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In this paper we present a PDE formulation for the ratchet cap pricing problem. The

underlying LIBOR interest rates are assumed to follow the LIBOR market model. For

this PDE problem the existence and uniqueness of solution are obtained in the classical
framework of uniformly parabolic PDEs in terms of a sequence of nested Cauchy prob-

lems. Moreover, this approach allows to obtain a new numerical method based on the

approximation by computable fundamental solutions of constant coefficient operators.
This method is compared with classical Monte Carlo simulation and a proposed charac-

teristics Crank-Nicolson time discretization combined with finite elements strategy.
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1. Introduction

The payoff of an interest rate derivative depends on the level of certain interest
rates. Generally speaking, the study of interest rate derivatives is more difficult
than equity derivatives because the evolution of interest rates is more complex to
describe than that of stocks and typically leads to multi-dimensional problems.
Moreover, technical issues arise due to the fact that interest rates are also involved
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in the pricing formulas as discount factors of the payoff. Among a variety of interest
rates types, the LIBOR (London Interbank Offer Rate) is the rate at which large
international banks lend money to each other. Moreover, forward rates are rates
which are valid for future periods, which in turn are implicit in certain spot rates
and therefore can be computed from them.

Since the seminal papers by Brace, Gatarek and Musiela4, Jashmidian9 and
Miltersen, Sandmann and Sondermann10, the LIBOR Market Model (LMM) has
become one of the more popular interest rate market models due to its agreement
with market pricing formulas for caps. Also it is referred as Log-normal Forward
LIBOR Model (LFM) in the book of Brigo and Mercurio5. More precisely, it models
the dynamics of LIBOR forward rates so that pricing caps and floors is consistent
with Black formulas used in the market. Moreover, its parameters can be calibrated
with market data and liquid products. Notice that LMM is not compatible with the
Swap Market Model (also referred in Brigo and Mercurio5 as Lognormal forward
Swap Model (LSM)), as forward swap rates cannot be log-normal under their own
measure in the LMM.

From the numerical point of view, in the LMM framework most of the pricing is
carried out by means of Monte Carlo simulation taking advantage of its general ap-
plicability to almost all interest rate financial derivatives (see Brigo and Mercurio5

or Pelsser12, for example). However, the main limitation comes from the long com-
putational times, specially when a lot of prices are required. Alternative numerical
techniques in LMM setting turn out from the formulation of the pricing problem
in terms of partial differential equations (PDE). This approach is more classically
addressed in option pricing (see, for instance, Pascucci11 and Wilmott17).

In the present paper we introduce the appropriate PDE model for pricing the
interest rate derivative known as ratchet cap (compounded of ratchet caplets), which
is described, for example, in Brigo and Mercurio5. The ratchet caplet payoff depends
on a variable strike in terms of the reset value of all previous forward LIBOR rates.
The number of involved rates increases as the time interval approaches to ratchet cap
maturity. In the work of Pelsser12, the particular choice of some parameter reduces
this dependence to only the last two previous LIBOR rates. In this particular setting
a parabolic PDE on two spatial dimensions (the two LIBOR rates) is obtained and
a comparison between Monte Carlo simulation and explicit finite differences for the
PDE model is presented in Pietersz13 . More recently, in Taboada and Vázquez15 a
Crank-Nicholson-characteristics method has been proposed for the same problem.

In this paper we mainly address the general case where the strike depends on all
previous LIBOR rates so that the dimension of the PDE domain increases with the
index of the forward LIBOR rate. In this more general setting, we obtain the exis-
tence and uniqueness of a classical solution for the PDE problem. Moreover, this so-
lution is expressed in terms of the fundamental solutions of the associated operators
and provides a numerical algorithm to compute the solution. Then, for the particu-
lar case considered by Pelsser12, the results obtained with a new numerical method
based on an analytical approximation by using the fundamental solutions associ-
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ated to constant coefficient operators, the Crank-Nicholson-characteristics method
combined with finite elements and Monte Carlo simulation are compared.

