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option pricing

Marco Di Francesco and Andrea Pascucci

Dipartimento di Matematica, Università di Bologna ∗

Abstract
We prove continuous dependence results for solution to the Cauchy problem related to

degenerate parabolic equations arising in the valuation of financial derivatives. These results
are crucial in some standard calibration procedure for recent stochastic volatility and interest
rates models.

1 Introduction

In this paper we study the continuous dependence properties of solutions to parabolic equations
whose coefficients are functions of a finite number of real parameters. We encountered this
problem in [9], [7] while examining a stochastic volatility model for pricing and hedging financial
options. It is well-known that in a Markovian setting the evaluation of derivative securities
involves the study of the Cauchy problem related to some parabolic partial differential equation.
It is the case of the standard heat equation in the classical Black&Scholes model [3]; while
parabolic (possibly degenerate) equations, with variable coefficients, of the general form

Lu :=
N∑

i,j=1

aij∂xixju +
N∑

i=1

ai∂xiu + au − ∂tu = 0, (x, t) ∈ R
N+1, (1.1)

arise in more recent models. The coefficients of the equation depend on the so called volatility
structure which measures the uncertainty about future price movements of the assets underlying
the option contract. As a matter of fact, the volatility is the key factor of a pricing model and
its estimation is one of the main issues.

Given a set of quoted option prices (u∗(xi, ti))i∈I , it is usual to calibrate a pricing model
to the market by solving the inverse problem of finding those coefficients of L which make the
model match (or at least approximate) the observed prices. The simplest way to do this is
to parametrize the coefficients, that is to assume that aij = aij(·; α), ai = ai(·; α), a = a(·; α)
depend on a vector α = (α1, . . . , αp) of real numbers in a domain A. Let us denote by u(·; α) the
solution to the Cauchy problem for (1.1) corresponding to α and with assigned initial condition:
we look for that α which best fits the data by solving the nonlinear least squares problem

min
α∈A

∑
i∈I

|u(xi, ti; α) − u∗(xi, ti)|2 + ρ(α) (1.2)
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where ρ(α) is some penalization term. In general this problem is not well-posed (cf., for instance,
[4]), however under suitable assumptions, standard numerical procedures based on the Newton
method allow to select an approximate solution. This requires the computation, for k = 1, . . . , p,
of the derivative vk = ∂u(·;α)

∂αk
that is solution, at least formally, of the equation

Lvk = −
N∑

i,j=1

(∂αk
aij)∂xixju −

N∑
i=1

(∂αk
ai)∂xiu − (∂αk

a)u

obtained by differentiating (1.1) with respect to αk. This fact is well-known in the framework
of standard uniformly parabolic equation where several results on the continuous dependence
properties of solutions with respect to the parameters are available. On the contrary there are
relevant kinds of financial derivatives like path-dependent options of Asian style (cf. for instance
[2] and [1]), or recent stochastic volatility models (cf. the Hobson&Rogers model [11] and path
dependent volatility [10]), or some interest rates models (cf., for instance, [5] or [21] concerning
the Markovian realization in the Heath-Jarrow-Morton framework) which involve hypoelliptic
ultra-parabolic equations for which such results, as far as we know, have not been proved. In
the case of constant coefficients, the prototype of degenerate equations we are interested in is
the following one:

∂xxu + x∂yu − ∂tu = 0, (x, y, t) ∈ R
3. (1.3)

Note that only one of the two space variables x, y appears in the second order part of the
equation. The aim of this paper is to prove continuous dependence results for solutions to the
Cauchy problem for a general class of second order linear equations with variable coefficients
that includes (1.3). To this end we adapt and refine some techniques used in [8] where we proved
existence and uniqueness results for the initial value problem.

The paper is organized as follows: in the next section we state the hypotheses and our main
result, Theorem 2.3. In Section 3, we prove some estimates for the derivatives of the fundamental
solution. Section 4 contains the proof of Theorem 2.3.

