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Abstract We give a complete and self-contained proof of the existence of a strong
solution to the free boundary and optimal stopping problems for pricing American
path-dependent options. The framework is sufficiently general to include geomet-
ric Asian options with nonconstant volatility and recent path-dependent volatility
models.
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1 Introduction

In modern finance theory, the valuation of options with early exercise leads to op-
timal stopping problems which are equivalent to parabolic free boundary problems.
Precisely, the price of an American option, with expiry date T and payoff function ϕ,
is the solution to the optimal stopping problem

u(t, x) = sup
τ∈Tt,T

E
[
ϕ
(
Xt,x

τ

)]
, (1.1)

where X is the diffusion starting from (t, x) that describes the dynamics of the un-
derlying assets, and Tt,T denotes the set of all stopping times with values in [t, T ].
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Equivalently, the price is determined by the solution to the free boundary problem

{
max{Lu,ϕ − u} = 0 in ]0, T [×R

N ,
u(T , ·) = ϕ(T , ·) in R

N ,
(1.2)

where L is the Kolmogorov operator of X.
A rigorous theory of American options was first developed by Bensoussan [5],

Karatzas [22], and Jaillet et al. [20] by using the classical results by van Moer-
beke [32], Bensoussan and Lions [6], Kinderlehrer and Stampacchia [24], and Fried-
man [13] in the framework of parabolic PDEs. However, there are relevant kinds of
American options, commonly traded in financial markets, whose modeling involves
equations that are not uniformly parabolic and to which the classical theory does not
apply. Two remarkable examples are given by average-rate (more commonly called
Asian) options and recent path-dependent volatility models such as the stochastic
volatility model by Hobson and Rogers [16].

While there are several papers on the valuation of Asian options with early exer-
cise (for instance, Barraquand and Pudet [2], Barles [1], Hansen and Jørgensen [15],
Meyer [28], Wu et al. [33], Fu and Wu [14], Jiang and Dai [21], Ben-Ameuret et
al. [4], Marcozzi [27], Dai and Kwok [8], and Huang and Thulasiram [18]), most of
these are devoted to numerical issues (i.e., the development of numerical techniques
for pricing and determining the exercise boundary) by some means, assuming as es-
tablished the existence and regularity of the solution to the free boundary or optimal
stopping problem. To a certain extent, using the weak notion of viscosity solution, it
is possible to obtain general existence results. Using the same techniques, it is also
possible to prove the uniform convergence of numerical schemes (cf. Barles [1] and
Jiang and Dai [21]), though without having adequate control over the errors and the
rate of convergence. As a matter of fact, if L is a uniformly parabolic operator, prob-
lem (1.2) is classically solved within the natural framework of the theory of Sobolev
spaces and admits a strong solution. Indeed, it is well known that even in the Black–
Scholes setting, a free boundary problem generally does not have a classical smooth
solution and the regularity in some suitable Sobolev space is optimal.

In this paper, we consider a quite general financial model, possibly corresponding
to a degenerate PDE, that includes Asian options and path-dependent volatility mod-
els as particular cases. We introduce a suitable functional setting and in this frame-
work prove the existence and uniqueness of a strong solution u to the free boundary
and optimal stopping problems. The regularity properties of u are precisely stated in
Sect. 4: roughly speaking, u has weak second-order derivatives in L

p

loc for any p ≥ 1
and locally Hölder-continuous first-order derivatives.

The outline for this paper is as follows. In Sect. 2, we briefly recall some known
results for American Asian options in the Black–Scholes setting. In Sect. 3, we state
the assumptions and examine some examples. Section 4 contains our main results
regarding the existence of a strong solution to problem (1.2) and a Feynman–Kač-
type theorem connecting the free boundary and optimal stopping problems. In the
Appendix, we review some basic facts about Kolmogorov PDEs associated with lin-
ear SDEs and describe a functional setting suitable for our study.
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2 American Asian options in the Black–Scholes model

Asian options are averaging options whose terminal payoff depends on some form of
averaging prices of the underlying asset over a part or the whole life of the option. Let
r denote the constant interest rate and assume that the price of the underlying asset is
modeled by a geometric Brownian motion

dSt = μSt dt + σSt dWt .

We denote by M the path-dependent variable: For an arithmetic Asian option, we set

Mt = At

t
, At =

∫ t

0
Ss ds, with M0 = S0, (2.1)

and for a geometric Asian option,

Mt = exp

(
Gt

t

)
, Gt =

∫ t

0
logSs ds, with M0 = S0. (2.2)

Then the payoff function of a fixed-strike call Asian option is given by

ϕ(t, St ,Mt ) = (Mt − K)+, (2.3)

where K is the strike price; for a floating-strike call Asian option, the payoff is

ϕ(t, St ,Mt) = (St − Mt)
+. (2.4)

Arithmetic and geometric Asian options are commonly traded in specific markets (for
instance, currency and commodity markets, cf. [15]) and were introduced to avoid the
well-known problems of European options that can be subject to price manipulations
of the underlying asset near the maturity.

For the arithmetic average (2.1), by the usual no-arbitrage arguments we obtain
the pricing PDE

σ 2S2

2
∂SSu + rS∂Su + S∂Au + ∂tu − ru = 0 (2.5)

for the option price process u(t, St ,At ). As usual, state augmentation converts the
path-dependent problem for the Asian option into an equivalent path-independent and
Markovian problem. However, increasing the dimension generally leads to degener-
ate PDEs which are not uniformly parabolic. This is the case for (2.5) which only
contains the second-order partial derivatives with respect to one of the two “spatial
variables.”

