where ΓM+ε is the Gaussian density defined in (A.1)–(A.2), ηε,T is the
constant defined in (A.7), and

(5.11) fn(η) = e
η2

2 (η + 1)

(
η2

2

)[n+1
2 ][

n+1
2

]
!
,

with [a] denoting the integer part of a ∈ R.
Remark 5.3. We remark explicitly that when η = ηε,T

√
2π(t− τ) < 1 in (5.11),

fn(η) ≤ C
ηn(
n
2

)
!
, n ∈ N,
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for some positive constant C so that the convergence of the parametrix approximation is ex-
tremely fast. This is the case, for instance, when t− τ � 1, i.e., for short time to maturity.
Also note that (5.10) is a global estimate with respect to the spatial variables.

Proof of Theorem 5.2. Theorem 5.2 is based on several results whose proofs are postponed
to the appendix. We have∣∣∣∣∣Γ(z; ζ)− Z(z; ζ)−

n−1∑
k=1

∫ t

τ

∫
RN

Z(z;w)(LZ)k(w; ζ)dw

∣∣∣∣∣ ≤
∞∑
k=n

∫ t

τ

∫
RN

Z(z;w) |(LZ)k(w; ζ)| dw

(by Lemma A.1, estimate (A.8), and the reproduction property)

≤
(
M + ε

m

)N
2

ΓM+ε(z; ζ)
∞∑

k=n

∫ t

τ

ΓE

(
1
2

)k
ΓE

(
k
2

) ηkε,T

(s− τ)1−
k
2

ds

(using the properties of the Gamma function3)

(5.12) =

(
M + ε

m

)N
2

ΓM+ε(z; ζ)

√
2

π

∞∑
k=n

(
ηε,T

√
2π(t− τ)

)k
k!!

.

Then estimate (5.10) follows from some elementary computation. Indeed, if n is even, then[
n+1
2

]
= n

2 and we have

∞∑
k=n

ηk

k!!
=

∞∑
k=n

2

η2k

(2k)!!
+

∞∑
k=n

2
+1

η2k−1

(2k − 1)!!
≤

∞∑
k=n

2

η2k

(2k)!!
+

∞∑
k=n

2
+1

η2k−1

(2k − 2)!!

(since (2k)!! = 2kk!)

≤
∞∑

k=n
2

1

k!

(
η2

2

)k

+

∞∑
k=n

2

η2k+1

2kk!
= fn(η),

with fn as in (5.11) and using the fact that

∞∑
k=n

ηk

k!
=
eηηn

n!
.

The case of n odd can be treated analogously and is omitted.

From Theorem 5.2 we deduce the following forward parametrix expansion for solutions to
the Cauchy problem for L.

3Recall that
ΓE

(
1
2

)k
ΓE

(
k
2

) =
(2π)

k−1
2

(k − 2)!!
,

where n!! is the double factorial defined by n!! = 2 · 4 · 6 · · ·n if n is even and n!! = 1 · 3 · 5 · · ·n if n is odd.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

858 F. CORIELLI, P. FOSCHI, AND A. PASCUCCI

Theorem 5.4. The solution to the Cauchy problem

(5.13)

{
Lu(x, t) = 0, x ∈ R

N , t > 0,

u(x, 0) = ϕ(x), x ∈ R
N ,

has an expansion of the form (2.17)–(2.18)–(2.19).
Proof. For simplicity let us consider only the one-dimensional case. By formulae (2.3) and

(5.8) we have

u(z) =

∫
R

Z(z; ξ, 0)ϕ(ξ)dξ +

+∞∑
n=1

∫
R

(∫ t

τ

∫
R

Z(z;w)(LZ)n(w; ξ, 0)dw

)
ϕ(ξ)dξ.

Using the expression of (LZ)1 in (5.1), we have

u1(z) =

∫
R

ϕ(ξ)

∫ t

0

∫
R

Z(z; z0)LZ(z0; ξ, 0)dz0dξ =

∫ t

0

∫
R

Z(z; z0)L

∫
R

ϕ(ξ)Z(z0; ξ, 0)dξ︸ ︷︷ ︸
=u0(z0)

dz0.