2 Main results and applications

We are concerned with second order linear operators in the form

Lαu(z) :=
p0∑

i,j=1

aij(z;α)∂xixju(z) +
p0∑
i=1

ai(z; α)∂xiu(z) + a(z;α)u(z) +
N∑

i,j=1

bijxi∂xju(z)− ∂tu(z)

(2.1)
where z = (x, t) ∈ R

N × R, 1 ≤ p0 ≤ N , α ∈ A. We assume the following hypotheses:

H1 the matrix A(z;α) = (aij(z; α))i,j=1,...,p0 is symmetric and uniformly positive definite in
R

p0 : there exists a positive constant μ such that

|η|2
μ

≤
p0∑

i,j=1

aij(z; α)ηiηj ≤ μ|η|2, η ∈ R
p0 , z ∈ R

N+1, α ∈ A; (2.2)
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H2 the matrix B := (bij) has constant real entries and takes the following block form:⎛
⎜⎜⎜⎜⎜⎝

∗ B1 0 . . . 0
∗ ∗ B2 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . Br

∗ ∗ ∗ . . . ∗

⎞
⎟⎟⎟⎟⎟⎠ (2.3)

where Bj is a pj−1 × pj matrix of rank pj , with

p0 ≥ p1 ≥ . . . ≥ pr ≥ 1, p0 + p1 + . . . + pr = N,

while the ∗-blocks are arbitrary;

H3 the coefficients aij , ai and a are continuous functions. Moreover, aij , ai and a are bounded
and B-Hölder continuous of order δ ∈ ]0, 1[ (in the sense of Definition 2.2) with respect to
the variables (x, t), uniformly in α.

In order to briefly comment our hypotheses, we introduce some notations and recall some
results for constant coefficients equations. Given a symmetric and positive definite matrix Ā =
(aij)i,j=1,...,p0 with constant entries, we define the operator K in R

N+1 as follows:

Ku :=
p0∑

i,j=1

aij∂xixju +
N∑

i,j=1

bijxi∂xju − ∂tu. (2.4)

Then H2 is equivalent to any of the following properties (cf. for instance [15]):

i) K is hypoelliptic, i.e. every distributional solution of Ku = f is a smooth classical solution
whenever f is smooth;

ii) if we set

E(t) = exp(−tBT ), C(t) =
∫ t

0
E(s)

(
Ā 0
0 0

)
ET (s)ds, (2.5)

then, for every t > 0, the matrix C(t) is positive definite;

iii) K satisfies the classical Hörmander condition:

rank Lie(∂x1 , . . . , ∂xp0
, Y ) = N + 1, (2.6)

where Lie (∂x1 , . . . , ∂xp0
, Y ) denotes the Lie algebra generated by the vector fields

∂x1 , . . . , ∂xp0

and

Y =
N∑

i,j=1

bijxi∂xj − ∂t. (2.7)
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We also remark that if σ is a N × p0 matrix such that(
Ā 0
0 0

)
=

1
2
σσT

then K is the Kolmogorov operator related to the linear system of stochastic differential equa-
tions

dXt = BT Xtdt + σdWt, (2.8)

where W denotes a standard p0-dimensional Wiener process. It is well-known that the solution
X is a Gaussian process and that assumption H2 ensures that X has a transition density
function which is the fundamental solution ΓK of K (cf. for instance [14], Chap.5.6, or [12]).
More explicitly we have

ΓK(x, t, ξ, τ) =
(4π)−

N
2√

det C(t − τ)
e−

1
4
〈C−1(t−τ)(x−E(t−τ)ξ),x−E(t−τ)ξ〉−(t−τ)trB, (2.9)

if t > τ , and Γ(x, t, ξ, τ) = 0 if t ≤ τ .

Next we recall that K has remarkable invariance properties of with respect to a suitable Lie
group structure on R

N+1. These properties were first pointed out by Lanconelli and Polidoro in
[15] who proved that K is invariant with respect to the left translation in the law defined by

(x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t + τ), (x, t), (ξ, τ) ∈ R
N × R. (2.10)

where E(τ), is the matrix in (2.5). Moreover, if (and only if) all the ∗-block in (2.3) are null,
then K is homogeneous of degree two with respect the family of dilations (D(λ))λ>0 defined by

D(λ) :=
(
D0(λ), λ2

)
:= diag

(
λIp0 , λ

3Ip1 , . . . , λ
2r+1Ipr , λ

2
)
, (2.11)

where Ipj denotes the pj × pj identity matrix: more precisely, we have

K ◦ D(λ) = λ2(D(λ) ◦ K), λ > 0, (2.12)

and ΓK is D(λ)-homogeneous:

ΓK(D(λ)z) = λ−QΓK(z), z ∈ R
N+1 \ {0}, λ > 0,

where
Q = p0 + 3p1 + . . . + (2r + 1)pr.

Since det
(
D(λ)

)
= λQ+2, the number Q + 2 is usually called the D(λ)-homogeneous dimension

of R
N+1.