On the other hand, it is known that, in the particular Black–Scholes setting and
for specific payoff functions, it is possible to reduce the study of an Asian option to a
PDE with only one state variable. More precisely, for the floating-strike Asian option,
Ingersoll [19] proposes the change of variable x = A

S
. It is straightforward to show

that u = u(t, S,A) solves the Cauchy problem for (2.5) with final condition

u(T ,ST ,AT ) =
(

ST − AT

T

)+
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if and only if the function U = U(t, x) defined by u(t, S,A) = SU(t, A
S
) solves the

bidimensional parabolic Cauchy problem
{

σ 2x2

2 ∂xxU + (1 − rx)∂xU + ∂tU = 0, t ∈]0, T [, x > 0,

U(T , x) = (1 − x
T

)+, x > 0.

A similar result holds for the corresponding free boundary problem in the early exer-
cise case.

Analogously, for the fixed-strike Asian option, Rogers and Shi [30] implicitly pro-
pose the change of variable x = A/T −K

S
. In this case, u solves the Cauchy problem

for (2.5) with final condition

u(T ,ST ,AT ) =
(

AT

T
− K

)+

if and only if the function U = U(t, x) defined by

u(t, S,A) = SU

(
t,

A
T

− K

S

)

solves the degenerate Cauchy problem in R
2

{
σ 2x2

2 ∂xxu + ( 1
T

− rx)∂xu + ∂tu = 0, t ∈]0, T [, x ∈ R,
u(T , x) = x+, x ∈ R.

(2.6)

Note that the PDE in (2.6) is not parabolic and degenerates at x = 0.
We emphasize that reduction to a lower-dimensional PDE is possible only under

rather restrictive hypotheses; namely, assuming that S is a geometric Brownian mo-
tion and for the specific payoff functions in (2.3) and (2.4). More generally, reduction
is possible if the payoff function has suitably homogeneity properties, for instance,
ϕ(t, S,M) = Sϕ(t,1,M/S). The idea that degenerate diffusions can be reduced to
lower-dimensional nondegenerate diffusions on a sub-manifold of the underlying as-
set space was carried on by Barraquand and Pudet [2].

For geometric Asian options, the pricing PDE for the value function u = u(t, S,G)

reads

σ 2S2

2
∂SSu + rS∂Su + log(S)∂Gu + ∂tu − ru = 0, t ∈]0, T [, S,G > 0. (2.7)

By the change of variables (cf. [3])

f (t, x, y) = e
x 2r−σ2

2
√

2σ
+t ( 2r+σ2

2
√

2σ
)2

u

(
t, e

σx√
2 ,

σy√
2

)
,

u solves (2.7) if and only if f is a solution to

∂xxf + x∂yf + ∂tf = 0, t ∈]0, T [, (x, y) ∈ R
2. (2.8)

Even in this case, it seems that a reduction to a one-dimensional problem is not gen-
erally possible. On the other hand, in the next section, we show that the process
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(St ,Gt ) is nondegenerate and has an explicit strictly positive transition density that
is the fundamental solution of (2.7).

3 Assumptions, preliminaries, and examples

We consider a quite general Markov-type financial model where the dynamics of the
N state variables is driven by the stochastic differential equation

dXt = (
BXt + b(t,Xt )

)
dt + σ(t,Xt ) dWt . (3.1)

In (3.1), W denotes a d-dimensional standard Wiener process with d ≤ N . To fix
ideas, for an Asian option, we have N = 2 and X is the two-dimensional process
whose components are the underlying price (in logarithmical scale) and related aver-
age. We refer to Subsect. 3.1 for further examples.

We assume the following structural condition:

Assumption 3.1 σ = σ(t, x) is an N × d matrix whose entries are bounded Hölder-
continuous functions. Moreover, B = (bij ) is an N × N constant matrix, and b =
(b1, . . . , bN) is a bounded Hölder-continuous vector-valued function such that

0 = bd+1 = · · · = bN . (3.2)

By Remark 5.2 below, the standard Hölder-continuity hypothesis is equivalent to
the more natural assumption that aij , bi ∈ Cα

B for some α ∈]0,1[, where the Hölder
space Cα

B is defined in Subsect. 5.2 below. We also remark that our results straight-
forwardly generalize to the case B = B(t) and bd+1(t), . . . , bN(t) measurable and
bounded functions of time. Clearly, for d = N , condition (3.2) can be neglected.

Before stating the other main hypotheses, we recall some well-known facts about
linear SDEs; for more details, we refer, for instance, to [23], Chap. 5.6. Let Id denote
the identity matrix in R

d and consider the N × d constant matrix defined, in block
form, by

σ0 =
(

Id

0

)
. (3.3)

Then, for fixed (y, s) ∈ R
N+1, the solution of the linear SDE

dX
s,y
t = BX

s,y
t dt + σ0 dWt, X

s,y
s = y, (3.4)

is a Gaussian process with mean vector

E
[
X

s,y
t

] = e(t−s)By

and covariance matrix C0(t − s), where

C0(t) =
∫ t

0
e(t−ρ)Bσ0σ

∗
0 e(t−ρ)B∗

dρ, t ≥ 0.
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Since σ0 has dimension N × d , the matrix C0(t) is generally only positive semi-
definite in R

N , that is, X
s,y
t has a possibly degenerate multivariate normal distribu-

tion. The well-known Kalman condition from control theory (see [23], Proposition
5.6.5) provides an operative criterion for the positivity of C0(t).

