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1 Introduction

We consider a class of the differential equations of Kolmogorov type of the form

Lu :=
p0∑

i,j=1

aij(z)∂xixju +
p0∑

i=1

ai(z)∂xiu +
N∑

i,j=1

bijxi∂xju + c(z)u− ∂tu = 0, (1.1)

where z = (x, t) ∈ RN × R and 1 ≤ p0 ≤ N . By convenience, hereafter the term “Kolmogorov
equation” will be shortened to KE. We assume the following hypotheses:

[H.1] the matrix A0 = (aij)i,j=1,...,p0 is symmetric and uniformly positive definite in Rp0 : there
exists a positive constant Λ such that

|η|2
Λ

≤
p0∑

i,j=1

aij(z)ηiηj ≤ Λ|η|2, η ∈ Rp0 , z ∈ RN+1; (1.2)

[H.2] the matrix B := (bij) has constant real entries and takes the following block from:



∗ B1 0 . . . 0
∗ ∗ B2 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . Br

∗ ∗ ∗ . . . ∗




(1.3)
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where Bj is a pj−1 × pj matrix of rank pj , with

p0 ≥ p1 ≥ . . . ≥ pr ≥ 1, p0 + p1 + . . . + pr = N,

and the ∗−blocks are arbitrary.

The regularity hypotheses on the coefficients aij , ai, c will be specified later: roughly speaking,
we assume the Hölder continuity with respect to some homogeneous norm naturally induced by the
equation.

The prototype of (1.1) is the following equation

∂x1x1u + x1∂x2u− ∂tu = 0, (x1, x2, t) ∈ R3, (1.4)

whose fundamental solution was explicitly constructed by Kolmogorov [23]. In his celebrated paper
[20], Hörmander generalized this result to constant coefficients KEs, i.e. equations of the form (1.1),
with constant aij and ai = c ≡ 0 for i = 1, . . . , p0, satisfying the following condition:

Ker(A) does not contain non-trivial subspaces which are invariant for B. (1.5)

In (1.5), A denotes the N ×N matrix

A =
(

A0 0
0 0

)
. (1.6)

For constant coefficients equations, condition (1.5) is equivalent to the structural assumptions
[H.1]-[H.2] which in turn are equivalent to the classical Hörmander condition:

rank Lie (X1, . . . , Xp0 , Y ) = N + 1, (1.7)

at any point of RN+1. In (1.7), Lie (X1, . . . , Xp0 , Y ) denotes the Lie algebra generated by the vector
fields

Xi =
p0∑

j=1

aij∂xj , i = 1, . . . , p0, and Y = 〈x,BD〉 − ∂t, (1.8)

where 〈·, ·〉 and D respectively denote the inner product and the gradient in RN . A proof of the
equivalence of these conditions is given by Kupcov in [24], Theorem 3 and by Lanconelli and
Polidoro in [26], Proposition A.1.

Linear KEs naturally arise in mathematical finance in some generalization of the celebrated
Black&Scholes model [10]. Consider a “stock” whose price St is modeled as the solution to the
stochastic differential equation

dSt = µSt dt + σSt dWt, (1.9)

where µ and σ are positive constants and Wt is a Wiener process. Also consider a “bond” whose
price Bt only depends on a constant interest rate r:

Bt = B0e
rt.
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Finally, consider an “European option” which is a contract which gives the right (but not the
obligation) to buy the stock at a given “strike price” E and at a given “expiry date” T . The
problem studied in [10] is to find a fair price of the option contract. Under some assumptions on
the financial market, Black&Scholes show that the price V (t, St) of the option is the solution of the
following parabolic equation

−rV +
∂V

∂t
+ rS

∂V

∂S
+

1
2
σ2S2 ∂2V

∂S2
= 0

in the domain (S, t) ∈ R+×]0, T [, subject to the final condition

V (T, ST ) = max(ST − E, 0).

More simply, the forward price of the option u = er(T−t)V as a function of the time to maturity
τ = T − t and of the forward log-prices xτ = log(erτST−τ ), satisfies the PDE

1
2
σ2(∂xxu− ∂xu)− ∂τu = 0,

on (x, τ) ∈ R×]0, T ] with initial condition

u(0, x) = max(ex −E, 0).