In the case of Hölder continuous coefficients, Weber [23], Il’in [13] and Sonin [22] first used the
parametrix method to construct a fundamental solution of (2.1). However unnecessary restrictive
conditions on the regularity of the coefficients are assumed in these papers. General results under
more natural assumptions were proved by Polidoro [20], [18], [19] in the homogeneous case (null
∗-blocks in (2.3)) and by Morbidelli [16] and us [8], [17] in more general settings. In these papers
the coefficients of the operator are supposed to be Hölder continuous functions with respect to
the following D(λ)-homogeneous norm.
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Definition 2.1. Given a constant matrix B of the form of (2.3) and (D(λ))λ>0 defined as in
(2.11), let (qj)j=1,...,N be such that

D(λ) = diag(λq1 , λq2 , . . . , λqN , λ2).

For every z = (x, t) ∈ R
N × R, we set

|x|B =
N∑

j=1

|xj |
1
qj , and ‖z‖B = |x|B + |t| 12 . (2.13)

Clearly ‖·‖B is a norm on R
N+1 homogeneous of degree one with respect to the dilations (D(λ)).

Definition 2.2. A function F is B-Hölder continuous of order δ ∈]0, 1[ on a domain Ω of R
N+1

if
|F (z) − F (ζ)| ≤ C‖ζ−1 ◦ z‖δ, z, ζ ∈ Ω, (2.14)

for some positive constant C. In (2.14), ζ−1 denotes the inverse of ζ in the law “◦” in (2.10).

Under assumptions H1-H2-H3, in [8] we proved the existence of a fundamental solution Γα

to Lα in (2.1) and some existence and uniqueness results for the related Cauchy problem{
Lαu(x, t; α) = f(x, t; α), (x, t) ∈ R

N×]0, T [,
u(·, 0; α) = g(·; α).

(2.15)

More precisely, assume that f and g are continuous functions satisfying the growth conditions

|g(x; α)| ≤ c1e
c1|x|2 , x ∈ R

N , (2.16)

|f(x, t; α)| ≤ c1
ec1|x|2

t1−β
, x ∈ R

N , t ∈ ]0, T [, (2.17)

and, for every compact subset M ⊂ R
N ,

|g(x;α) − g(x′; α)| ≤ c2|x − x′|δB, (2.18)

|f(x, t; α) − f(x′, t; α)| ≤ c2
|x − x′|δB

t1−β
, (2.19)

for some positive constants c1, c2 and β > 0, and for any x, x′ ∈ M, t ∈ ]0, T [, α ∈ A. Then
(2.15) has a classical solution in the form

u(x, t;α) =
∫

RN

Γα(x, t, ξ, 0)g(ξ;α)dξ −
∫ t

0

∫
RN

Γα(x, t, ξ, τ)f(ξ, τ ; α)dξdτ, (2.20)

for T > 0 suitably small, only dependent on c1. Next we state our main result.

Theorem 2.3. Under hypotheses H1-H2-H3, let u(·; α) be the solution in (2.20) to problem
(2.15). Assume that

i) ∂αk
g is a continuous function satisfying (2.16);

5



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

ii) ∂αk
f is a continuous function satisfying (2.17)-(2.19);

iii) ∂αk
aij , ∂αk

ai, ∂αk
a are continuous functions satisfying (2.17)-(2.19) with β > 1 − δ/2.

Then u(x, t; ·) ∈ C1(A) for every (x, t) ∈ R
N×]0, T [, and the partial derivative ∂αk

u is solution
to the Cauchy problem⎧⎪⎨

⎪⎩
Lαv = ∂αk

f −
p0∑

i,j=1
(∂αk

aij)∂xixju −
p0∑
i=1

(∂αk
ai)∂xiu − (∂αk

a)u, (x, t) ∈ R
N×]0, T [,

v(·, 0) = ∂αk
g,

(2.21)
for any k = 1, . . . , q and α ∈ A.

The proof of the theorem is postponed to Section 4 since it is based on some estimates of
the fundamental solution (and its derivatives) which are provided in Section 3.

We close this section by briefly presenting an application of Theorem 2.3 to volatility mode-
ling in finance. We recall that some extension of the standard local volatility has been recently
proposed by Hobson&Rogers in [11], Foschi and one of the authors in [10]. In these papers the
volatility is defined as a function of the whole trajectory of the underlying asset. Specifically,
let us consider an average weight ψ that is a non-negative, piecewise continuous and integrable
function on ] −∞, T ]. We assume that ψ is strictly positive in [0, T ] and we set

Ψ(t) =
∫ t

−∞
ψ(s)ds.