Theorem 3.2 (Kalman rank condition) The matrix C0(t) is positive definite for t > 0
if and only if

rank
[
σ0, Bσ0, B2σ0, . . . , BN−1σ0

] = N. (3.5)

Incidentally, the previous result shows that C0(t) > 0 for some t > 0 if and only
if C0(t) > 0 for every t > 0. Then (3.5) ensures that Xs,y has the Gaussian transition
density

G(s, y; t, x) = 1
√

(2π)N detC0(t − s)

× exp

(
−1

2

〈
C−1

0 (t − s)(x − e(t−s)By), x − e(t−s)By
〉)

. (3.6)

Furthermore, G is the fundamental solution of the Kolmogorov PDE associated to
(3.4), i.e.,

Ku(t, x) := 1

2

d∑

i,j=1

∂xixi
u(t, x) +

N∑

i,j=1

bij xj ∂xi
u(t, x) + ∂tu(t, x) = 0, (3.7)

which, in compact form, reads

Ku = 1

2
	Rd u +

N∑

i,j=1

bij xj ∂xi
u + ∂tu = 0.

We emphasize that generally (3.7) is not a uniformly parabolic PDE since d ≤ N .
In the Appendix, we briefly review some basic results about Kolmogorov equations
related to linear SDEs and verify that (3.5) is equivalent to the Hörmander condi-
tion [17], which is a nondegeneracy criterion well-known in PDE theory.

Now we consider the general SDE (3.1) and state the second hypothesis:

Assumption 3.3 The matrix σσ ∗ takes the block form

σσ ∗ =
(

A 0
0 0

)
, (3.8)

where A = (aij )i,j=1,...,d is uniformly positive definite, i.e., there exists a positive
constant Λ such that

Λ−1|η|2 <
〈
A(t, x)η, η

〉
< Λ|η|2 (3.9)

for any η ∈ R
d and (t, x) ∈ R

N+1. Moreover, the matrix B satisfies the Kalman con-
dition (3.5) with σ0 as in (3.3).
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Combining the results by Stroock and Varadhan [31] and Di Francesco and Pas-
cucci [9], Assumptions 3.1 and 3.3 ensure the existence and uniqueness of a weak
solution (Ω,F ,P , (Fs),W,X) to the SDE (3.1). Specifically, it is proved in [9],
Theorem 1.4, that the Kolmogorov operator of (3.1), that is

Lu(t, x) = 1

2

d∑

i,j=1

aij (t, x)∂xixj
u(t, x) +

N∑

i,j=1

bij xj ∂xi
u(t, x)

+
d∑

i=1

bi(t, x)∂xi
u(t, x) + ∂tu(t, x),

has a fundamental solution  = (s, y; t, x) which is the transition density of the
weak solution of (3.1). Moreover, the following Gaussian upper bound holds:

(s, y; t, x) ≤ CG0(s, y; t, x), s < t, x, y ∈ R
N, (3.10)

where G0 denotes a density of the form (3.6), and C is a positive constant only
depending on L and t − s. Precisely, G0 is the transition density related to the linear
SDE (3.4) with

σ0 =
(

ΛId

0

)

and Λ as in (3.9). For convenience, we rewrite the operator L in compact form as

L = 1

2

d∑

i,j=1

aij ∂xixj
+ 〈Bx + b,∇〉 + ∂t . (3.11)

We consider the free boundary problem
{
Lu := max{Lu − ru − f,ϕ − u} = 0 in ST := ]0, T [×R

N ,
u(T , ·) = ϕ(T , ·) in R

N .
(3.12)

In (3.12), r and f are nonconstant coefficients typically representing the locally risk-
free interest rate and some transaction costs, respectively.

We assume the following conditions on the coefficients.

Assumption 3.4 The coefficients r, f are bounded and Hölder-continuous. The pay-
off function ϕ is locally Lipschitz-continuous on ST , and for any compact subset H

of ST , there exists a constant c ∈ R such that

d∑

i,j=1

ηiηj ∂xixj
ϕ ≥ c|η|2 in H for η ∈ R

d (3.13)

in the distributional sense, that is,

d∑

i,j=1

ηiηj

∫

H

∂xixj
ψ(z)ϕ(z) dz ≥ c|η|2

∫

H

ψ(z)dz

for any η ∈ R
d and ψ ∈ C∞

0 (H),ψ ≥ 0.
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The financial intuition underlying condition (3.13) is that the payoff ϕ has to be
a convex function (in a very weak sense) with respect to the first d state variables
corresponding, as we shall see in the examples, to the prices of the underlying assets
for the option.

We explicitly remark that any C2 function satisfies condition (3.13) as well as any
Lipschitz-continuous function that is convex with respect to the first d variables. In
particular, the payoff functions of standard call and put Asian options are included.
Note that x �→ (x − K)+ satisfies (3.13), since its second-order distributional deriv-
ative in K is a Dirac delta which is “nonnegative”; on the contrary, the function
x �→ −(x − K)+ does not satisfy (3.13), since its second-order distributional deriva-
tive in K is a minus Dirac delta which is not “bounded from below.”

3.1 Some examples

Example 3.5 (Geometric Asian option with local volatility) In a local volatility
model, we assume that the logarithm Z of the underlying asset has the dynamics

dZt = μ(t,Zt ) dt + σ(t,Zt ) dWt ,

where W is a standard one-dimensional Brownian motion. Then the average process
G in (2.2) for a geometric Asian option satisfies

dGt = Zt dt.

Adopting the notation (3.1–3.3), we have 1 = d < N = 2 and

Xt =
(

Zt

Gt

)
, b =

(
μ

0

)
, B =

(
0 0
1 0

)
, σ0 =

(
1
0

)
.

Moreover, condition (3.9) is clearly satisfied with A = σ 2 whenever σ is a (uniformly
strictly) positive and bounded function. Finally, we have

[σ0, Bσ0] =
(

1 0
0 1

)
,

so that the Kalman rank condition and Assumption 3.3 are verified. We remark that
our results can be generalized to accomodate the arithmetic average case as well;
however, this requires some nontrivial (yet merely technical) question to be ad-
dressed. For this reason, we treat that topic separately and plan to complete the study
in a forthcoming paper.