The paper is organized as follows. Section 2 is devoted to the presentation of
some basic ideas, the main notation concerning LMM and the description of the
ratchet cap and ratchet caplet contracts. Section 3 contains the rigorous statement
of the PDE models for ratchet caplets pricing and the prove of existence and unique-
ness of solution. Section 4 describes the two proposed numerical methods for solving
the PDE problem. Section 5 shows some numerical examples to illustrate the com-
parison of the numerical methods and Monte Carlo simulation. Section 6 contains
the conclusions.

2. Financial product

As it has been mentioned in the introduction, a ratchet cap depends on one or
more LIBOR forward rates. So, we first introduce some notation related to LMM
and then we describe the ratchet caps.

2.1. Some basics on LMM for forward rates

We assume there are N forward LIBOR rates associated to a tenor structure
{T0, T1, ..., TN}, with 0 < T0 < T1 < · · · < TN . The i-th forward rate accounts
for the period [Ti−1, Ti] and we denote by

(
Lit
)
t≤Ti−1

the value process of the i−th
forward LIBOR rate. If we consider the bond Bi(t) that matures at time Ti as
numeraire, then the no arbitrage hypotheses guarantees the existence of a martin-
gale measure Qi associated with the numeraire Bi, such that the process

(
Lit
)

is a
martingale under Qi.

In the standard LIBOR market model, the dynamics of the forward rates under
the martingale probability Qi, are given by the stochastic differential equation

dLit = Litσ
i(t)dBit,

where

• B =
(
B1, . . . ,BN

)
is a N -dimensional correlated Brownian motion with

covariance matrix ρ (i.e. dBitdB
j
t = ρi,jdt);

• σi is the deterministic volatility of the i-th LIBOR forward rate;
• δi = Ti − Ti−1 the i-th accrual factor.

By a change of numeraire technique, for j < i we also have

dLjt = −Ljtσj(t)
i∑

h=j+1

ρj,hδhσ
h(t)Lht

1 + δhLht
dt+ Ljtσ

j(t)dBjt .

2.2. The ratchet cap and ratchet caplet contracts

A ratchet cap is a contract that can be decomposed into simpler contracts, called
ratchet caplets. The payments associated to each ratchet caplet are similar to caplet
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payments where the variable strike depends on earlier LIBOR resets (see Pelsser12,
for example). For convenience, we denote L̄i = LiTi−1

for i = 1, . . . , N . Then, the
ratchet caplet payoff, paid at time Ti, is given by (L̄i −Ki)+, where the strike Ki

is recursively defined as follows:{
K1 is given,

Kj+1 =
(
aL̄j + bKj + c

)+ for 1 < j < i.
(2.1)

with a, b and c real parameters. In particular, we remark that Kj+1 is a function
of L̄1, . . . , L̄j .

3. PDE models for ratchet caplets pricing

In this section the PDE model and the main results concerning the existence and
uniqueness of solution to the PDE model governing a ratchet caplet price are pre-
sented.

First, by usual no-arbitrage arguments, the discounted price of the i-th ratchet
caplet is given by

Πi
t = EQ

i [
(L̄i −Ki)+ | Ft

]
, t ≤ Ti−1,

and the absolute price is equal to Πi
tB

i
t. Since we are in a Markovian framework,

we have a representation of the price in terms of solutions of a sequence of Cauchy
problems. In the following theorem, we denote by Li the real variable corresponding
to the i-th forward LIBOR rate for i = 1, . . . , N and we set T−1 = 0 by convention.

Theorem 3.1. For a fixed index i ∈ {1, . . . , N}, assume that for j = 1, . . . , i the
matrix (ρh,kσh(t)σk(t))h,k=j,...,i is bounded and uniformly positive definite. Then
we have

Πi
t = ui,j(t, Ljt , L

j+1
t , . . . , Lit;Kj), t ∈ [Tj−2, Tj−1], j = 1, . . . , i, (3.1)

where Kj = Kj

(
L̄1, . . . , L̄j−1

)
is defined in (2.1) and the function

ui,j = ui,j(t, Lj , Lj+1, . . . , Li;K), t ∈ [Tj−2, Tj−1], Lj , Lj+1, . . . , Li > 0, K ≥ 0,

is uniquely defined by the following backward recursion starting from j = i:

• ui,i is the unique non-negative solution to the Cauchy problem{
Li,iui,i = 0, in ]Ti−2, Ti−1[×R+,

ui,i(Ti−1, Li;K) = (Li −K)+, in R+

(3.2)

where Li,i is the two-dimensional operator

Li,i =

(
σi(t)Li

)2
2

∂LiLi
+ ∂t; (3.3)
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• ui,j, with j < i, is the unique non-negative solution to the Cauchy problem
Li,jui,j = 0, in ]Tj−2, Tj−1[×Ri−j+1

+ ,

ui,j(Tj−1, Lj , Lj+1, . . . , Li;K) =

= ui,j+1(Tj−1, Lj+1, Lj+2, . . . , Li; (aLj + bK + c)+), in Ri−j+1
+ ,

(3.4)
where Li,j is the following (i − j + 2)-dimensional operator acting in the
variables t, Lj , Lj+1, . . . , Li:

Li,j =
1
2

i∑
h,k=j

ρh,kσ
h(t)σk(t)LhLk∂LhLk

−

−
i−1∑
h=j

i∑
k=h+1

ρh,kσ
h(t)σk(t)

δkLk
1 + δkLk

Lh∂Lh
+ ∂t. (3.5)

Proof. First step. We show that the functions {ui,j}j=1,...,i are well defined recur-
sively as the solutions of problems (3.2)-(3.5).

First, in the case i = j, by the change of variable xi = logLi, i.e. setting

ūi,i (t, xi;K) = ui,i(t, exi ;K), xi ∈ R, (3.6)

problem (3.2) becomes{
L̄i,iūi,i = 0, in ]Ti−2, Ti−1[×R,
ūi,i(Ti−1, xi;K) = (exi −K)+, in R,

(3.7)

where L̄i,i is the backward heat operator

L̄i,i =
(σi(t))2

2
(∂xixi − ∂xi) + ∂t. (3.8)

Since by assumption (σi)2 is bounded from above and below by positive constants,
standard results of the theory of parabolic PDEs (see, for instance, Chap.6 in Pas-
cucci 11) ensure that problem (3.7) has a unique non-negative classical solution
given by

ūi,i(t, xi;K) =
∫

R
Γ̄i,i(t, xi;Ti−1, yi) (eyi −K)+

dyi, (3.9)

where Γ̄i,i denotes the Gaussian fundamental solution of L̄i,i:

Γ̄i,i(t, x;T, y) =
1

σ̄i(t, T )
√

2π
exp

−1
2

(
y − x+ 1

2

(
σ̄i(t, T )

)2
σ̄i(t, T )

)2
 , (3.10)

for x, y ∈ R and t < T, with

σ̄i(t, T ) =

√∫ T

t

(σi(s))2
ds . (3.11)
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From the representation formula (3.9) we also get the following estimate:∣∣ūi,i(t, xi;K)
∣∣ ≤ CeC|xi|2 , (t, xi) ∈ [Ti−2, Ti−1]× R, K ≥ 0, (3.12)

for some positive constant C (see, for instance, Pascucci11 Chap. 8).
Next, by backward induction we show existence and uniqueness of ui,j for j < i.

First, by the change of variables xj = logLj , that is, by setting

ūi,j (t, xj , xj+1, . . . , xi;K) = ui,j(t, exj , exj+1 , . . . , exi ;K), xj , xj+1, . . . , xi ∈ R,

problem (3.4) can be rewritten as follows:
L̄i,j ūi,j = 0, in ]Tj−2, Tj−1[×Ri−j+1,

ūi,j(Tj−1, xj , xj+1, . . . , xi;K) =

= ūi,j+1
(
Tj−1, xj+1, xj+2, . . . , xi; (aexj + bK + c)+

)
, in Ri−j+1

(3.13)
where

L̄i,j =
1
2

i∑
h,k=j

ρh,kσ
h(t)σk(t)∂xhxk

− 1
2

i∑
k=j

(σk(t))2∂xk
−

−
i−1∑
h=j

i∑
k=h+1

ρh,kσ
h(t)σk(t)

δke
xk

1 + δkexk
∂xh

+ ∂t

is a second order differential operator that, by assumption, is uniformly parabolic
and has bounded coefficients (note in particular, that δke

xk

1+δke
xk
∈]0, 1[ for xk ∈ R).