Then we define the average process (or trend) as

Yt =
1

Ψ(t)

∫ t

−∞
ψ(s)Zsds, t ∈ ]0, T ],

where Zt = log(e−rtSt) denotes the log-discounted price process: the Hobson&Rogers model
corresponds to the specification ψ(t) = eλt for some positive parameter λ. Then by Itô formula
we have

dYt =
φ(t)
Φ(t)

(Zt − Yt) dt,

and assuming the following dynamic for the log-price

dZt = μ(Zt − Yt)dt + σ(Zt − Yt)dWt,

we obtain a system of stochastic differential equations of the form (2.8) where now σ is a
nonconstant function to be determined by calibration to market data. The idea is that, in case
of large movements of the underlying asset far from its trend, the path-dependent volatility is
designed to automatically increase its level in order to undertake market dynamics in a more
natural way. The corresponding pricing differential equation is readily obtained by Itô formula:

σ2(z − y)
2

(∂zzf − ∂zf) +
φ(t)
Φ(t)

(z − y)∂yf + ∂tf = 0, (t, z, y) ∈ [0, T [×R
2. (2.22)

6
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In [9] and [10] a calibration procedure based on S&P500 option prices is derived: a NLLS problem
of the form (1.2) is solved using the interior-point method described in [6]. This algorithm
needs the first order derivatives ∂αk

u which, by Theorem 2.3, are computed by solving a set of
Cauchy problems of the form (2.21). For a detailed analysis of the calibration results and the
performance of path dependent volatility compared with that of standard stochastic volatility
models, we refer to [10]. More generally Theorem 2.3 applies to other models with dependence
on the past like, for instance, Asian style options or interest rate models.

3 Estimates of the fundamental solution

In [8] we use the parametrix method to construct the fundamental solution of Lα under conditions
H1-H2-H3. Fixed α ∈ R

q
+ and z0 ∈ R

N+1, we define the “frozen” operator

Kα
z0

=
p0∑

i,j=1

aij(z0; α)∂xixj +
N∑

i,j=1

bijxi∂xj − ∂t (3.1)

and denote by Γα
z0

its fundamental solution whose explicit expression is given in (2.9). We recall
that a parametrix for Lα is defined by

Zα(z, ζ) = Γα
ζ (z, ζ), (3.2)

and the parametrix method consists in looking for the fundamental solution Γα in the form

Γα(z, ζ) = Zα(z, ζ) +
∫ t

τ

∫
RN

Zα(z, ω)φα(ω, ζ)dω (3.3)

where φα is determined by imposing that LαΓα(z, ζ) = 0 for z 
= ζ and by successive approxi-
mations:

φα(x, t, ξ, τ) =
+∞∑
k=1

LZ
(α)
k (x, t, ξ, η), x, ξ ∈ R

N , 0 < τ ≤ t < T, (3.4)

where

LZ
(α)
1 (x, t, ξ, τ) = LαZα(ξ, t, ξ t),

LZ
(α)
k+1(x, t, ξ, τ) =

∫ t

τ

∫
RN

LαZα(x, t, y, s)LZ
(α)
k (y, s, ξ, τ)dydτ.

We state a preliminary

Lemma 3.1. For every ε > 0 and T > 0, there exists a positive constant c1 such that

|φα(ξ1, τ, y, 0) − φα(ξ2, τ, y, 0)| ≤ c1
|ξ1 − ξ2|

δ
2
B

τ1− δ
4

(ΓKε(ξ1, τ, y, 0) + ΓKε(ξ2, τ, y, 0)), (3.5)

|φα(ξ1, τ, y, 0)| ≤ c1
ΓKε(ξ1, τ, y, 0)

τ1− δ
2

, (3.6)

7
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for every ξ1, ξ2, y ∈ R
N , t ∈]0, T [ and α ∈ A. Here ΓKε is the fundamental solution of the

operator

Kε := (μ + ε)
p0∑

i,j=1

∂xixj +
N∑

i,j=1

bijxi∂xj − ∂t. (3.7)

Estimate (3.6) is contained in Proposition 4.1 in [8], and (3.5) is a slightly different version
of the estimate in Lemma 6.1 in [8] and can be proved analogously.

The parametrix method allows to obtain the following pointwise bounds of Γα and its derivatives
(cf. [8], Proposition 3.5): for every positive ε, T and polynomial function p, there exists a
constant c that depends on T, μ, ε, p and B but not on α, such that, if we set η = |D0( 1√

t−τ
)(x−

E(t − τ)ξ)|, then, for i, j = 1, . . . , p0, we have

|p(η)|Γα(x, t, ξ, τ) ≤ c ΓKε(x, t, ξ, τ) (3.8)

|p(η)‖∂xiΓ
α(x, t, ξ, τ)| ≤ c

ΓKε(x, t, ξ, t)√
t − τ

, (3.9)

|p(η)‖∂xixjΓ
α(x, t, ξ, τ)| ≤ c

ΓKε(x, t, ξ, t)
t − τ

, (3.10)

|p(η)‖Y Γα(x, t, ξ, τ)| ≤ c
ΓKε(x, t, ξ, t)

t − τ
. (3.11)