Moreover,

u2(z) =

∫
R

ϕ(ξ)

∫ t

0

∫
R

Z(z; z1)

∫ t1

0

∫
R

LZ(z1; z0)LZ(z0; ξ, 0)dz0dz1dξ

(changing the order of integration)

=

∫ t

0

∫
R

Z(z; z1)

∫ t1

0

∫
R

LZ(z1; z0)L

∫
R

ϕ(ξ)Z(z0; ξ, 0)dξ︸ ︷︷ ︸
=u0(z0)

dz0dz1

=

∫ t

0

∫
R

Z(z; z1)

(
L

∫ t1

0

∫
R

Z(z1; z0)Lu0(z0)dz0︸ ︷︷ ︸
=u1(z1)

+Lu0(z1)

)
dz1,

and this proves (2.19) for n = 2. The general case can be proved by induction.
As a byproduct of the parametrix method, we also obtain the following upper Gaussian

estimate of the fundamental solution.
Corollary 5.5. For every ε, T > 0, we have

Γ(z; ζ) ≤
(
M + ε

m

)N
2 (

1 + ηε,T
√

2π(t− τ)
)
eπ(t−τ)η2ε,T ΓM+ε(z; ζ)

for z, ζ ∈ R
N+1, t ∈ ]τ, τ + T [, where ΓM+ε is the Gaussian density defined in (A.1)–(A.2)

and ηε,T is the constant in (A.7).
Proof. By Theorem 5.2 we have

Γ(z; ζ) = Z(z; ζ) +
∞∑
k=1

∫ t

τ

∫
RN

Z(z;w)(LZ)k(w; ζ)dw;
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therefore, as in (5.12), we get

Γ(z; ζ) ≤
(
M + ε

m

)N
2

ΓM+ε(z; ζ)

∞∑
k=0

(
ηε,T

√
2π(t− τ)

)k
k!!

,

and the thesis follows since ∞∑
k=0

ηk

k!!
≤ (1 + η)e

η2

2

for η > 0.

5.2. Backward parametrix. We assume the following additional hypothesis, which allows
us to introduce the adjoint operator of L.
[H3] The derivatives ∂xiaij, ∂xixjaij , ∂xibi are bounded functions.

We define the adjoint operator L̃ of L as usual:

(5.14) L̃u =
N∑

i,j=1

aij∂xixju+
N∑
i=1

b̃i∂xiu+ c̃u+ ∂tu,

where

(5.15) b̃i = −bi + 2

N∑
j=1

∂xiaij, c̃ = c+

N∑
i,j=1

∂xixjaij −
N∑
i=1

∂xibi.

Thus we have ∫
RN+1

ϕLψ =

∫
RN+1

ψL̃ϕ, ϕ, ψ ∈ C∞
0 (RN+1),

and the following classical result holds (cf., for instance, [17, Chap. 1, Theor. 15]).

Theorem 5.6. There exists a fundamental solution Γ̃ of L̃, and we have

(5.16) Γ(z; ζ) = Γ̃(ζ; z), z, ζ ∈ R
N+1, z �= ζ.

For fixed w ∈ R
N+1, we define the frozen operator

L̃(ζ)
w =

N∑
i,j=1

aij(w)∂ξiξj + ∂τ

and denote by P (z; ζ) the backward parametrix defined as the fundamental solution of L̃
(ζ)
w

with w = z, or, more precisely,

(5.17) P (z; ζ) = Γ̃z(ζ; z) = Γz(z − ζ)

for Γz as in (5.5). Analogously to (5.7), we have

L̃(ζ)
z P (z; ζ) = 0 for z �= ζ.
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Our main result reads as follows.

Theorem 5.7. Assume hypotheses [H1], [H2], and [H3]. Then, for every ζ ∈ R
N+1, the

following expansion of the fundamental solution Γ holds:

(5.18) Γ(z; ζ) = P (z; ζ) +

∫ t

τ

∫
RN

P (z;w)Ψ(w; ζ)dw, t > τ,

where

(5.19) Ψ(z; ζ) =
+∞∑
k=1

(LP )k(z; ζ),

with

(LP )1(z; ζ) = L(z)P (z, ζ),

(LP )k+1(z; ζ) =

∫ t

τ

∫
RN

L(z)Z(z;w)(LP )k(w; ζ)dw,

and, for every T > 0, the series in (5.9) converges uniformly in the strip R
N × ]τ, τ + T [.

Moreover, for every positive ε, we have the following estimate for the approximation truncated
at the nth term: ∣∣∣∣∣Γ(z; ζ)− P (z; ζ)−

n−1∑
k=1

∫ t

τ

∫
RN

P (z;w)(LP )k(w; ζ)dw

∣∣∣∣∣
≤
√

2

π

(
M + ε

m

)N
2

fn

(
η̃ε,T

√
2π(t− τ)

)
ΓM+ε(z; ζ)

(5.20)

for t ∈ ]τ, τ + T [, where η̃ε,T is defined in (A.10) and fn in (5.11). As a consequence, the
solution to the Cauchy problem (5.13) has an expansion of the form (2.17)–(2.20)–(2.21).