Then we recall that L̄i,j has a fundamental solution Γ̄i,j satisfying the following
Gaussian upper bound:

Γ̄i,j(t, xj , xj+1, . . . , xi;T, yj , yj+1, . . . , yi) ≤
≤ CΓi,jheat(t, xj , xj+1, . . . , xi;T, yj , yj+1, . . . , yi) (3.14)

for xj , yj , . . . , xi, yi ∈ R, where C is a positive constant only dependent on T − t
and Γi,jheat is the Gaussian fundamental solution of a suitable parabolic operator
with constant coefficients (cf., for instance, Chap. 8 in Pascucci 11).

Now let us assume that ūi,j+1 is a continuous and non-negative function satis-
fying the growth condition∣∣ūi,j+1 (t, xj+1, . . . , xi;K)

∣∣ ≤ CeC|(xj+1,...,xi)|2 (3.15)

for (t, xj+1, . . . , xi) ∈ [Tj−1, Tj ]× Ri−j and K ≥ 0, with C some positive constant.
Then problem (3.13) has unique non-negative classical solution given by

ūi,j(t, xj , . . . , xi;K) :=
∫

Ri−j+1
Γ̄i,j(t, xj , . . . , xi;T, yj , . . . , yi) ·

· ūi,j+1
(
Tj−1, yj+1, . . . , yi; (aeyj + bK + c)+

)
dyj · · · dyi

(3.16)
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for K ≥ 0 and (t, xj , . . . , xi) ∈ [Tj−2, Tj−1]×Ri−j+1. Moreover, combining estimates
(3.14) and (3.15) with formula (3.16), we also deduce∣∣ūi,j(t, xj , . . . , xi;K)

∣∣ ≤ CeC|(xj ,...,xi)|2 ,

for (t, xj , . . . , xi) ∈ [Tj−2, Tj−1] × Ri−j+1 and K ≥ 0, with some positive constant
C. From the above results, a simple backward inductive argument shows that the
functions {ui,j}j=1,...,i are well defined as in the statement, in a unique way.

Second step. We prove formula (3.1) by backward induction on j. Since
ui,i(t, Li;K) is a classical solution to problem (3.2), by Feynman-Kač theorem we
have

ui,i(t, Li;Ki) = EQ
i
[
(LiTi−1

−Ki)+ | Ft
]

= Πi
t, t ∈ [Ti−2, Ti−1],

and this proves the thesis for j = i.
Now we assume that (3.1) is valid for a generic j+1 and we prove it for j. Hence

we assume that

Πi
t = ui,j+1(t, Lj+1

t , Lj+2
t , . . . , Lit;Kj+1), t ∈ [Tj−1, Tj ].

Since the process Πi is a Qi-martingale, we have for t ∈ [Tj−2, Tj−1]

Πi
t = EQ

i
[
Πi
Tj−1

| Ft
]

=

= EQ
i
[
ui,j+1(Tj−1, L

j+1
Tj−1

, Lj+2
Tj−1

, . . . , LiTj−1
;Kj+1) | Ft

]
=

= EQ
i

[
ui,j+1

(
Tj−1, L

j+1
Tj−1

, Lj+2
Tj−1

, . . . , LiTj−1
;
(
aLjTj−1

+ bKj + c
)+
)
| Ft

]
=

= ui,j(t, Ljt , L
j+1
t , . . . , Lit;Kj),

where we have sequentially used the induction hypothesis, the expression of Kj+1

and the Feynman-Kač theorem (since ui,j is the unique non-negative classical solu-
tion to problem (3.4)). �

Remark 3.1. Theorem 3.1 provides an algorithm for the computation of the
ratchet price via PDEs techniques. Indeed, according to formula (3.1), Πi can be
computed by solving recursively the Cauchy problems (3.2)-(3.4) starting from the
last period [Ti−2, Ti−1] back to the first period [0, T0]. Notice that at each step the
dimension of the Cauchy problems increases by one due to the dependence of an
additional forward rate. We emphasize that the problem (3.2)-(3.4) depends on the
parameter K. Moreover, at each step it must be solved for any value of K since the
solution ui,j+1(Tj , Lj+1, Lj+2, . . . , Li;K) enters as final condition of the subsequent
Cauchy problem (posed on ]Tj−2, Tj−1[×Ri−j+1

+ ) as a function of Lj+1, Lj+2, . . . , Li
and K. This fact puts severe restrictions on the applicability of standard numerical
techniques for PDEs.

Remark 3.2. By formula (3.1) the discounted price Πi
t of the i-th ratchet cap in

the last period [Ti−2, Ti−1] is given in terms of the solution ui,i of problem (3.7) and
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this corresponds to the price of a standard caplet with strike Ki. More precisely, by
the Black formula, we have

Πi
t = ui,i(t, Lit;Ki) = LitN (d+(t, Lit))−KiN (d−(t, Lit)) t ∈ [Ti−2, Ti−1], (3.17)

where N denotes the normal cumulative distribution function and

d±(t, Li) =
log( Li

Ki
)± 1

2

(
σ̄i(t, Ti−1)

)2
σ̄i(t, Ti−1)

with σ̄i(t, Ti−1) as in (3.11).

Remark 3.3. The pricing problem gets definitely easier when the parameter b is
null since in this case the strike Ki depends only on the forward rate Li−1 and
not on the previous rates. More precisely, in this case the payoff of the i-th ratchet
caplet is equal to

(L̄i −Ki)+ with Ki = (aL̄i−1 + c)+.

Then the discounted price Πi
t is given by the Black formula (3.17) for t ∈ [Ti−2, Ti−1]

and by

Πi
t = EQ

i

[(
LiTi−1

− (aLi−1
Ti−2

+ c)+
)+

| Ft
]

= ui,i−1(t, Li−1
t , Lit), t ∈ [0, Ti−2],

(3.18)
where ui,i−1 is the non-negative solution of the Cauchy problem{
Li,i−1ui,i−1 = 0, in ]0, Ti−2[×R2

+,

ui,i−1(Ti−2, Li−1, Li) = ui,i(Ti−2, Li; (aLi−1 + c)+), in R2
+,

(3.19)

with ui,i as in (3.17) and

Li,i−1 =
1
2
(
σi−1(t)Li−1

)2
∂Li−1Li−1 + ρi−1,iσ

i−1(t)σi(t)Li−1Li∂Li−1Li
+

+
1
2
(
σi(t)Li

)2
∂LiLi − ρi−1,iσ

i−1(t)σi(t)
δiLi

1 + δiLi
Li−1∂Li−1 + ∂t.

(3.20)

Notice that in the case b = 0, as the strike only depends on Li−1, the definition of
Πi
t in (3.1) written in terms of ui,j in [Tj−2, Tj−1], actually does not depend on j.

This is taken in account in (3.18) where notation ui,i−1 is used for the large interval
[0, Ti−2]. Thus, by the change of variables

ūi,i−1 (t, xi−1, xi;K) = ui,i−1(t, exi−1 , exi ;K), xi−1, xi ∈ R, t < Ti−2 ,

problem (3.4) can be rewritten as follows:L̄i,i−1ūi,i−1 = 0, in ]0, Ti−2[×R2,

ūi,i−1(Ti−2, xi−1, xi;K) = ui,i
(
Ti−2, e

xi ; (aexi−1 + c)+
)
, in R2,

(3.21)
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where

L̄i,i−1 =

(
σi−1(t)

)2
2

(
∂xi−1xi−1 − ∂xi−1

)
+

(
σi(t)

)2
2

(∂xixi − ∂xi) +

+ ρi−1,iσ
i−1(t)σi(t)∂xi−1xi

− ρi−1,iσ
i−1(t)σi(t)

δie
xi

1 + δiexi
∂xi−1 + ∂t.

