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Abstract. This paper contains a survey of results about linear and nonlinear
partial differential equations of Kolmogorov type arising in physics and in
mathematical finance. Some recent pointwise estimates proved in collabora-
tion with S. Polidoro are also presented.
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1. Introduction

We consider a class of the differential equations of Kolmogorov type of the form

Lu ≡
p0∑

i,j=1

aij(z)∂xixj u +
p0∑

i=1

ai(z)∂xiu +
N∑

i,j=1

bijxi∂xj u + c(z)u − ∂tu = 0, (1.1)

where z = (x, t) ∈ R
N × R and 1 ≤ p0 ≤ N . By convenience, hereafter the

term “Kolmogorov equation” will be shortened to KE. We assume the following
hypotheses:

H.1 the matrix A0 = (aij)i,j=1,...,p0 is symmetric and uniformly positive definite
in R

p0 : there exists a positive constant µ such that

|η|2
µ

≤
p0∑

i,j=1

aij(z)ηiηj ≤ µ|η|2, ∀η ∈ R
p0 , z ∈ R

N+1; (1.2)
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H.2 the matrix B ≡ (bij) has constant real entries and takes the following block
from: 



∗ B1 0 . . . 0
∗ ∗ B2 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . Br

∗ ∗ ∗ . . . ∗




(1.3)

where Bj is a pj−1 × pj matrix of rank pj , with

p0 ≥ p1 ≥ · · · ≥ pr ≥ 1, p0 + p1 + · · · + pr = N,

and the ∗-blocks are arbitrary.
The prototype of (1.1) is the following equation

∂x1x1u + x1∂x2u − ∂tu = 0, (x1, x2, t) ∈ R
3, (1.4)

whose fundamental solution was explicitly constructed by Kolmogorov [25]. In his
celebrated paper [23], Hörmander generalized this result to constant coefficients
KEs, i.e., equations of the form (1.1), with constant aij and ai = c ≡ 0 for
i = 1, . . . , p0, satisfying the following condition:

Ker(A) does not contain non-trivial subspaces which are invariant for B. (1.5)

In (1.5), A denotes the N × N matrix

A =
(

A0 0
0 0

)
. (1.6)

Let us recall that, for constant coefficients equations, condition (1.5) is equivalent
to the structural assumptions H.1–H.2 which in turn are equivalent to the classical
Hörmander condition:

rank Lie (X1, . . . , Xp0 , Y ) = N + 1, (1.7)

at any point of R
N+1. In (1.7), Lie (X1, . . . , Xp0 , Y ) denotes the Lie algebra gen-

erated by the vector fields

Xi =
p0∑

j=1

aij∂xj , i = 1, . . . , p0, and Y = 〈x, BD〉 − ∂t, (1.8)

where 〈·, ·〉 and D respectively denote the inner product and the gradient in R
N .

A proof of the equivalence of these conditions is given by Kupcov in [26], Theorem
3 and by Lanconelli and Polidoro in [30], Proposition A.1.

Equation (1.4) is the lowest dimension version of the following ultraparabolic
equation in R

N+1 with N = 2n:
n∑

j=1

∂2
xj

+
n∑

j=1

xj∂xn+j − ∂t = 0. (1.9)

Kolmogorov introduced (1.9) in 1934 in order to describe the probability density
of a system with 2n degree of freedom. The 2n-dimensional space is the phase
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space, (x1, . . . , xn) is the velocity and (xn+1, . . . , x2n) the position of the system.
We also recall that (1.9) is a prototype for a family of evolution equations arising
in the kinetic theory of gases that take the following general form

Y u = J (u). (1.10)

Here R
2n 	 x 
−→ u(x, t) ∈ R is the density of particles which have velocity

(x1, . . . , xn) and position (xn+1, . . . , x2n) at time t,

Y u ≡
n∑

j=1

xj∂xn+ju + ∂tu

is the so-called total derivative of u and J (u) describes some kind of collision. This
last term can take different form, it may also occur in non-divergence form and its
coefficients may depend on z ∈ R

2n+1 as well as on the solution u. For instance,
in the usual Fokker-Planck equation, we have

J (u) = −
n∑

i,j=1

∂xi

(
aij∂xj u + biu

)
+

n∑

i=1

ai∂xiu + cu (1.11)

where aij , ai, bi and c are functions of z. In the Boltzmann-Landau equation (see
[9], [31] and [32])

J (u) =
n∑

i,j=1

∂xi

(
aij(·, u)∂xj u

)
,

and the coefficients depend on the unknown function through some integral ex-
pressions. This kind of operator is studied as a simplified version of the Boltzmann
collision operator. A description of wide classes of stochastic processes and kinetic
models leading to equations of the previous type can be found in the classical
monographs [10], [16] and [11].