Example 3.6 (Geometric Asian option in the Heston stochastic volatility model) In
the Heston stochastic volatility model, we have 2 = d < N = 3 and

dZt =
(

μ − νt

2

)
dt + σ

√
νt dW 1

t ,

dνt = (a − νt ) dt + η
√

νt dW 2
t ,

dGt = Zt dt,
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where (W 1,W 2) is a two-dimensional Brownian motion, and μ,σ,a, η are positive
parameters. In this case,

Xt =
(

Zt

νt

Gt

)

, b(t, z, ν) =
(

μ

a

0

)

,

B =
(0 − 1

2 0
0 −1 0
1 0 0

)

, σ0 =
(1 0

0 1
0 0

)

,

and again Assumption 3.3 is easily verified by the rank condition. We refer to the
paper by Parrott and Clarke [29] for a numerical study of American Asian options
under stochastic volatility.

Example 3.7 (Path-dependent volatility) We consider an extension of the local
volatility model in which the volatility is defined as a function of the whole trajectory
of the underlying asset, not only in terms of the spot price. Path-dependent volatil-
ity was first introduced by Hobson and Rogers [16] and then generalized by Foschi
and Pascucci [11]; the main feature is that this generally leads to a complete market
model. We refer to [11] for an empirical analysis which shows the effectiveness of
the model and compares the hedging performance with respect to standard stochastic
volatility models.

Let ψ be an average weight, that is, a nonnegative, piecewise-continuous, and
integrable function on ]−∞, T ]. We assume that ψ is strictly positive in [0, T ] and
set

Ψ (t) =
∫ t

−∞
ψ(s) ds.

Then we define the average process as

Mt = 1

Ψ (t)

∫ t

−∞
ψ(s)Zs ds, t ∈]0, T ],

where Zt = log(e−rtSt ) denotes the logarithmic discounted price process. The Hob-
son and Rogers model corresponds to the specification ψ(t) = eλt for some positive
parameter λ. Then by Itô’s formula we have

dMt = ϕ(t)

Φ(t)
(Zt − Mt)dt.

Assuming for the log-price the dynamics

dZt = μ(Zt − Mt)dt + σ(Zt − Mt)dWt ,

we obtain the pricing PDE

σ 2(z − m)

2
(∂zzf − ∂zf ) + ϕ(t)

Φ(t)
(z − m)∂mf + ∂tf = 0, (t, z,m) ∈]0, T [×R

2.
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In this case, 1 = d < N = 2 and

Xt =
(

Zt

Mt

)
, b =

(
μ

0

)
, B = ϕ(t)

Φ(t)

(
0 0
1 −1

)
, σ0 =

(
1
0

)
.

Assumptions 3.1 and 3.3 are readily verified.

4 Free boundary and optimal stopping problems

In this section, we prove our main results regarding the free boundary problem (3.12)
and related optimal stopping problem for SDE (3.1). Throughout this section, As-
sumptions 3.1, 3.3, and 3.4 are supposed to hold.

In order to introduce the notion of strong (super-)solution, we recall the definition
of the Sobolev space Sp given in Subsect. 5.2 below. For p ≥ 1, Sp denotes the space
of functions u ∈ Lp such that ∂xi

u, ∂xixj
u for i = 1, . . . , d and

Yu := 〈Bx,∇u〉 + ∂tu =
N∑

i,j=1

bij xj ∂xi
u + ∂tu (4.1)

belong to Lp . As usual, given a domain D in R
N+1, Sp

loc(D) denotes the space of
functions u ∈ Sp(D0) for any compact subset D0 of D. Let us also recall the notation

ST =]0, T [×R
N

for a strip in R
N+1.

Definition 4.1 A function u ∈ S1
loc(ST )∩C(RN×]0, T ]) is a strong solution of prob-

lem (3.12) if Lu = 0 almost everywhere in ST and u attains the final datum pointwise.
A function u ∈ S1

loc(ST ) ∩ C(RN×]0, T ]) is a strong supersolution of problem (3.12)
if Lu ≤ 0.

In Subsect. 4.2, we prove the following existence result.

Theorem 4.2 If there exists a strong supersolution ū of problem (3.12), then there
also exists a strong solution u of (3.12) such that u ≤ ū in ST . Moreover, u ∈ Sp

loc(ST )

for any p ≥ 1 and, consequently, by the embedding theorem in Subsect. 5.2,
u ∈ C

1,α
B,loc(ST ) for any α ∈]0,1[.

We remark that a supersolution to problem (3.12) exists in the case of put options
and, more generally, whenever ϕ is a bounded function and f ≥ 0. Indeed, in this
case, we can simply set ū(x, t) = e−t‖r‖∞‖ϕ‖∞.

For unbounded payoffs, one can usually rely upon some financial consideration
based on no-arbitrage arguments. For instance, after the usual change of variable
for the asset price S = ex , a supersolution for an American call option with payoff
(ex − K)+ is simply given by ū(t, x) = ex .
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Regarding the regularity of the solution, recalling the definition of C
1,α
B in Sub-

sect. 5.2 below, Theorem 4.2 shows that u and its first derivatives ∂x1u, . . . , ∂xd
u are

Hölder-continuous of exponent α for any α ∈]0,1[. Since in [10] it is proved that
strong solutions are also solutions in the viscosity sense, then Theorem 4.2 improves
the known regularity results.