In the last decades the Black&Scholes theory has been developed by many authors and mathema-
tical models involving KEs have appeared in the study of the so-called path-dependent contingent
claims (see, for instance, [6], [7], [8] and [34]). Asian options are derivatives whose exercise price is
not fixed as a given constant E, but depends on some average of the history of the stock price. In
this case, the value of the option at the expiry time T is (for a a geometric average option):

V (ST ,MT ) = max
(
ST − e

MT
T , 0

)
, Mt =

∫ t

0
log(Sτ )dτ.

If we suppose by simplicity that the interest rate is r = 0, the Black&Scholes method leads to the
following degenerate equation

1
2
σ2S2∂SSV + (log S)∂MV + ∂tV = 0, S, t > 0, M ∈ R,

which, by considering the option price V = u(τ, x, M) in terms of log-prices x = log(S) and
time-to-maturity τ = T − t, reduces to the KE (cf. [9])

1
2
σ2(∂xxu− ∂xu) + x∂Mu− ∂τu = 0, t > 0 and x,M ∈ R. (1.10)

Based on the approximation scheme introduced by Polidoro and Mogavero in [31], a numerical
study of the solution of the Cauchy problem related to (1.10) is also proposed in [9].

A recent motivation in finance comes from the model by Hobson&Rogers [19]. In the Bla-
ck&Scholes theory the hypothesis that the volatility σ in the stochastic differential equation (1.9)
is constant contrasts with the empirical observations. Aiming to overcome this problem, many
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authors proposed alternative theories which generally lead to incomplete market models. On the
contrary, the model proposed by Hobson and Rogers assumes that the volatility only depends on
the difference between the present stock price and an average of past prices. This simple model
seems to capture the features observed in the market and avoid the problems related to the use of
many sources of randomness.

The path dependent volatility model proposed in [18] generalizes the Hobson&Rogers model by
defining the average factor Mt as

Mt =
1

Φ(t)

∫ t

−∞
ϕ(s)Zsds, (1.11)

where Zt = log(St) are the forward log-prices, the average weight ϕ is a non-negative, piecewise
continuous function, integrable on ]−∞, T ], strictly positive on [0, T ] and Φ(t) =

∫ t
−∞ ϕ(s)ds. The

process with components Zt and Mt is Markovian and defined by the SDEs

dZt = µ(Zt −Mt)dt + σ(Zt −Mt)dWt, (1.12a)
dMt = g(t)(Zt −Mt)dt, (1.12b)

where g(t) = ϕ(t)/Φ(t). The original Hobson&Rogers model corresponds to ϕ(t) = eλt, g(t) = λ.
As in the study of Asian options, in the Hobson&Rogers model for European options the value

of the option V (t, Zt,Mt) which depends on time t, on the log-price of the stock Zt, on the average
Mt must satisfy the KE with non-constant coefficients

1
2
σ2(Z −M) (∂ZZV − ∂ZV ) + g(t)(Z −M)∂MV + ∂tV = 0. (1.13)

The next section reports some results on Kolmogorov equations with constant coefficients and
their extensions to the non-constant and non-homogeneous case (cf. [33, 21, 32, 28, 29, 15]).

The third section reviews numerical approximation studies on the Cauchy problems related to
(1.10) and (1.13) which appeared in [9, 14, 13]. The numerical schemes proposed in these papers
rely on the approximation of the directional derivative Y by the finite difference

−u(x, y, t)− u(x, y + δx, t− δ)
δ

.

This method, which is respectful of the non-Euclidean geometry of the Lie group, seems to provide
a good approximation of the solution.

The fourth section considers the inverse problem of determining the coefficient functions σ2(S, M)
and g(S, M) in (1.13) knowing the function V at a finite set of points (cf. [2, 11, 17]).

2 Kolmogorov equations

We call constant coefficients KE any equation of the form (1.1), with constant aij , null ai and
satisfying hypothesis [H.1]-[H.2]. These KEs have the remarkable property of being invariant with
respect to the left translations in the law defined by

(x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t + τ), (x, t), (ξ, τ) ∈ RN × R, (2.1)
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where
E(t) = e−tBT

. (2.2)

Moreover, let us consider the family of dilations (D(λ))λ>0 on RN+1 defined by

D(λ) :=
(
D0(λ), λ2

)
= diag

(
λIp0 , λ

3Ip1 , . . . , λ
2r+1Ipr , λ

2
)
, (2.3)

where Ipj denotes the pj × pj identity matrix. It is known that if (and only if) all the ∗-blocks in
(1.3) are zero matrices, then L is also homogeneous of degree two with respect to (D(λ)) in the
sense that

L ◦D(λ) = λ2(D(λ) ◦ L), λ > 0.