Linear KEs also arise in mathematical finance in some generalization of the
celebrated Black & Scholes model [7]. Consider a “stock” whose price St is given
by the stochastic differential equation

dSt = µ0St dt + σSt dWt, (1.12)

where µ0 and σ are positive constants and Wt is a Wiener process. Also consider
a “bond” whose price Bt only depends on a constant interest rate r:

Bt = B0e
t r.

Finally, consider an “European option” which is a contract which gives the right
(but not the obligation) to buy the stock at a given “exercise price” E and at
a given “expiry time” T . The problem studied in [7] is to find a fair price of the
option contract. Under some assumptions on the financial market, Black & Scholes
show that the price of the option, as a function of the time and of the stock price
V (t, St), is the solution of the following partial differential equation

−rV +
∂V

∂t
+ rS

∂V

∂S
+

1
2
σ2 ∂2V

∂S2
= 0
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in the domain (S, t) ∈ R
+×]0, T [, with the final condition

V (T, ST ) = max(ST − E, 0).

In the last decades the Black & Scholes theory has been developed by many authors
and mathematical models involving KEs have appeared in the study of the so-
called path-dependent contingent claims (see, for instance, [1], [4], [5] and [48]).
Asian options are options whose exercise price is not fixed as a given constant E,
but depends on some average of the history of the stock price. In this case, the
value of the option at the expiry time T is (for a a geometric average option):

V (ST , MT ) = max
(
ST − e

MT
T , 0

)
, Mt =

∫ t

0

log(Sτ )dτ.

If we suppose by simplicity that the interest rate is r = 0, the Black & Scholes
method leads to the following degenerate equation

S2∂2
SV + (log S)∂MV + ∂tV = 0, S, t > 0, M ∈ R (1.13)

which can be reduced to the KE (1.4) by means of an elementary change of vari-
ables (see [6], page 479). A numerical study of the solution of the Cauchy problem
related to (1.13) is also proposed in [6].

A recent motivation in finance comes from the model by Hobson & Rogers
[22]. In the Black & Scholes theory the hypothesis that the volatility σ in the
stochastic differential equation (1.12) is constant contrasts with the empirical ob-
servations. Aiming to overcome this problem, many authors proposed different
models based on a stochastic volatility (see [18] for a survey). However the pres-
ence of a second Wiener process leads some difficulties in the arbitrage argument
underlying the Black & Scholes theory. The model proposed by Hobson and Rogers
for European options assumes that the volatility only depends on the difference
between the present stock price and the past price. This simple model seems to
capture the features observed in the market and avoid the problems related to the
use of many sources of randomness.

As in the study of Asian options, in the Hobson & Rogers model for European
options the value of the option V (t, St, Mt) is supposed to depend on the time t,
on the price of the stock St, on some average Mt and must satisfy the following
differential equation

1
2
σ2(S, M)

(
∂2

SV − ∂SV
)

+ (S − M)∂MV + ∂tV = 0, (1.14)

that is a KE with Hölder continuous coefficients. In the recent paper [15] the
Cauchy problem related to (1.14) has been studied numerically. In [13] the stability
and the rate of convergence of different numerical methods for solving (1.14) are
tested. The numerical schemes proposed in these papers rely on the approximation
of the directional derivative Y by the finite difference −u(x,y,t)−u(x,y+δx,t−δ)

δ : hence
this method, which is respectful of the non-Euclidean geometry of the Lie group,
seems to provide a good approximation of the solution.
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Finally we recall that KEs with non linear total derivative term of the form

∆xu + ∂yg(u) − ∂tu = f, x = (x1, . . . , xn) ∈ R
n, y, t ∈ R, (1.15)

have been considered for convection-diffusion models (cf. [19] and [36]), for pricing
models of options with memory feedback (cf. [40]) and for mathematical models
for utility functional and decision making (cf. [2], [3], [12] and [38]). The linearized
equation of (1.15)

g′(u)∂yv − ∂tv = −∆xv,

if g′(u) is different from zero and smooth enough, can be reduced to the form (1.1)
with N = n + 2,

A =





1 · · · 0 0
...