Proof. Proceeding as in the forward case, one can prove that

(5.21) Γ(z; ζ) = Γ̃(ζ; z) = Γ̃z(ζ; z) +

∫ t

τ

∫
RN

Γ̃w(ζ;w)Φ̃(w; z)dw, t > τ,

where

(5.22) Φ̃(ζ; z) =

+∞∑
k=1

Ik(ζ; z),

with

I1(ζ; z) = L̃(ζ)Γ̃z(ζ; z),

Ik+1(ζ; z) =

∫ t

τ

∫
RN

L̃(ζ)Γ̃w(ζ;w)Ik(w; z)dw,
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and the series converges uniformly on the strips. Moreover, error estimate (5.20) holds true.
In order to conclude the proof, it suffices to invoke Theorem 5.6 to prove that the terms of
the expansions (5.18)–(5.19) and (5.21)–(5.22) coincide, that is,

(5.23)

∫ t

τ

∫
RN

P (z;w)(LP )k(w; ζ)dw =

∫ t

τ

∫
RN

Γ̃w(ζ;w)Ik(w; z)dw

for every k ∈ N.

For k = 1, recalling (5.17), we have∫ t

τ

∫
RN

Γ̃w(ζ;w)I1(w; z)dw =

∫ t

τ

∫
RN

P (w; ζ)L̃(w)P (z;w)dw,

so that the thesis follows immediately by integrating by parts since we have no contribution
at borders. Indeed, denoting w = (y, s), formally we have∫ t

τ

∫
RN

Γw(w; ζ)∂sΓz(z;w)dw = Ī −
∫ t

τ

∫
RN

∂sΓw(w; ζ)Γz(z;w)dw,

where

Ī =

∫
RN

Γ(y,t)(y, t; ξ, τ)Γ(x,t)(x, t; y, t)dy −
∫
RN

Γ(y,τ)(y, τ ; ξ, τ)Γ(x,t)(x, t; y, τ)dy = 0

since Γ(x,t)(x, t; y, t) = δx(y) and Γ(y,τ)(y, τ ; ξ, τ) = δξ(y). On the other hand, the above
argument can be made rigorous by performing the integration by parts on a thinner strip
Sτ+δ,t−δ and then applying the dominated convergence theorem as δ → 0+ combined with the
summability estimate (A.9).

For k = 2, we have∫ t

τ

∫
RN

Γz0(z0; ζ)

∫ t

t0

∫
RN

L̃(z0)Γz1(z1; z0)L̃
(z1)Γz(z; z1)dz1dz0

=

∫ t

τ

∫
RN

Γz0(z0; ζ)

(
L̃(z0)

∫ t

t0

∫
RN

Γz1(z1; z0)L̃
(z1)Γz(z; z1)dz1

+

∫
RN

Γ(y,t0)(y, t0; z0)L̃
(y,t0)Γz(z; y, t0)dy

)
dz0 ≡ J1 + J2,

where, using again that Γ(y,t0)(y, t0; z0) = δx0(y), we get

J2 =

∫ t

τ

∫
RN

Γz0(z0; ζ)L̃
(z0)Γz(z; z0)dz0

(proceeding as in the case k = 1)

=

∫ t

τ

∫
RN

L(z0)Γz0(z0; ζ)Γz(z; z0)dz0;
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on the other hand,

J1 =

∫ t

τ

∫
RN

Γz0(z0; ζ)L̃
(z0)

∫ t

t0

∫
RN

Γz1(z1; z0)L̃
(z1)Γz(z; z1)dz1dz0

(by parts as before)

=

∫ t

τ

∫
RN

L(z0)Γz0(z0; ζ)

∫ t

t0

∫
RN

L(z1)Γz1(z1; z0)Γz(z; z1)dz1dz0

−
∫
RN

Γ(y,τ)(y, τ ; ξ, τ)

∫ t

τ

∫
RN

L(z1)Γz1(z1; y, τ)Γz(z; z1)dz1dy

(since Γ(y,τ)(y, τ ; ξ, τ) = δξ(y))

=

∫ t

τ

∫
RN

L(z0)Γz0(z0; ζ)

∫ t

t0

∫
RN

L(z1)Γz1(z1; z0)Γz(z; z1)dz1dz0

−
∫ t

τ

∫
RN

L(z1)Γz1(z1; ζ)Γz(z; z1)dz1.

Combining the expressions of J1 and J2, eventually we obtain∫ t

τ

∫
RN

Γz0(z0; ζ)

∫ t

t0

∫
RN

L̃(z0)Γz1(z1; z0)L̃
(z1)Γz(z; z1)dz1dz0

=

∫ t

τ

∫
RN

L(z0)P (z0; ζ)

∫ t

t0

∫
RN

L(z1)P (z1; z0)P (z; z1)dz1dz0,

which concludes the proof. As before, the previous argument should be made rigorous by
some approximating procedure. The general case can be achieved by induction.