(3.22)

In terms of the representation formulas (3.9)-(3.16), we have

ūi,i−1(t, xi−1, xi;K) =

=
∫

R2
Γ̄i,i−1(t, xi−1, xi;Ti−2, yi−1, yi) · ui,i

(
Ti−2, e

yi ; (aeyi−1 + c)+
)
dyidyi−1 =

=
∫

R2
Γ̄i,i−1(t, xi−1, xi;Ti−2, yi−1, yi) ·

·
∫

R
Γ̄i,i(Ti−2, yi;Ti−1, ηi)

(
eηi − (aeyi−1 + c)+

)+

dηidyidyi−1 ,

(3.23)

where Γ̄i,i is the Gaussian fundamental solution of L̄i,i, whose explicit expression
is given in (3.10) and Γ̄i−1,i is the (unknown) fundamental solution of L̄i,i−1.

4. Numerical methods

In this section, we consider analytical and numerical approximations of the ratchet
price in the case the parameter b is equal to zero in the expression (2.1). Throughout
this section, for sake of simplicity, we consider volatilities constant in time. By
Remark 3.3, the ratchet caplet price is given in terms of the solution ūi,i−1 to the
Cauchy problem (3.21).

4.1. Analytical approximation

We get an analytical approximation of the ratchet caplet price by starting from
the integral representation (3.23) for ūi,i−1. We first recall the expression of the
Gaussian fundamental solution Γ̄i,i of the one dimensional heat operator

L̄i,i =
(σi)2

2
(∂yiyi − ∂yi) + ∂t,

given by (3.10) with σ̄i(t, T ) = σi
√
Ti−1 − t (cf. (3.11)), so that

Γ̄i,i(Ti−2, yi;Ti−1, ηi) =
1

σi
√

2πδi−1

exp

−1
2

(
2(ηi − yi) + (σi)2δi−1

2σi
√
δi−1

)2
 , (4.1)

for yi, ηi ∈ R and Ti−2 < Ti−1 (δi−1 = Ti−1 − Ti−2).
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Next we approximate the fundamental solution Γ̄i,i−1 by means of the funda-
mental solution Γ̃i,i−1 of the constant coefficients operator

L̃i,i−1 :=

(
σi−1

)2
2

(
∂xi−1xi−1 − ∂xi−1

)
+

(
σi
)2

2
(∂xixi − ∂xi) +

+ ρi−1,i σ
i−1σi ∂xi−1xi − c̄i ρi−1,i σ

i−1σi∂xi−1 + ∂t,

which is obtained by freezing the variable coefficient δiexi(1 + δie
xi)−1 appearing

in (3.22) to the value defined by the spot, i.e:

c̄i =
δiL

0
i

1 + δiL0
i

. (4.2)

So, its fundamental solution Γ̃i,i−1 is given by

Γ̃i,i−1(t, xi−1, xi;Ti−2, yi−1, yi) =
exp(F (t, xi−1, xi;Ti−2, yi−1, yi))

2πσiσi−1(Ti−2 − t)
√

1− ρ2
i−1,i

, (4.3)

for xi−1, xi, yi−1, yi ∈ R, t < Ti−2, where:

F (t, xi−1, xi;Ti−2, yi−1, yi) =

=
1

8
(
1− ρ2

i−1,i

) [(σi−1)2(t− Ti−2) + 4(xi−1 + xi − yi − yi−1)+

+ 8c̄i ρ2
i−1,i (yi−1 − xi−1) + (σi)2(t− Ti−2)

(
1 + 4(−1 + c̄i) c̄i ρ2

i−1,i

)
+

+
4(xi − yi)2

(σi−1)2(t− Ti−2)
+

4(xi−1 − yi−1)2

(σi)2(t− Ti−2)
+ (4.4)

+
2σi(−1 + 2c̄i)

(
(σi−1)2(t− Ti−2) + 2(xi − yi)

)
ρi−1,i

σi−1
−

−
4
(
(σi−1)2(t− Ti−2) + 2(xi − yi)

)
(xi−1 − yi−1)ρi−1,i

σiσi−1(t− Ti−2)

]

Thus we get the following analytical approximation formula:

ūi,i−1(t, xi−1, xi;K) ≈
∫

R2
Γ̃i,i−1(t, xi−1, xi;Ti−2, yi−1, yi)·

·
∫

R
Γ̄i,i(Ti−2, yi;Ti−1, ηi)

(
eηi − (aeyi−1 + c)+

)+

dηidyidyi−1

(4.5)

Notice that formula (4.5) involves a triple integral but two of the integrals can be
computed analytically. We defer all the explicit formulas to the Appendix.