. . .
...

...
0 · · · 1 0
0 · · · 0 0



 and B =





0 · · · 0 1
...

. . .
...

...
0 · · · 0 0
0 · · · 0 0



 .

2. Constant coefficients Kolmogorov equations

We call constant coefficients KE any equation of the form

Ku ≡
p0∑

i,j=1

aij∂xixju + 〈x, BDu〉 − ∂t = 0, (2.1)

with constant aij ’s and satisfying hypotheses H.1–H.2. We set

C(t) =
∫ t

0

E(s)AET (s)ds, t ∈ R,

where
E(t) = e−tBT

. (2.2)

It is known (see, for instance, [30]) that H.1–H.2 are equivalent to condition

C(t) > 0, ∀t > 0. (2.3)

If (2.3) holds then a fundamental solution to (2.1) is given by

Γ(x, t, ξ, τ) = Γ(x − E(t − τ)ξ, t − τ), (2.4)

where Γ(x, t) = 0 if t ≤ 0 and

Γ(x, t) =
(4π)−

N
2

√
det C(t)

exp
(
−1

4
〈C−1(t)x, x〉 − t tr(B)

)
, if t > 0. (2.5)

Let us remark that Γ(·, ·) is a C∞ function outside the diagonal of R
N+1 ×R

N+1.
The denomination “constant coefficients KE” stems from the theory of par-

abolic PDEs. Indeed a constant coefficients parabolic equation is nothing more
that a translation invariant equation on the Euclidean space. Similarly, a constant
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coefficients KE has the remarkable property of being invariant with respect to the
non-Euclidean left translations in the Lie group law

(x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t + τ), (x, t), (ξ, τ) ∈ R
N × R,

with E(·) as in (2.2). The class of constant coefficients KEs contains a significant
subclass of equations which are also invariant with respect to a suitable dilation
group. Indeed, given B in the form (1.3), let us consider the family of dilations in
R

N+1:
δλ = diag(λIp0 , λ

3Ip1 , . . . , λ
2r+1Ipr , λ

2),
where Ipj denotes the pj×pj identity matrix. Then K is δλ-homogeneous of degree
two, i.e.,

K ◦ δλ = λ2 (δλ ◦ K) , ∀λ > 0,

if and only if all the ∗-blocks in (1.3) are zero matrices. The proofs of these state-
ments are contained in [27] and [30]. When the ∗-blocks in B are zero, the dilations
(δλ)λ>0 are a group of automorphisms of the Lie group G = (RN+1, ◦). Equipped
with them, G becomes a homogeneous group with homogeneous dimension Q + 2,
where

Q = p0 + 3p1 + · · · + (2r + 1)pr, (2.6)
(see [26], page 288, and [30], Remark 2.1).

As in classical theory, constant coefficients KEs serve as an essential class of
prototypes and many results can be extended to the general situation of variable
coefficients by perturbation arguments: in the next sections we present a survey
of the main results for KEs with variable coefficients.

3. Kolmogorov equations with regular coefficients

In view of the invariance properties of constant coefficients KEs with respect to
G, it is natural to expect that the intrinsic geometry underlying L is that one
determined by G. Let α1, . . . , αN be the strictly positive integers such that

δλ = diag
(
λα1 , . . . , λαN , λ2

)

and define, for every z ∈ R
N+1 \ {0}, ‖z‖G = ρ where ρ is the unique positive

solution to the equation

t2

ρ4
+

N∑

j=1

x2
j

ρ2αj
= 1, z = (x1, . . . , xN , t).

We agree to let ‖z‖G = 0 if z = 0. Then z 
−→ ‖z‖G is a δλ-homogeneous function
of degree one, continuous on R

N+1, strictly positive and of class C∞ in R
N+1\{0}.

If we define
dG(z, ζ) = ‖ζ−1 ◦ z‖G, z, ζ ∈ R

N+1,

then (RN+1, dG) is a (pseudo-)metric space. We say that a function f is B-Hölder
continuous of order α ∈ ]0, 1] on a domain Ω of R

N+1, and we write f ∈ Cα
B(Ω),
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if there exists a constant C such that

|f(z) − f(ζ)| ≤ CdG(z, ζ)α, ∀z, ζ ∈ Ω.