Here Y Γα denotes the Lie derivative with respect to the vector field Y defined in (2.7). As a
further preliminary result, we also recall the reproduction property of Γα:

Γα(x, t, ξ, τ) =
∫

RN

Γα(x, t, y, s)Γα(y, s, ξ, τ)dy, ∀ x, ξ ∈ R
N , τ < t, s ∈]τ, t[. (3.12)

The main result of this section is the following

Theorem 3.2. For every T, ε > 0, there exists a positive constant c that depends on μ,B, T
and ε but not on α, such that

∣∣∂xiΓ
α(x, t, y, 0) − ∂xiΓ

α(x′, t, y, 0)
∣∣ ≤ c

|x − x′|
δ
2
B

t
1
2
+ δ

4

ΓKε(x, t, y, 0), (3.13)

∣∣∂xixjΓ
α(x, t, y, 0) − ∂xixjΓ

α(x′, t, y, 0)
∣∣ ≤ c

|x − x′|
δ
2
B

t1+ δ
4

ΓKε(x, t, y, 0), (3.14)

for any i, j = 1, . . . , p0, t ∈]0, T [, x, x′, y ∈ R
N . In the preceding estimates δ is the order of

B-Hölder continuity of the coefficients of Lα.

Proof. If |x − x′|B ≥ √
t, then by (3.10) with p ≡ 1, there exists a positive constant c, only

dependent on μ,B, T, ε such that

∣∣∂xixjΓ
α(x, t, y, 0) − ∂xixjΓ

α(x′, t, y, 0)
∣∣ ≤ c

ΓKε(x, t, y, 0)
t

≤ c
|x − x′|

δ
2
B

t1+ δ
4

ΓKε(x, t, y, 0). (3.15)
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Next we consider the case |x − x′|B <
√

t. By (3.3) we have

∂xixjΓ
α(x, t, y, 0) − ∂xixjΓ

α(x, t, y, 0) = I1 + I2,

where

I1 := ∂xixjZ
α(x, t, y, 0) − ∂xixjZ

α(x′, t, y, 0),

I2 :=
∫ t

0

∫
RN

(
∂xixjZ

α(x, t, ξ, τ) − ∂xixjZ
α(x′, t, ξ, τ)

)
φα(ξ, τ, y, 0)dξdτ.

We only have to estimate I2, since it is known (cf. formula (6.3) in [8]) that

|I1| ≤ c
|x − x′|

δ
2
B

t1+ δ
4

ΓKε(x, t, y, 0) (3.16)

for every t ∈]0, T [, x, x′, y ∈ R
N , |x− x′| ≤ √

t. Then we split I2 as the sum of J1 and J2 where

J1 =
∫ t

2

0

∫
RN

(
∂xixjZ

α(x, t, ξ, τ) − ∂xixjZ
α(x′, t, ξ, τ)

)
φα(ξ, τ, y, 0)dξdτ,

J2 =
∫ t

t
2

∫
RN

(
∂xixjZ

α(x, t, ξ, τ) − ∂xixjZ
α(x′, t, ξ, τ)

)
φα(ξ, τ, y, 0)dξdτ.

By (3.16) and (3.6), we have

|J1| ≤ c

∫ t
2

0

∫
RN

|x − x′|
δ
2
B

(t − τ)1+ δ
4

ΓKε(x, t, ξ, τ)
ΓKε(ξ, τ, y, 0)

τ1− δ
2

dξdτ,

so that, by the reproduction property (3.12), we get

|J1| ≤ c
|x − x′|

δ
2
B

t1+ δ
4

ΓKε(x, t, y, 0)
∫ t

2

0

1

τ1− δ
2

dτ = c′
|x − x′|

δ
2
B

t1−
δ
4

ΓKε(x, t, y, 0). (3.17)

On the other hand we proceed as in the proof of Proposition 5.3 in [8] in order to estimate J2.
For τ ∈]0, t[ and w ∈ R

N , we set ω = (w, τ) and since∫
RN

∂xixjΓ
α
ω(x, t, ξ, τ)dξ = 0,

we have J2 =
∫ t

t
2
(K1(τ) + K2(τ))dτ where

K1(τ) :=
∫

RN

(
∂xixjZ

α(x, t, ξ, τ) − ∂xixjZ
α(x′, t, ξ, τ)

)(
φα(ξ, τ, y, 0) − φα(w, τ, y, 0)

)
dξ,

K2(τ) := φα(w, τ, y, 0)
∫

RN

(
∂xixjZ

α(x, t, ξ, τ) − ∂xixjZ
α(x′, t, ξ, τ)

)−(
∂xixjΓ

α
ω(x, t, ξ, τ) − ∂xixjΓ

α
ω(x′, t, ξ, τ)

)
dξ.