We remark explicitly that GB :=
(
RN+1, ◦, D(λ)

)
is a homogeneous Lie group only determined by

the matrix B.
In some particular cases, variable coefficients KEs were first studied by Weber [33], Il’in [21]

and Sonin [32] who used the parametrix method to construct a fundamental solution. Yet in
these papers unnecessary restrictive conditions on the regularity of the coefficients are required.
Assuming that the KE in (1.1) satisfies the hypotheses [H.1]-[H.2] and that the ∗-blocks in (1.3) are
zero matrices, the previous results were considerably generalized in a series of papers by Polidoro
[28], [29], [30], by assuming a notion of regularity modeled on the homogeneous Lie group GB (see
Definitions 2.2 and 2.3 below). We also refer to [25] for a survey of the most recent results about
KEs. The results, in the form here reported, in Theorem 2.4 are due to Di Francesco and Pascucci
[15].

In order to state our main results, we recall the definition of homogeneous norm and B-Hölder
continuity given by Polidoro [28].

Definition 2.1. Given a constant matrix B of the form (1.3) and (D(λ))λ>0 defined as in (2.3),
let (qj)j=1,...,N be such that

D(λ) = diag(λq1 , λq2 , . . . , λqN , λ2).

For every z = (x, t) ∈ RN+1, we set

|x|B =
N∑

j=1

|xj |
1
qj and ‖z‖B = |x|B + |t| 12 . (2.4)

Clearly || · ||B is a norm on RN+1 homogeneous of degree one with respect to the dilations
(D(λ)).

Definition 2.2. We say that a function f is B-Hölder continuous of order α ∈ ]0, 1] on a domain
Ω of RN+1, and we write f ∈ Cα

B(Ω), if there exists a constant C such that

|f(z)− f(ζ)| ≤ C||ζ−1 ◦ z||αB, z, ζ ∈ Ω. (2.5)

In (2.5), ζ−1 denotes the inverse of ζ in the law “◦” in (2.1).

Next, we give the definition of solution to equation Lu = f .
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Definition 2.3. We say that a function u is a solution to the equation Lu = f in a domain Ω
of RN+1, if there exist the Euclidean derivatives ∂xiu, ∂xixju ∈ C(Ω) for i, j = 1, . . . , p0, the Lie1

derivative Y u ∈ C(Ω) and equation

p0∑

i,j=1

aij(z)∂xixju(z) +
p0∑

i=1

ai(z)∂xiu(z) + Y u(z) + c(z)u(z) = f(z)

is satisfied at any z ∈ Ω.

We are now in position to state the following

Theorem 2.4. Assume that L in (1.1) verifies hypotheses [H.1]-[H.2] and that the coefficients
aij , ai, c ∈ Cα

B(RN+1) are bounded functions. Then there exists a fundamental solution Γ to L with
the following properties:

1. Γ(·, ζ) ∈ L1
loc(RN+1) ∩ C(RN+1 \ {ζ}) for every ζ ∈ RN+1;

2. Γ(·, ζ) is a solution to Lu = 0 in RN+1 \ {ζ} for every ζ ∈ RN+1 (in the sense of Definition
2.3);

3. let g ∈ C(RN ) such that
|g(x)| ≤ C0e

C0|x|2 , x ∈ RN , (2.6)

for some positive constant C0. Then there exists

lim
t→τ+

∫

RN

Γ(x, t, ξ, τ)g(ξ)dξ = g(x), x ∈ RN , τ ∈ R;

4. let g ∈ C(RN ) verifying (2.6) and f be a continuous function in the strip ST0,T1 = RN×]T0, T1[,
such that

|f(x, t)| ≤ C1e
C1|x|2 , (x, t) ∈ ST0,T1 (2.7)

and for any compact subset M of RN there exists a positive constant C such that

|f(x, t)− f(y, t)| ≤ C|x− y|βB, x, y ∈ M, t ∈]T0, T1[,

for some β ∈ ]0, 1[. Then there exists T ∈ ]T0, T1] such that the function

u(x, t) =
∫

RN

Γ(x, t, ξ, T0)g(ξ)dξ −
t∫

T0

∫

RN

Γ(x, t, ξ, τ)f(ξ, τ)dξdτ (2.8)

1A function u is Lie differentiable w.r.t. the vector field Y in (1.8), at the point z = (x, t), if there exists

lim
δ→0

u(γ(δ))− u(γ(0))

δ
=: Y u(z),

where γ denotes the integral curve of Y from z:

γ(δ) = (E(−δ)x, t− δ), δ ∈ R.