Assuming that the coefficients aij , ai, c ∈ Cα
B(RN+1), for i, j = 1, . . . , p0, are

bounded functions, a fundamental solution Γ for the operator L in (1.1) can be
constructed by adapting the Levi’s parametrix method to the Lie group and metric
structures related to the matrix B (see [14] and [41] which improve and generalize
the previous results by Weber [47], Il’in [24] and Sonin [46]).

The Levi’s parametrix method also provides a global upper bound for Γ.
Indeed let Γε denote the fundamental solution to the constant coefficients KE

Lε = (µ + ε)∆Rp0 + Y (3.1)

where ε > 0, µ is as in (1.2), ∆Rp0 denotes the Laplacian in the variables x1, . . . , xp0

and Y is the vector fields in (1.8). Then for every positive ε and T , there exists a
constant C, only dependent on µ, B, ε and T , such that

Γ(z, ζ) ≤ C Γε(z, ζ) (3.2)

for any z, ζ ∈ R
N+1 with 0 < t − τ < T . Similar estimates also hold for the

derivatives of Γ (see [14] and [41]).
For operators in divergence form

L =
p0∑

i,j=1

∂xi

(
aij(z)∂xj

)
+ Y (3.3)

with null ∗-blocks in (1.3), a lower bound for Γ analogous to (3.2) also holds.
This result relies on a Harnack inequality which is invariant with respect to the
translations and dilations in G (see [41], Theorem 1.3 which extends some Harnack
inequalities for constant coefficients Kolmogorov operators first appeared in [28],
[20] and [30]).

Theorem 3.1. (Polidoro [42]) Let Γ be the fundamental solution of the divergence
form operator (3.3). There exists a positive constant m such that, if Γ− denotes
the fundamental solution of

L− = m−1∆p0 + 〈x, BD〉 − ∂t,

then, for every T > 0, there exists a positive constant C− such that

C−Γ−(z, ζ) ≤ Γ(z, ζ) (3.4)

for every z = (x, t), ζ = (ξ, τ) ∈ R
N+1, 0 < t − τ < T .

We would like to emphasize that the functions Γ− and Γε appearing in (3.2)
and (3.4) have the explicit form (2.4)–(2.5), with the matrix A in (1.6) replaced by
m−1diag(Ip0 , 0, . . . , 0) and (µ+ε) diag(Ip0 , 0, . . . , 0) respectively. Theorem 3.1 was
proved in [42] by using a technique which is inspired by a method of Aronson and
Serrin for classical parabolic operators. The core of the method used in [42] is a kind
of discretization of the connectivity Theorem of Carathéodory-Razewski-Chow.
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We also recall some interior regularity results. The following Schauder type
estimates proved in [34] (see also [33] and [36]) improve and generalize the previous
ones contained in [21], [45] and [17]: for every bounded open set Ω1 such that
Ω1 ⊆ Ω where Ω is a subset of R

N+1, there exists a constant C > 0 such that

|u|2+α,Ω1 ≤ C

(
sup
Ω

|u| + |Lu|α,Ω

)
,

for any u smooth real function defined on Ω. Here | · |α,Ω and | · |2+α,Ω1 denote
suitable Hölder norms defined in terms of dG . In [34], the interior Schauder esti-
mates are also used to study a first boundary value problem for L. We also quote
the paper [29] in which a boundary value problem for the non-linear equation

p0∑

i,j=1

∂xi

(
aij(z, u)∂xj

)
+ Y u = 0. (3.5)

was studied. In [29] the a priori estimates of [34] are used as crucial tools.
The Lp regularity theory for weak solutions to equations in divergence or non-

divergence form has been studied in [8], [35], [43] and [44]. In [8] and [43], interior
regularity properties of strong solutions to the non-divergence form equation Lu =
f were studied. The main results are some Lp

loc estimates of the derivatives of the
solution u and its Hölder continuity in terms of some Lq

loc norm of f . The key
tools are some deep continuity results for singular integrals. The same techniques,
suitably adapted, were used in [35] and in [44] in order to prove interior regularity
results for weak solutions to the equation Lu =

∑p0
i=1 ∂xiFi with L as in (3.3).

4. Kolmogorov equations with measurable coefficients

As said in the previous section, the Hölder estimates for weak solutions to (3.3)
have been used for the study of nonlinear KEs. However the dependence of the
Hölder constant on the regularity of the coefficients forces quite restrictive hypothe-
ses on the nonlinearity. In order to remove such restrictions, regularity results for
solutions to linear equations with merely measurable coefficients are needed. A
first result in such a direction has been recently proved by the author in collabo-
ration with S. Polidoro. In [39], the local boundedness of the weak solutions to L
is proved only assuming the uniform positivity condition (1.2). The main result in
[39] is the following theorem.