9
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We put w = E(τ − t)x so that by (3.16) and (3.5), we infer

|K1| ≤c

∫
RN

|x − x′|
δ
2
B

(t − τ)1+ δ
4

Γ
K

ε
2
(x, t, ξ, τ)

|ξ − w|δB
τ

(ΓKε(ξ, τ, y, 0) + ΓKε(w, τ, y, 0))dξ

≤c′|x − x′|
δ
2
B

∫
RN

Γ
K

ε
2
(x, t, ξ, τ)

(t − τ)1−
δ
4

|D0( 1√
t−τ

)(x − E(t − τ)ξ)|δB
τ

(ΓKε(ξ, τ, y, 0) + ΓKε(w, τ, y, 0))dξ ≤

(since by (3.10), we have Γ
K

ε
2
(x, t, ξ, τ)|D0( 1√

t−τ
)(x − E(t − τ)ξ)|δB ≤ cΓKε(x, t, ξ, τ))

≤ c′′
|x − x′|

δ
2
B

(t − τ)1−
δ
4 τ

∫
RN

ΓKε(x, t, ξ, τ)(ΓKε(ξ, τ, y, 0) + ΓKε(w, τ, y, 0))dξ =

(by the reproduction property (3.12) and since
∫

RN ΓKε(x, t, ξ, τ)dξ = 1 for t > τ)

= c′′
|x − x′|

δ
2
B

(t − τ)1−
δ
4 τ

(ΓKε(x, t, y, 0) + ΓKε(w, τ, y, 0)) . (3.18)

Now we remark that by the explicit expression (2.9) of ΓKε and since the quadratic form asso-
ciated with C(t) is a monotone increasing function of t, there exists a positive constant c such
that

ΓKε(E(τ − t)x, τ, y, 0) ≤ cΓK2ε(x, t, y, 0), ∀t ∈]0, T [, τ ∈]t/2, t[, x, y,∈ R
N . (3.19)

Therefore we have

∫ t

t
2

|K1|dτ ≤ c
|x − x′|

δ
2
B

t
ΓK2ε(x, t, y, 0)

∫ t

t
2

1

(t − τ)1−
δ
4

dτ ≤ c′
|x − x′|

δ
2
B

t1−
δ
4

ΓK2ε(x, t, y, 0) (3.20)

We now recall the notation ω = (w, τ) and consider the term K2. By Lemma 5.2 in [8], we
have that, for every positive ε and T , there exists a positive constant c such that

|∂xixjZ
α(x, t, ξ, τ) − ∂xixjZ

α(x′, t, ξ, τ) − ∂xixjΓ
α
ω(x, t, ξ, τ) − ∂xixjΓ

α
ω(x′, t, ξ, τ)|

≤ c|x − x′|
δ
2
B

‖(ξ, τ)−1 ◦ ω‖δ
B

(t − τ)1+ δ
4

Γ
K

ε
2
(x, t, ξ, τ)

for any i, j = 1, . . . , p0, x, x′, w ∈ R
N and 0 ≤ t − τ ≤ T . By the previous inequality and by

(3.6), setting w = E(τ − t)x as before, we get

|K2| ≤ c
ΓKε(E(τ − t)x, τ, y, 0)

τ1− δ
2

|x − x′|
δ
2
B

∫
RN

|D0( 1√
t−τ

)(x − E(t − τ)ξ)|δB
(t − τ)1−

δ
4

Γ
K

ε
2
(x, t, ξ, τ)dξ ≤

10
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(by using again (3.8) and (3.19))

≤ c
ΓKε(x, τ, y, 0)

τ1− δ
2

|x − x′|
δ
2
B

(t − τ)1−
δ
4

. (3.21)

Therefore we finally have

∫ t

t
2

|K2|dτ ≤ c
|x − x′|

δ
2
B

t1−
δ
2

ΓKε(x, t, y, 0), (3.22)

which concludes the proof.