Appendix. We collect several lemmas that are preliminary to the proofs of Theorems 5.2
and 5.7. These lemmas are essentially estimates of Γw in (5.5) and its derivatives in terms of
the fundamental solution of the heat equation.

Given a constant μ > 0, we denote by Γμ the fundamental solution to the heat operator

(A.1) μ
N∑
i=1

∂xixi − ∂t.

Lemma A.1. For every z, ζ, w ∈ R
N+1 with z �= ζ, we have

(m
M

)N
2
Γm(z; ζ) ≤ Γw(z; ζ) ≤

(
M

m

)N
2

ΓM (z; ζ).

Proof. We prove only the second inequality in the case ζ = 0. Keeping in mind formula
(5.5), we see that the thesis follows directly from condition (5.3). Indeed, we have

(A.2) Γw(z) ≤ 1

(4πtm)
N
2

exp

(
− |x|2
4tM

)
=

(
M

m

)N
2

ΓM (z).
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Lemma A.2. For every ε, μ > 0 and n ∈ N ∪ {0} we have( |x|√
t

)n

Γμ(x, t) ≤
(n
ε

)n
2
(μ + ε)n

(
μ+ ε

μ

)N
2

Γμ+ε(x, t)

for any x ∈ R
N and t > 0.

Proof. Setting a = |x|√
t
, we have( |x|√

t

)n

Γμ(z, 0) = an(4πμt)−
N
2 exp

(
− a2

4μ

)
≤ (4πμt)−

N
2 exp

(
− a2

4(μ + ε)

)
sup
R+

G,

where

(A.3) G(a) = an exp

(
−
(

1

4μ
− 1

4(μ+ ε)

)
a2
)
.

The thesis follows by a straightforward computation, since G attains a global maximum at

ā =

√
2nμ(μ+ε)

ε and

G(ā) =

(
2nμ(μ+ ε)

eε

)n
2

≤
(n
ε

)n
2
(μ+ ε)n.

Lemma A.3. For every ε > 0 and i, j = 1, . . . , N we have

|∂xiΓw(z; ζ)| ≤ 1

2
√
ε(t− τ)

(
M + ε

m

)N
2
+1

ΓM+ε(z; ζ),(A.4)

∣∣∂xixjΓw(z; ζ)
∣∣ ≤ 1

ε(t− τ)

(
M + ε

m

)N
2
+2

ΓM+ε(z; ζ)(A.5)

for any z, ζ, w ∈ R
N+1 with t > τ .

Proof. For the sake of simplicity, we prove the above estimates in the case ζ = 0. We have

|∂xiΓw(z)| = 1

2

∣∣(A−1(w)x
)
i

∣∣
t

Γw(z)

(by Lemma A.1)

≤ 1

2m
√
t

(
M

m

)N
2 |x|√

t
ΓM (z),

and (A.5) follows by applying Lemma A.2 with μ =M and n = 1.
Moreover,

∣∣∂xixjΓw(z)
∣∣ = 1

2t

∣∣∣∣A−1(w)ij +
1

2t

(
A−1(w)x

)
i

(
A−1(w)x

)
j

∣∣∣∣Γw(z) ≤ 1

2t

(
1

m
+

|x|2
2m2t

)
Γw(z),

and (A.4) easily follows by Lemmas A.1 and A.2 with μ =M .
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Lemma A.4. For every positive ε and T , we have

(A.6)
∣∣∣L(z)Z(z; ζ)

∣∣∣ ≤ ηε,T√
t− τ

ΓM+ε(z; ζ), z, ζ ∈ R
N+1, t ∈ ]τ, τ + T [ ,

where

ηε,T := αN2

(
2

ε

) 3
2
(
M + ε

m

)N
2
+2(

M + ε+

√
ε

2

)
+ β

N

2
√
ε

(
M + ε

m

)N
2
+1

+ γ

(
M + ε

m

)N
2 √

T

(A.7)

and
β := sup

i=1,...,N
z∈RN+1

|bi(z)|, γ := sup
z∈RN+1

|c(z)|,

and α is the constant in (5.2).
Proof. For t > τ , we have

|LZ(z; ζ)| = |(L− Lζ)Z(z; ζ)| ≤ I1 + I2 + I3,

where

I1 =

N∑
i,j=1

|aij(z)− aij(ζ)|
∣∣∂xixjZ(z; ζ)