Now by Xt,x we denote the solution to SDE (3.1) starting at time t from x ∈ R
N

and defined on the Wiener space (Ω,F ,P , (Fs),W). We recall the following stan-
dard maximal estimate (cf., for instance, Chap. 5 in [12]):

E
[

exp
(
λ sup

t≤s≤T

∣∣Xt,x
s

∣∣2
)]

< ∞ (4.2)

for suitably small positive constant λ = λ(T ,B,b,Λ,N); more explicitly, it suffices
to take

λ ≤ e−2T (‖B‖+‖b‖∞)

2T NΛ
.

The following representation theorem for strong solutions holds.

Theorem 4.3 Let u be a strong solution to the free boundary problem (3.12) such
that

∣∣u(t, x)
∣∣ ≤ Ceλ|x|2 , (t, x) ∈ ST , (4.3)

for some constants C,λ with λ sufficiently small so that (4.2) holds. Then we have

u(t, x) = sup
τ∈Tt,T

E

[
ϕ
(
τ,Xt,x

τ

)
e− ∫ τ

t r(s,X
t,x
s ) ds −

∫ τ

t

f
(
s,Xt,x

s

)
e− ∫ s

t r(ρ,X
t,x
ρ )dρ ds

]
,

(4.4)
where

Tt,T = {
τ ∈ T | τ ∈ [t, T ] a.s.

}
,

and T is the set of all stopping times with respect to the filtration (Fs). In particular,
such a solution is unique.

In the next subsections, we prove Theorem 4.3 and present a detailed outline of
the proof of Theorem 4.2. For a complete study of the related obstacle problem, we
refer to the recent paper [10].

4.1 Proof of Theorem 4.3

For simplicity, we only consider the case r = f = 0. As in the classical case, the
proof is based on Itô’s formula. However, we remark that a strong solution u need
not have the required regularity in order to apply the Itô formula directly. Then in
order to exploit the weak interior regularity properties of u, we employ a truncation
and regularization technique.

We set BR = {x ∈ R
N | |x| < R}, R > 0 and, for x ∈ BR , denote by τR the first

exit time of Xt,x from BR . It is well known that, since σ is not totally degenerate,
E[τR] is finite.
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As a first step, we prove the following result. For every (t, x) ∈]0, T [×BR and
τ ∈ T such that t ≤ τ ≤ τR a.s., we have

u(t, x) = E

[
u
(
τ,Xt,x

τ

) −
∫ τ

t

Lu
(
s,Xt,x

s

)
ds

]
. (4.5)

Indeed, for fixed ε positive and suitably small, we consider a function uε,R on R
N+1

with compact support such that uε,R = u on ]t, T − ε[×BR . Moreover, we denote by
(uε,R,n)n∈N the regularizing sequence obtained by convolution of uε,R with the usual
mollifiers. Then, for any p ≥ 1, uε,R,n ∈ Sp(RN+1) and

lim
n→∞

∥∥Luε,R,n − Luε,R
∥∥

Lp(]t,T −ε[×BR)
= 0. (4.6)

By the standard Itô formula applied to the smooth function uε,R,n we have

uε,R,n
(
τ,Xt,x

τ

) = uε,R,n(t, x) +
∫ τ

t

Luε,R,n
(
s,Xt,x

s

)
ds

+
∫ τ

t

∇uε,R,n
(
s,Xt,x

s

)
σ
(
s,Xt,x

s

)
dWs (4.7)

for τ ∈ T such that t ≤ τ ≤ τR ∧ (T − ε) a.s. Since (∇uε,R,n)σ is a bounded function
on ]t, T − ε[×BR , we have

E

[∫ τ

t

∇uε,R,n
(
s,Xt,x

s

)
σ
(
s,Xt,x

s

)
dWs

]
= 0.

Moreover, we have

lim
n→∞uε,R,n(t, x) = uε,R(t, x)

and, by dominated convergence,

lim
n→∞E

[
uε,R,n

(
τ,Xt,x

τ

)] = E
[
uε,R

(
τ,Xt,x

τ

)]
.

Next, we prove the convergence of the ds-integral in (4.7). First we remark that by
the Gaussian estimate (3.10) the transition density of Xt,x satisfies

(t, x; ·, ·) ∈ Lq̄
(]t, T [×BR

)
(4.8)

for some q̄ > 1. We show (4.8) at the end of this subsection and, taking it for granted,
first conclude the proof of the theorem. We have, using τ ≤ τR and Hölder’s inequal-
ity and denoting by p̄ the conjugate exponent of q̄ in (4.8),

∣∣∣∣E
[∫ τ

t

Luε,R,n
(
s,Xt,x

s

)
ds

]
− E

[∫ τ

t

Luε,R
(
s,Xt,x

s

)
ds

]∣∣∣∣

≤ E

[∫ τ

t

∣∣Luε,R,n
(
s,Xt,x

s

) − Luε,R
(
s,Xt,x

s

)∣∣ds

]
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≤ E

[∫ T −ε

t

∣∣Luε,R,n
(
s,Xt,x

s

) − Luε,R
(
s,Xt,x

s

)∣∣1{|Xt,x
s |≤R} ds

]

=
∫ T −ε

t

∫

BR

∣∣Luε,R,n(s, y) − Luε,R(s, y)
∣∣(t, x; s, y) dy ds

≤ ∥∥Luε,R,n − Luε,R
∥∥

Lp̄(]t,T −ε[×BR)

∥∥(t, x; ·, ·)∥∥
Lq̄(]t,T −ε[×BR)

and, by (4.6) and (4.8), we obtain

lim
n→∞E

[∫ τ

t

Luε,R,n
(
s,Xt,x

s

)
ds

]
= E

[∫ τ

t

Luε,R
(
s,Xt,x

s

)
ds

]
.