Now let us consider the solution u(·; α) in (2.20) to the Cauchy problem (2.15). We aim to
study the asymptotic behavior of ∂xiu(·, t; α) and ∂xixju(·, t; α) as t → 0+. We first recall the
following identities proved in [8]: for every i, j = 1, . . . , p0 we have

∂xiu(x, t; α) =
∫

RN

∂xiΓ
α(x, t, y, 0)g(y;α)dy −

∫ t

0

∫
RN

∂xiΓ
α(x, t, y, s)f(y, s; α)dyds (3.23)

∂xixju(x, t; α) =
∫

RN

∂xixjΓ
α(x, t, y, 0)g(y;α)dy −

∫ t

0

∫
RN

∂xixjΓ
α(x, t, y, s)f(y, s;α)dyds.

(3.24)

These formulas were proved in [8], Theorem 1.4, Propositions 5.1, 5.3 and 5.4, for f, g satisfying
the usual conditions (2.16), (2.16) and (2.19) in the case β = 1: nevertheless the result is still
valid in the general case β ∈]0, 1], the proof being analogous.

Proposition 3.3. Consider the Cauchy problem (2.15) under conditions (2.16), (2.17), (2.18)
and (2.19). Then there exists T > 0 and a positive constant c, dependent on μ, B and T but
not on α, such that

|∂xiu(x, t; α)| ≤ c
ec|x|2

t
1
2
− δ

2

, (3.25)

|∂xixju(x, t;α)| + |Y u(x, t; α)| ≤ c
ec|x|2

t1−
δ
2

, (3.26)

for every (x, t) ∈ R
N×]0, T [, i, j = 1, . . . , p0.

Proof. We only sketch the proof of the estimate of ∂xixju(x, t; α) in the homogeneous case with
null f, a and ai, i = 1, . . . , p0: in general the thesis follows by a similar argument by using the
representation formula (3.3) of Γα in terms of the parametrix. The idea is that, since∫

RN

Γα(x, t, ξ, τ)dξ = 1, 0 ≤ τ < t ≤ T,

by (3.24) we have

0 = ∂xixj

∫
RN

Γα(x, t, ξ, 0)dξ =
∫

RN

∂xixjΓ
α(x, t, ξ, 0)dξ,

11
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so that
∂xixju(x, t; α) = I1(x, t; α) − I2(x, t; α)

where

I1(x, t; α) =
∫

RN

∂xixjΓ
α(x, t, ξ, 0) (g(ξ; α) − g(E(−t)x; α)) dξ,

I2(x, t; α) =
∫ t

0

∫
RN

∂xixjΓ
α(x, t, ξ, τ) (f(ξ, τ ;α) − f(E(τ − t)x, τ ; α)) dξdτ.

Then I1, I2 can be estimated proceeding as in the proof of Theorem 2.3, by using the Gaussian
upper bounds (3.8)-(3.11) and the assumptions on f and g.

Proposition 3.4. Under the hypotheses of Proposition 3.3, for any compact subset M of R
N ,

there exits a positive constant c, dependent on M , B, T and μ but not on α, such that

|∂xiu(x, t; α) − ∂xiu(x′, t : α)| ≤ c
|x − x′|

δ
2
B

t
1
2
− δ

4

, (3.27)

|∂xixju(x, t; α) − ∂xixju(x′, t : α)| ≤ c
|x − x′|

δ
2
B

t1−
δ
4

, (3.28)

for every x, x′ ∈ M and t ∈ ]0, T [.

Proof. The thesis is a straightforward consequence of the estimates of Theorem 3.2 since, as-
suming for simplicity f = 0, we have

∂xixju(x, t; α) − ∂xixju(x′, t : α) =
∫

RN

(
∂xixjΓ

α(x, t, y, 0) − ∂xixjΓ
α(x′, t, y, 0)

)
g(y;α)dy.

4 Proof of Theorem 2.3

In this section we prove Theorem 2.3. We begin with a preliminary

Lemma 4.1. Under the hypotheses of Proposition 3.3, u(·; α), ∂xh
u(·;α), ∂xhxk

u(·;α), for h, k =
1, . . . , p0, and Y u(·; α) are continuous functions of the variable α.

Proof. We only consider ∂xhxk
u(·;α), since the proof of the continuity of u(·; α), ∂xh

u(·; α) and
Y u(·;α) is analogous. Moreover, for simplicity, we only consider the case ai = a ≡ 0.

We have{
Lα0(u(x, t; α) − u(x, t; α0)) = F (x, t; α), (x, t) ∈ R

N×]0, T [,
u(x, 0; α) − u(x, 0; α0) = g(x;α) − g(x; α0), x ∈ R

N ,

where

F (x, t; α) := f(x, t; α) − f(x, t;α0) +
p0∑

i,j=1

(aij(x, t; α0) − aij(x, t;α)) ∂xixju(x, t;α).