∣∣
(by (5.2))

≤ αN2
(|x− ξ|+√

t− τ
)
max
i,j

∣∣∂xixjZ(z; ζ)
∣∣

(by Lemma A.3)

≤ αN2

ε

(
M + ε

m

)N
2
+2(

1 +
|x− ξ|√
t− τ

)
ΓM+ε(z; ζ)

(by Lemma A.2)

≤ αN2

ε

(
M + ε

m

)N
2
+2(M + 2ε

M + ε

)N
2
(
1 +

M + 2ε√
ε

)
ΓM+2ε(z; ζ)

≤ αN2

ε
3
2

(
M + 2ε

m

)N
2
+2 (

M + 2ε+
√
ε
)
ΓM+2ε(z; ζ).

Moreover, by Lemma A.3, we have

I2 =

N∑
i=1

|bi(z)| |∂xiZ(z; ζ)| ≤ β
N

2
√
ε(t− τ)

(
M + ε

m

)N
2
+1

ΓM+ε(z; ζ);

finally, by Lemma A.1, we have

I3 = |c(z)|Z(z; ζ) ≤ γ

(
M + ε

m

)N
2

ΓM+ε(z; ζ).
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Lemma A.5. For every ε > 0 and k ≥ 1 the following estimate for the term (LZ)k in (5.9)
holds:

(A.8) |(LZ)k(z; ζ)| ≤
ΓE

(
1
2

)k
ΓE

(
k
2

) ηkε,T

(t− τ)1−
k
2

ΓM+ε(z; ζ), z, ζ ∈ R
N+1, t > τ,

where ηε,T is defined in (A.7) and ΓE denotes Euler’s Gamma function.
Proof. We prove (A.8) by induction on k. The case k = 1 was proved in Lemma A.4. Let

us now assume that (A.8) holds for k and prove it for k + 1. We have

|(LZ)k+1(z; ζ)| =
∣∣∣∣∫ t

τ

∫
RN

L(z)Z(z;w)(LZ)k(w; ζ)dw

∣∣∣∣
(by Lemma A.4, the inductive hypothesis, and denoting (y, s) = w)

≤ ηk+1
ε,T

ΓE

(
1
2

)k
ΓE

(
k
2

) ∫ t

τ

1
√
t− s(s− τ)1−

k
2

∫
RN

ΓM+ε(x, t; y, s)ΓM+ε(y, s; ξ, τ)dyds

(by the reproduction property4 for ΓM+ε and by the change of variable s = (1− r)τ + rt)

=
ηk+1
ε,T

(t− τ)1−
k+1
2

ΓE

(
1
2

)k
ΓE

(
k
2

) ∫ 1

0

1

r1−
k
2
√
1− r

dr ΓM+ε(z; ζ),

and the thesis follows by the known properties5 of Euler’s Gamma function.
Finally, we recall Notation 2.1 and state the dual version of Lemmas A.3 and A.4. Proofs

are omitted since they are analogous.
Lemma A.6. For every ε > 0 and i, j = 1, . . . , N we have

|∂ξiΓw(z; ζ)| ≤ 1

2
√
ε(t− τ)

(
M + ε

m

)N
2
+1

ΓM+ε(z; ζ),

∣∣∂ξiξjΓw(z; ζ)
∣∣ ≤ 1

ε(t− τ)

(
M + ε

m

)N
2
+2

ΓM+ε(z; ζ)

for any z, ζ, w ∈ R
N+1 with t > τ .

Lemma A.7. Under hypotheses [H1]–[H3], for every positive ε, we have

(A.9)
∣∣∣L̃(ζ)P (z; ζ)

∣∣∣ ≤ η̃ε,T√
t− τ

ΓM+ε(z; ζ), z, ζ ∈ R
N+1, t > τ,

4For every x, ξ ∈ R
N and τ < s < t, we have

∫
RN

ΓM+ε(z; y, s)ΓM+ε(y, s; ζ)dy = ΓM+ε(z; ζ).

5It holds that ∫ 1

0

1

r1−
k
2
√
1− r

dr =
ΓE

(
1
2

)
ΓE

(
k
2

)
ΓE

(
k+1
2

) .
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where

η̃ε,T := αN2

(
2

ε

) 3
2
(
M + ε

m

)N
2
+2(

M + ε+

√
ε

2

)
+ β̃

N

2
√
ε

(
M + ε

m

)N
2
+1

+ γ̃

(
M + ε

m

)N
2 √

T ,

(A.10)

where

β̃ := sup
i=1,...,N
z∈RN+1

|̃bi(z)|, γ̃ := sup
z∈RN+1

|c̃(z)|.
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