Clearly, if u ∈ C1 then Y u(x, t) = 〈x, BDu(x, t)〉 − ∂tu(x, t).
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is a solution to the Cauchy problem




Lu = f in ST0,T ,

u(·, T0) = g in RN ;
(2.9)

5. if u is a solution to the Cauchy problem (2.9) with null f and g, and verifies estimate (2.7),
then u ≡ 0 (see also Theorem 2.6 below). In particular, the function in (2.8) is the unique
solution to problem (2.9) verifying estimate (2.7);

6. the reproduction property holds:

Γ(x, t, ξ, τ) =
∫

RN

Γ(x, t, y, s)Γ(y, s, ξ, τ)dy, x, ξ ∈ RN , τ < s < t;

7. if c(z) ≡ c is constant then
∫

RN

Γ(x, t, ξ, τ)dξ = e−c(t−τ), x ∈ RN , τ < t;

8. let Γε denote the fundamental solution to the constant coefficients KE

Lε = (Λ + ε)∆Rp0 + 〈x,B∇〉 − ∂t

where ε > 0, Λ is as in (1.2) and ∆Rp0denotes the Laplacian in the variables x1, . . . , xp0.
Then for every positive ε and T , there exists a constant C, only dependent on Λ, B, ε and T ,
such that

Γ(z, ζ) ≤ C Γε(z, ζ),

|∂xiΓ(z, ζ)| ≤ C√
t− τ

Γε(z, ζ),

∣∣∂xixjΓ(z, ζ)
∣∣ ≤ C

t− τ
Γε(z, ζ), |Y Γ(z, ζ)| ≤ C

t− τ
Γε(z, ζ),

for any i, j = 1, . . . , p0 and z, ζ ∈ RN+1 with 0 < t− τ < T .

Under the further hypothesis

[H.3] for every i, j = 1, . . . , p0, there exist the derivatives ∂xiaij , ∂xixjaij , ∂xiai ∈ Cα
B(RN+1) and

are bounded functions,

we define as usual the adjoint operator L∗ of L:

L∗v =
p0∑

i,j=1

aij∂xixjv +
p0∑

i=1

a∗i ∂xiv − 〈x,B∇v〉+ c∗v + ∂tv

where

a∗i = −ai + 2
p0∑

j=1

∂xiaij , c∗ = c +
p0∑

i,j=1

∂xixjaij −
p0∑

i=1

∂xiai − tr(B).
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Theorem 2.5. There exists a fundamental solution Γ∗ of L∗ verifying the dual properties in the
statement of Theorem 2.4. Moreover it holds

Γ∗(z, ζ) = Γ(ζ, z), z, ζ ∈ RN+1, z 6= ζ.

We close this section by stating a uniqueness result.

Theorem 2.6. Assume that L in (1.1) verifies the hypotheses [H.1]-[H.2]-[H.3] and that the coef-
ficients aij , ai, c ∈ Cα

B(RN+1) are bounded functions. If u is a solution to the Cauchy problem (2.9)
with null f and g, such that

T∫

T0

∫

RN

|u(x, t)|e−C|x|2dxdt < +∞

for some positive constant C, then u ≡ 0.

3 Numerical approximations

We investigate the numerical solution of the equation (1.13). More generally, we consider the
following KE

Lu :=
1
2
σ2(x, y)(∂xxu− ∂xu) + g(t)(x− y)∂yu− ut = 0, (3.1)

where g ∈ C1 is strictly positive on [0, T ].
In the numerical approximation the best results are obtained by considering the main directional

derivatives of L which are given by the operators ∂x and Y defined as

Y u = g(t)(x− y)∂yu− ∂tu. (3.2)

We consider the approximation of (3.1) on the uniform grid

G := {(i∆x, j∆y, n∆t) | i, j, n ∈ Z, n ≥ 0}, (3.3)

we approximate the derivatives ∂xxu and ∂xu by the three point and centered two point schemes,
respectively:

∂xxu ∼ D2
∆x

u(x, y, t) :=
u(x + ∆x, y, t)− 2u(x, y, t) + u(x−∆x, y, t)

∆2
x

(3.4)

and

∂xu ∼ D∆xu(x, y, t) :=
u(x + ∆x, y, t)− u(x−∆x, y, t)

2∆x
. (3.5)

Thus, the approximation of ∂xxu− ∂xu is of the order of ∆2
x.