Theorem 4.1. Let u be a non-negative weak solution to
p0∑

i,j=1

∂xi

(
aij(z)∂xj

)
+ 〈x, B∇u〉 − ∂tu = 0 (4.1)

in a domain Ω. Let r, ρ, 0 < r
2 ≤ ρ < r, be such that Hr ⊆ Ω where Hr denotes

a suitable cylindrical domain of radius r. Then there exists a positive constant C,
only dependent on µ and on the homogeneous dimension Q (cf. (2.6)) such that,
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for every p > 0, it holds

sup
Hρ

up ≤ C

(r − ρ)Q+2

∫

Hr

up. (4.2)

Estimate (4.2) also holds for every p < 0 such that up ∈ L1(Hr).

This theorem is proved in [39] by using an iterative procedure analogous to
the one introduced by Moser in the classical elliptic and parabolic cases. As it
is well known, the Moser’s technique is based on a combination of Caccioppoli
type estimates with the classical Sobolev inequality. Actually the weak solutions
to (4.1) satisfy a Caccioppoli type estimate, however this estimate only gives a
L2

loc bound of the first order derivatives ∂xj u for j = 1, . . . , p0 and does not give
any information on the others (N − p0) spatial derivatives. Thus, if p0 < N , this
lack of information cannot be restored by the usual Sobolev embedding theorem.

The key idea in [39] is to prove a Sobolev type inequality for non negative sub-
and super-solutions to (4.1), good enough to be successfully combined with the
previous “weak” Caccioppoli inequality. To be more specific, let us first recall the
definition of weak sub- and super-solution to. We say that a function u ∈ L2

loc(Ω),
Ω open subset of R

N+1, is a weak sub-solution to (4.1) if the weak derivatives
∂x1u, . . . , ∂xp0

u and Y u exist, belong to L2
loc(Ω) and

∫

Ω

−〈ADu, Dϕ〉 + ϕY u ≥ 0, ∀ϕ ∈ C∞
0 (Ω), ϕ ≥ 0.

If −u is a weak sub-solution, we say that u is a weak super-solution. Then, the
following Caccioppoli type estimate holds (cf. [39], Proposition 3.2)

Proposition 4.2. Let u be a non-negative weak sub-solution of (4.1) in Ω. Let
ρ, r > 0, r

2 ≤ ρ < r, and Hr ⊆ Ω. Then, there exists a constant C, only dependent
on µ in (1.2) and on the homogeneous dimension Q, such that

‖∂xju
p‖L2(Hρ) ≤ C

√
1 + ε

ε
‖up‖L2(Hr), where ε =

|2p− 1|
4p

, (4.3)

for every j = 1, . . . , p0 and p < 0 or p ≥ 1. The same inequality holds for non-
negative weak super-solutions and p ∈]0, 1/2[.

The key Sobolev type inequality for weak sub- and super-solutions proved in
[39] is the following.

Proposition 4.3. Let u be a non-negative weak sub-solution to (4.1) and let r, ρ be
as in the previous Proposition 4.2. Then u ∈ L2κ

loc(Hρ), κ = 1+ 2
Q , and there exists

a constant C, only dependent on µ and Q, such that

‖u‖L2κ(Hρ) ≤ c

r − ρ



‖u‖L2(Hr) +
p0∑

j=1

‖∂xj u‖L2(Br)



 . (4.4)

The same inequality holds for non-negative super-solutions.
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Inequalities (4.3)–(4.4) allow to start up an iterative procedure analogous to
the classical Moser’s one and to prove Theorem 4.1. We also recall that Theorem 4.1
has been used in [37] to obtain a pointwise global upper bound for the fundamental
solution of (4.1).

Theorem 4.4. There exists two positive constants C and ε, only dependent on µ
in (1.2) and on B, such that

Γ(x, t, ξ, τ) ≤ C Γε(x, t, ξ, τ), ∀x, ξ ∈ R
N , t > τ,

where Γε is the fundamental solution to (3.1).

We remark explicitly that Theorem 4.4 improves inequality (3.2) in that C
is independent of the modulus of continuity of the coefficients.
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