This concludes the proof of (4.5), since uε,R = u on ]t, T − ε[×BR and ε > 0 is
arbitrary.

Next, since Lu ≤ 0 a.e. and the law of Xt,x is absolutely continuous with respect
to the Lebesgue measure, we have

E

[∫ τ

t

Lu
(
s,Xt,x

s

)
ds

]
≤ 0

for any τ ∈ Tt,T and from (4.5) we infer

u(t, x) ≥ E
[
u
(
τ ∧ τR,X

t,x
τ∧τR

)]
(4.9)

for any τ ∈ Tt,T . Next, we pass to the limit as R → +∞; we have

lim
R→+∞ τ ∧ τR = τ

pointwise and, by the growth assumption (4.3),

∣∣u
(
τ ∧ τR,X

t,x
τ∧τR

)∣∣ ≤ C exp
(
λ sup

t≤s≤T

∣∣Xt,x
s

∣∣2
)
.

By (4.2) the right-hand side of the previous estimate is integrable; thus, Lebesgue’s
theorem applies, and from (4.9) we deduce that, as R → +∞,

u(t, x) ≥ E
[
u
(
τ,Xt,x

τ

)] ≥ E
[
ϕ
(
τ,Xt,x

τ

)]
.

This shows that

u(t, x) ≥ sup
τ∈Tt,T

E
[
ϕ
(
τ,Xt,x

τ

)]
.

We conclude the proof by putting

τ0 = inf
{
s ∈ [t, T ] | u(

s,Xt,x
s

) = ϕ
(
s,Xt,x

s

)}
.

Since Lu = 0 a.e., where u > ϕ, we have that

E

[∫ τ0∧τR

t

Lu
(
s,Xt,x

s

)
ds

]
= 0 (4.10)
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and from (4.5) we infer

u(t, x) = E
[
u
(
τ0 ∧ τR,X

t,x
τ0∧τR

)]
.

Repeating the previous argument to pass to the limit in R, we obtain

u(t, x) = E
[
u
(
τ0,X

t,x
τ0

)] = E
[
ϕ
(
τ0,X

t,x
τ0

)]
.

In order to conclude the proof of Theorem 4.3, it remains to show (4.8). By esti-
mate (3.10), it suffices to prove that G(t, x; ·, ·) in (3.6) belongs to Lq(]t, T [×R

N)

for q < 1+ 2
Q

, where Q is the homogeneous dimension of R
N defined below in (5.7).

We have, for a suitable constant c,

∫ T

t

∫

RN

G(t, x; s, y)q dy ds

=
∫ T

t

∫

RN

c

(detC0(s − t))
q
2

× exp

(
−q

2

〈
C−1

0 (s − t)
(
y − e(s−t)Bx

)
, y − e(s−t)Bx

〉)
dy ds

=
∫ T

t

c

(detC0(s − t))
q−1

2

ds

∫

RN

e− |η|2
2 dη

by the change of variables η = C− 1
2

0 (s − t)(y − e(s−t)Bx). Then the statement of the
theorem follows from the fact (see, for instance, Sect. 2 in [9]) that

detC0(s − t) = O
(
(s − t)Q

)
as s → t.

4.2 Free boundary problem

A solution of problem (3.12) can be obtained as the limit of strong solutions to a
sequence of free boundary problems on bounded cylinders of the form ]0, T [×Hn,
where (Hn) is an increasing covering of R

N . The proof of this simple and quite gen-
eral fact can be found, for instance, in [10], Theorem 4.1. Thus, we only examine here
the free boundary problem on a bounded cylinder. Precisely, we prove the existence
of a strong solution to the problem

{
max{Lu − ru − f,ϕ − u} = 0 in H(T ) := ]0, T [×H ,
u|∂P H(T ) = ϕ,

(4.11)

where H is a bounded domain of R
N , and

∂P H(T ) := ∂H(T ) \ ({T } × H)

is the parabolic boundary of H(T ). Hereafter we assume that H(T ) is a regular do-
main in the sense that the standard initial-boundary problem for L on H(T ) has a
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solution. A well-known sufficient condition for this is the existence of a so-called
barrier function at any point of the parabolic boundary. We recall that a barrier w

at ζ ∈ ∂P H(T ) is a smooth function defined on V ∩ H(T ), where V is a suitable
neighborhood of ζ such that Lw ≤ −1 in V ∩ H(T ), w > 0 in V ∩ H(T ) \ {ζ }, and
w(ζ ) = 0.

Theorem 4.4 Problem (4.11) has a strong solution u ∈ S1
loc(H(T )) ∩ C(H(T )).

Moreover, u ∈ Sp

loc(H(T )) for any p > 1 and, by the embedding theorem in Sub-

sect. 5.2, u ∈ C
1,α
B,loc(H(T )) for any α ∈]0,1[.

Proof The proof is based on a penalization technique. We consider a family
(βε)ε∈]0,1[ of smooth functions such that, for any ε, the function βε is increasing
and bounded on R and has bounded first-order derivative. Moreover, βε(0) = 0,

βε(s) ≤ ε, s > 0, and lim
ε→0

βε(s) = −∞, s < 0.

We also denote by Lδ , δ > 0, the operator obtained by regularizing the coefficients of
L. Besides ϕδ, rδ , and f δ respectively denote the regularizations of ϕ, r , and f .

By a general result for quasilinear equations (see, for instance, Theorem 3.2 in
[10]), there exists a classical solution uε,δ ∈ C

2,α
B (H(T )) ∩ C(H(T )), α ∈]0,1[, to

the penalized and regularized problem
{

Lδu − rδu = f δ + βε(u − ϕδ) in H(T ),
u|∂P H(T ) = ϕδ.