The second main directional derivative Y is approximated by

Y u(x, y, t) ∼ Y∆tu(x, y, t) :=
ũ(x, y + g(t)(x− y)∆t, t−∆t)− u(x, y, t)

∆t
(3.6)
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where ũ(x, y, t) denotes the linear interpolation of u(x, y, t) based on the two nearest grid points.
The function ũ(x, y, t) approximates u(x, y, t) with an error of the order of ∆2

y which depends on
the L∞ norm of ∂yyu on the domain. Then approximation (3.6) is of the order of ∆t + ∆2

y/∆t. We
remark that interpolation in (3.6) is necessary because (x, y, t) and (x, y + g(t)(x − y)∆t, t − ∆t)
cannot both belong to the same uniform grid. In specific cases, like the standard Hobson&Rogers
model [13] and that of Asian options [9] specifically designed changes of variable allow for both the
point to belong to the same grid. These approaches have the advantage of having an approximation
error that does not depends on the regularity on the ∂y direction, but at the cost of imposing the
grid size condition ∆y = ∆x∆t.

The discrete operator, defined by

LGu =
1
2
σ2(D2

∆x
u−D∆xu) + Y∆tu, (3.7)

approximates L in the sense that

‖L− LGu‖L∞ ≤ C(∆2
x + ∆t + ∆2

y/∆t) (3.8)

for some positive constant C depending on the L∞-norms of σ, g′, ∂xxxu, ∂yyu, ∂xxxxu, Y 2u, ∂xxY u
and ∂xxyyu on the domain. The resulting scheme is of an implicit type and it is unconditionally
stable (cf. [13, 14, 17]).

4 Inverse problems in finance

In option pricing the coefficients σ and g typically are not known or directly observable. Thus
practitioners face the problem of inferring them either from historical prices of the underlying asset
or from observation of related option prices.

4.1 Estimation of diffusions

Consider as input data a finite number of points (Zi,Mi) = (Zti ,Mti), for i = 0, . . . , I, in one
trajectory of (Zt,Mt) solution to (1.12). One way to estimate the coefficients functions µ, σ
and g from these observations is given by the maximum-likelihood approach. In that estimation
technique, roughly speaking, we want to select the model which has the highest probability of
having generated the observed data. Hereafter we assume that g = λλ is constant. Denote by
U(z, m, t, z1, m1, t + ∆; µ, σ, g) the conditional probability density function of (z, m) = (Zt,Mt)
conditioned on (z1,m1) = (Zt+∆, Mt+∆). In a time-homogeneous Markovian settings U does not
depend on absolute time, that is U(z,m, t, z1,m1, t + ∆;µ, σ, λ) = U(z, m, 0, z1,m1,∆, µ, σ, λ).
Under that hypothesis, Bayes’ rule implies that likelihood function, that is the density of observed
data, is given by

L(µ, σ, λ) =
I−1∏

i=0

U(Zi,Mi, Zi+1,Mi+1; µ, σ, λ), (4.1)

apart for a scaling constant and a factor depending on the density of the initial observation, which
becomes irrelevant for I suitably large.
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In a maximum-likelihood approach we want to maximize L for µ, σ and λ in a given functional
space. Now, by the Feynman-Kac formula, U is the fundamental solution of the backward KE

Ku := µ (z −m)∂zu + λ(z −m)∂mu +
1
2
σ(z −m)2∂zzu + ∂tu = 0. (4.2)

When using a descent method for the numerical solution of this optimization problem one needs
to address the following problems. Firstly, one should derive the differential of the functional U
w.r.t. µ, σ and the parameter λ. In a parametric setting, the existence of the derivatives of U has
been studied by Di Francesco and Pascucci in [16]. The second and more important problem is
that at each step of these algorithms we need to compute the log-likelihood and its differentials.
However, since the coefficients of the PDE (4.2) are not constant, the solution cannot be translated
and each term in the likelihood function requires the computation of the solution of a different
Cauchy problem. This becomes immediately prohibitive if finite-differences or -elements methods
are adopted for the discretization.