12



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Since aij are bounded uniformly in α and by (2.17), (3.26), we have

|F (x, t; α)| ≤ c
ec|x|2

t1−γ
, (x, t) ∈ R

N×]0, T [, (4.1)

for some constant c independent of α, where γ = min{β, δ/2}. Moreover, since aij(·; α) are
B-Hölder continuous of order δ uniformly in α and by Proposition 3.4, we have that for every
M compact subset of R

N there exists a positive constant c such that

|F (x, t; α) − F (x′, t; α)| ≤ c
|x − x′| δ

2

t1−γ′ , ∀x, x′ ∈ M, t ∈ ]0, T [, (4.2)

where γ′ = min{β, δ/4}. Then, by (2.20) we have the following representation formula

∂xhxk
(u(x, t;α) − u(x, t; α0)) = I1(x, t; α, α0) + I2(x, t; α, α0),

where, for h, k = 1, . . . , p0,

I1(x, t; α, α0) =
∫

RN

∂xhxk
Γα0(x, t, ξ, 0)(g(ξ; α) − g(ξ;α0))dξ,

I2(x, t; α, α0) = −
∫ t

0

∫
RN

∂xhxk
Γα0(x, t, ξ, τ)F (ξ, τ ; α)dξdτ.

By (3.10) and (2.16), we have

|∂xhxk
Γα0(x, t, ξ, 0)| ≤ c

ΓKε(x, t, ξ, 0)ec|ξ|2

t
∈ L1(RN ),

provided that T is suitably small, with c independent of α. Therefore by the dominated conver-
gence theorem we have

lim
α→α0

I1(x, t; α, α0) = 0, (x, t) ∈ R
N×]0, T [.

Fixed θ > 0, we set

Iθ
2 (x, t; α, α0) = −

∫ t−θ

0

∫
RN

∂xhxk
Γα0(x, t, ξ, τ)F (ξ, τ ; α)dξdτ. (4.3)

Since estimates (4.1), (4.2) and (3.10) hold uniformly on α, a standard argument shows

lim
θ→0+

Iθ
2 (x, t;α, α0) = I2(x, t; α, α0), (4.4)

uniformly in α. On the other hand, by (4.1) and (3.10), there exists a positive constant c,
independent of α, such that

∣∣∂xhxk
Γα0(x, t, ξ, τ)F (ξ, τ ; α)

∣∣ ≤ c
ΓKε(x, t, ξ, τ)ec|ξ|2

θ τ1−γ
∈ L1(RN×]0, t − θ[), (4.5)

provided that T is suitably small. Since aij are continuous functions, by the dominated conver-
gence theorem, we have

lim
α→α0

Iθ
2 (x, t; α, α0) = 0, (x, t) ∈ R

N×]0, T [,

13
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and we infer
lim

α→α0

I2(x, t; α, α0) = 0, (x, t) ∈ R
N×]0, T [.

Proof of Theorem 2.3. We only consider the case q = 1 and ai = a ≡ 0. We have

u(x, t;α) − u(x, t;α0)
α − α0

= (I1 − I2 + I3) (x, t; α, α0),

where

I1(x, t; α, α0) =
p0∑

i,j=1

∫ t

0

∫
RN

Γα0(x, t, ξ, τ)
aij(ξ, τ ; α) − aij(ξ, τ ; α0)

α − α0
∂ξiξj

u(ξ, τ ; α)dξdτ,

I2(x, t; α, α0) =
∫ t

0

∫
RN

Γα0(x, t, ξ, τ)
f(ξ, τ ;α) − f(ξ, τ ;α0)

α − α0
dξdτ,

I3(x, t; α, α0) =
∫

RN

Γα0(x, t, ξ, 0)
g(ξ;α) − g(ξ; α0)

α − α0
dξ.

By (3.26), the integral kernel in I1 is estimated by∣∣∣∣Γα0(x, t, ξ, τ)
aij(ξ, τ ; α) − aij(ξ, τ ; α0)

α − α0
∂ξiξj

u(ξ, τ ; α)
∣∣∣∣

≤ cΓα0(x, t, ξ, τ)
ec|ξ|2

τ1−(β−1+δ/2)
∈ L1(RN× ]0, T [),

since, by assumption, β > 1 − δ/2. Therefore we use the continuity result in Lemma 4.1 and
the dominated convergence theorem to get

lim
α→α0

I1(x, t; α, α0) =
p0∑

i,j=1

∫ t

0

∫
RN

Γα0(x, t, ξ, τ)
daij(ξ, τ ; α0)

dα
∂ξiξju(ξ, τ ; α0)dξdτ.

Terms I2 and I3 can be handled analogously to conclude the proof.
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