The crucial step consists in proving the uniform boundedness of the penalization
term, i.e.,

∣∣βε

(
uε,δ − ϕδ

)∣∣ ≤ c in H(T ) (4.12)

with c independent of ε and δ.
Since by construction βε ≤ ε, it suffices to prove the lower bound in (4.12). By

continuity, βε(uε,δ − ϕδ) has a minimum ζ in H(T ), and we may suppose that

βε

(
uε,δ(ζ ) − ϕδ(ζ )

) ≤ 0,

since otherwise there is nothing to prove. Now, if ζ ∈ ∂P H(T ), then

βε

(
uε,δ(ζ ) − ϕδ(ζ )

) = βε(0) = 0.

On the other hand, if ζ ∈ H(T ), then we recall that βε is increasing; consequently
uε,δ − ϕδ also has a (negative) minimum in ζ . Thus, since it is not restrictive to
assume that r ≥ 0, we have

Lδuε,δ(ζ ) − Lδϕδ(ζ ) ≥ 0 ≥ r(ζ )
(
uε,δ(ζ ) − ϕδ(ζ )

)
. (4.13)

Now by the weak convexity condition (3.13) on ϕ in Assumption 3.4 we have that
Lδϕδ(ζ ) is bounded uniformly in δ. Therefore, by (4.13), we deduce
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βε

(
uε,δ(ζ ) − ϕδ(ζ )

)

= Lδuε,δ(ζ ) − rδ(ζ )uε,δ(ζ ) − f δ(ζ ) ≥ Lδϕδ(ζ ) − rδ(ζ )ϕδ(ζ ) − f δ(ζ ) ≥ c,

where c is a constant independent of ε, δ, and this proves (4.12).
Next, we use the Sp interior estimate (5.8) below combined with (4.12) to infer

that, for every D � H(T ) and all p ≥ 1, the norm ‖uε,δ‖Sp(D) is bounded uniformly

in ε and δ. It follows that (uε,δ) converges, as ε, δ → 0, weakly in Sp (and in C
1,α
B

by (5.9)) on compact subsets of H(T ) to a function u. Moreover,

lim sup
ε,δ→0

βε

(
uε,δ − ϕδ

) ≤ 0,

so that Lu − ru ≤ f a.e. in H(T ). On the other hand, Lu − ru = f a.e. on the set
{u > ϕ}. Finally, it is straightforward to verify that u is in C(H(T )) and assumes
the initial-boundary conditions, by using standard arguments based on the maximum
principle and barrier functions. �

5 Appendix

We review some basic facts about the Kolmogorov operator in (3.7) associated with
the linear SDE (3.4). With compact notation, the operator takes the form

K = 1

2
	Rd + Y, (5.1)

where 1 ≤ d ≤ N , and Y is as in (4.1). In the sequel, we assume that the Kalman
rank condition (3.5) holds. We also systematically write z = (t, x) and ζ = (s, y) to
denote points in R

N+1.
The main purpose of this section is to describe the non-Euclidean group and met-

ric structures induced by K on R
N+1, which provide the natural framework for the

study of the regularity properties of the operator. This structure was first studied by
Lanconelli and Polidoro [25]. Secondly, we define some nonstandard Sobolev and
Hölder spaces adapted to this non-Euclidean setting and state the basic a-priori es-
timates used in the study of the free boundary problem. In Subsect. 5.3, we give an
insight into the degenerate parabolic structure of K by showing that the Kalman con-
dition (3.5) is equivalent to the Hörmander condition [17]. Hereafter we refer to the
simplest nontrivial example of Kolmogorov operator, i.e.,

∂x1x1 + x1∂x2 + ∂t , (t, x1, x2) ∈ R
3, (5.2)

as the prototype for the general class. The operator in (5.2) is of particular interest,
since it arises in the valuation of geometric Asian options (cf. (2.8)).

5.1 Group and metric structure

We first remark that K in (5.1) is invariant with respect to the law

ζ ◦ z := (
t + s, x + etBy

)
, z = (t, x), ζ = (s, y) ∈ R

N+1. (5.3)
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More precisely, defining the left translation operator � by

�ζ u(z) = u(ζ ◦ z),

it is easily verified that

K(�ζ u) = �ζ (Ku)

for any ζ ∈ R
N+1. Correspondingly, the fundamental solution of K , whose explicit

expression in given in (3.6), has the invariance property

G(ζ ; z) = G
(
0; ζ−1 ◦ z

)
,

where ζ−1 = (−s,−e−sBy) is the inverse of ζ = (s, y) in the law “◦.” It is clear that
“◦” reduces to the standard sum in R

N when K is the heat operator and B = 0. On
the other hand, for the operator in (5.2), using the fact that

B =
(

0 0
1 0

)

is a nilpotent matrix, we simply have

(s, y1, y2) ◦ (t, x1, x2) = (t + s, x1 + y1, x2 + y2 + ty1).

Next we introduce a “parabolic” norm in R
N+1. Using the notation of Sect. 3, for

k = 0, . . . ,N , we denote by Vk the vector space spanned by the columns of the matrix

[
σ0, Bσ0, B2σ0, . . . , Bkσ0

]

and, for k = 1, . . . ,N , we define the subspace Wk of R
N by

Vk = Vk−1 ⊕ Wk.

By the Kalman condition, there exists m ≤ N such that Vm = R
N ; therefore, R

N has
an obvious direct sum decomposition, and, for x ∈ R

N , we have

x = x(0) + x(1) + · · · + x(m),

where x(0) ∈ V0 and x(k) ∈ Wk for k = 1, . . . ,m are uniquely determined.