A more promising approach consists in approximating the fundamental solution U by means of
a truncated parametrix series (cf. Corielli and Pascucci [27]). Other approaches have been proposed
by Aı̈t Sahalia in [3, 4], where an Hermite polynomial expansion have been used, and by Aı̈t Sahalia
and Yu [5], who consider a saddle point approximation [12]. Alternatively like simulation methods
can be used which are generally more computationally expensive or less precise (see Jensen and
Poulsen for a survey [22]).

4.2 Calibration

We consider the second inverse problem known by financial practitioners as calibration. In this
problem, we observe at time t = 0 a set of option prices ci, along with their log-moneyness xi and
maturity τi, for i = 1, . . . , I. To be consistent with the market, a model should at least be able
to replicate the quoted option prices. For the path dependent volatility model, this means that
the observed prices should be equal to the corresponding values u(x,m, τ) of the solution of the
Cauchy problem

Lu :=
1
2
σ2(x−m) (∂xxu− ∂xu) + g(τ)(x−m)∂mu− ∂τu = 0, (x,m) ∈ R2 and τ > 0, (4.3a)

u(x,m, 0) = (ex − 1)+ (x,m) ∈ R2. (4.3b)

The functions σ and g should be chosen to reduce the calibration error defined as ci−u(xi,M0, τi),
where M0 is the initial value of the average process Mt.

The calibration problem reduces to the constrained optimization problem of the form

sup
σ,g

ψ(σ, g) =
I∑

i=1

(ci − u(xi,M0, τi))2 (4.4)

subject to (4.3). This calibration problem is considered in [17] and [18], where a parametric
approach is used. The optimization algorithm is a quasi-Newton method which requires the com-
putation of the derivatives of u w.r.t. the parameters. These derivatives are computed by solving
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several Cauchy problems similar to that in (4.3), but with an additional non-homogeneous term
(cf. Di Francesco and Pascucci [16]).

Here we illustrate a more efficient approach, proposed by Achdou and Pironneau in [1, 2] in
the context of parabolic PDEs, for computing the derivatives of ψ. We illustrate how, instead of
solving a set of Cauchy problems as in [17, 18], we can solve only one Cauchy problem based on
the adjoint of the KE (4.3).

Consider an admissible “variation” δσ2 and δg of the functions σ2 and g respectively. It follows
that

δψ := ψ(σ2 + δσ2, g + δg)− ψ(σ, g)

= 2
I∑

i=1

(ci − u(xi, M0, τi))δu(xi,M0, τi) + O(‖δσ2‖2 + ‖δg‖2), (4.5)

where δu is the solution of the Cauchy problem

Lδu = v, x,m ∈ R and τ > 0, (4.6a)
δu(x, m, 0) = 0, x,m ∈ R, (4.6b)

where

v = δσ2(∂xxu− ∂xu) + δg(τ)(x−m)∂mu.

Under conditions of Theorems 2.4-2.6, we denote by L∗ the adjoint of L and consider the adjoint
KE

L∗p = 2
∑

i

(ci − u(xi,M0, τi))δxi,M0,τi , (4.7)

with terminal condition

p(x,m, T ) = 0, (4.8)

where T ≥ τi (1 ≤ i ≤ I) and δxi,M0,τi denotes the Dirac’s delta.
Formally (4.7) defines p as

p(x, m, τ) = 2
∑

{i|ti≤t}
(ci − u(xi,M0, τi))Γ∗(x,m, τ ; xi,M0, τi), (4.9)

where Γ∗ denotes the fundamental solution of the adjoint operator L∗. Now, multiplying (4.7) by
δu and integrating on Ω = R2 × [0, T ], we get δψ on the right and side and thus

δψ =
∫

Ω
(L∗p) δu =

∫

Ω
p (Lu) =

∫

Ω
p v =

∫

Ω
p

(
δσ2 (∂xxu− ∂xu) + δg (x−m)∂mu

)
,

up to an O(‖δσ‖2 + ‖δg‖2) term.
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