Definition 5.1 The B-norm of (t, x) ∈ R
N+1 is defined as

∥∥(t, x)
∥∥

B
= |t | 1

2 +
m∑

k=0

|x(k)| 1
2k+1 . (5.4)

For example, if K is the heat operator, then (5.4) defines the usual parabolic norm

∥∥(t, x)
∥∥

B
= |t | 1

2 + |x|. (5.5)
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This definition is in agreement with the practical rule for the heat equation that “two
x-derivatives are equivalent to one t-derivative.” Note also that the heat equation is
homogeneous of degree two with respect to the dilations in R

N+1 defined as

δλ(t, x) = (
λ2t, λx

)
, λ ∈ R,

and the norm in (5.5) is δλ-homogeneous of degree one.
Analogously, for the operator (5.2), we have

∥∥(t, x1, x2)
∥∥

B
= |t | 1

2 + |x1| + |x2| 1
3 , (5.6)

so that, in this case, the practical rule reads “∂t and ∂x2 respectively correspond to
second- and third-order derivatives.” Moreover, the operator (5.2) is homogeneous of
degree two with respect to the dilations in R

3 defined as

δλ(t, x1, x2) = (
λ2t, λx1, λ

3x2
)
, λ ∈ R,

and (5.6) defines a δλ-homogeneous norm.
In general, the natural number

Q = dim(V0) +
m∑

k=1

(2k + 1)dim(Wk) (5.7)

is usually called the homogeneous dimension of R
N induced by K . Clearly, Q = N

when K is a parabolic operator, while N = 2 and Q = 4 for the operator in (5.2).

5.2 Sobolev and Hölder spaces

We introduce some functional spaces modeled on the group and metric structure
previously defined. Given a bounded domain D in R

N+1 and p ≥ 1, we define the
Sobolev space

Sp(D) = {
u ∈ Lp(D) : ∂xi

u, ∂xixj
u,Yu ∈ Lp(D), i, j = 1, . . . , d

}

equipped with the norm

‖u‖Sp(D) = ‖u‖Lp(D) +
d∑

i=1

‖∂xi
u‖Lp(D) +

d∑

i,j=1

‖∂xixj
u‖Lp(D) + ‖Yu‖Lp(D).

Moreover, for α ∈]0,1[, we denote respectively by Cα
B(D), C

1,α
B (D), and C

2,α
B (D)

the spaces of B-Hölder-continuous functions defined by the norms

‖u‖Cα
B(D) = sup

D

|u| + sup
z,ζ,∈D
z �=ζ

|u(z) − u(ζ )|
‖ζ−1 ◦ z‖α

B

,

‖u‖
C

1,α
B (D)

= ‖u‖Cα
B(D) +

d∑

i=1

‖∂xi
u‖Cα

B(D),
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‖u‖
C

2,α
B (D)

= ‖u‖
C

1,α
B (D)

+
d∑

i,j=1

‖∂xixj
u‖Cα

B(D) + ‖Yu‖Cα
B(D).

Remark 5.2 Since locally we have

1

c
|z − ζ | ≤ ∥∥ζ−1 ◦ z

∥∥ ≤ c |z − ζ | 1
2m+1 ,

the following inclusion relations among spaces of Hölder-continuous functions (in
the usual sense) hold:

Cα(D) ⊆ Cα
B(D) ⊆ C

α
2m+1 (D).

Several classical results from functional analysis have been extended to this non-
Euclidean setting in [7, 10, 26]. Here we state some fundamental embedding and a
priori estimates for the variable-coefficient operator L in (3.11). These results provide
basic tools for the study of the free boundary problem in Sect. 4. In the following in-
equalities, Q denotes the homogeneous dimension in (5.7), D0 is a domain contained,
with its closure, in D, and c is a constant only depending on L, D, D0, and p.

• Interior Sobolev estimates:

‖u‖Sp(D0) ≤ c
(‖u‖Lp(D) + ‖Lu‖Lp(D)

)
. (5.8)

• Embedding theorem:

‖u‖
C

1,α
B (D0)

≤ c‖u‖Sp(D), α = 1 − Q + 2

p
, p > Q + 2. (5.9)

5.3 Kalman and Hörmander conditions

We show that the Kalman condition (3.5) is equivalent to the Hörmander condition
which is a well-known nondegeneracy criterion in PDE theory. We first introduce
some terminology. We identify any first-order differential operator Z in R

N of the
form

Zf (x) =
N∑

k=1

αk(x)∂xk
f (x),

with the vector field (α1, . . . , αN) of its coefficients. The commutator of Z with

U =
N∑

k=1

βk∂xk

is defined as

[Z,U ] := ZU − UZ =
N∑

k=1

(Zβk − Uαk)∂xk
.
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Hörmander’s theorem is a very general result which, in the particular case of the
operator (5.1), states that K has a smooth fundamental solution if and only if the
vector space spanned by the differential operators (vectors fields)

∂x1 , . . . , ∂xd
and Ỹ := 〈Bx,∇〉,

together with their commutators of any order, at any point x, is equal to R
N . This is

the so-called Hörmander condition.
For example, for (5.2) we simply have Ỹ = x1∂x2 . Then

∂x1 ∼ (1,0) and [∂x1 , Ỹ ] = ∂x2 ∼ (0,1)

span R
2.

The equivalence of the Kalman and Hörmander conditions is readily verified once
we note that:

(i) For i = 1, . . . , d , [∂xi
, Ỹ ] = ∑N

k=1 bki∂xk
is the ith column of the matrix B; more-

over, [[∂xi
, Ỹ ], Ỹ ] is the ith column of the matrix B2, and an analogous represen-

tation of the higher-order commutators is valid;
(ii) For k = 1, . . . ,N , Bkσ0 appearing in (3.5) is the N × d matrix whose columns

are the first d columns of Bk .
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