Finally, the approximation of the price is given by

Πi
t ≡ ui,i−1(t, Li−1, Li;K) = ūi,i−1(t, log Li−1, log Li;K).
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4.2. Finite elements

In this section we study the numerical solution to the ratchet pricing problem (3.19)
by a Crank-Nicholson-characteristics method combined with finite elements. Some
difficulties in the numerical solution are due to the fact that the spatial domain is
unbounded in both forwards directions: therefore, domain truncature and boundary
conditions are proposed as a previous step to perform a finite element numerical
approximation of the solution. On the other hand, the diffusion matrix degenerates
at the axis (i.e. convection dominates near the axes) so we propose a higher order
Lagrange-Galerkin methods. Thus, we use a combination of the Crank-Nicholson
characteristics method for the time discretization and piecewise quadratic finite el-
ements method for the spatial discretization. In the literature we can find different
applications of the classical method of characteristics of first order (introduced in
14) for the resolution of financial problems (see D’Halluin, Forsyth and Labahn6

or Vázquez16, for example). Other alternative finite differences numerical for Kol-
mogorov equations appearing in a stochastic volatility model are proposed in Di
Francesco and Pascucci7, Di Francesco, Foschi and Pascucci8. Recently, the here
used Crank-Nicholson characteristic methods of order two for general convection-
diffusion-reaction equations (eventually degenerated) have been proposed and ana-
lyzed numerically in Bermúdez, Nogueiras and Vázquez1,2. Furthermore, they have
been applied to price Asian options in Bermúdez, Nogueiras and Vázquez3.

4.2.1. Divergence form and truncated domain

In order to rewrite the problem (3.21) as an initial value problem in divergence
form, we introduce the new time variable τ = Ti−2 − t and pose the equivalent
problem:

∂τu
i,i−1 + ~v · ∇ui,i−1 −Div(A∇ui,i−1) = 0 in ]0, Ti−2[×R2 , (4.6)

ui,i−1(0, Li−1, Li) = ui,i
(
Ti−2, Li; (aLi−1 + c)+

)
in R2 , (4.7)

where:

A(Li−1, Li) =
(

1
2 (σi−1)2L2

i−1
1
2ρi−1,iσi−1σiLi−1Li

1
2ρiσ

i−1σiLi−1Li
1
2 (σi)2L2

i

)
, (4.8)

~v(Li−1, Li) =

(
δiLi−1Li

1+δiLi
σi−1σi + (σi−1)2Li−1 + 1

2σ
i−1σiLi−1

1
2σ

i−1σiLi + (σi)2Li

)
. (4.9)

Numerical discretization using finite differences, finite volumes or finite elements
makes necessary truncating the spatial unbounded domain and introducing appro-
priate boundary conditions on the boundaries of the bounded domain. In general,
these conditions are obtained with financial and/or mathematical arguments and
are taking into account in the weak formulation of the problem.

The process of aproximating a problem posed on an unbounded domain by a
problem posed on a bounded domain is called localization process. For this purpose,



April 21, 2010 10:56 WSPC/INSTRUCTION FILE m3as-pas-tab-vaz-
10rev3
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let us consider both L∞i−1 and L∞i large enough real numbers suitably chosen and
let the bounded domain Ω =]0, L∞i−1[×]0, L∞i [ with Lipschitz boundary Γ, such that
Γ = Γ+

1

⋃
Γ+

2

⋃
Γ−1
⋃

Γ−2 . Then, problem (4.6)-(4.7) is replaced by

Find ui,i−1 : [0, Ti−2]× Ω→ R such that

∂τu
i,i−1 + ~v · ∇ui,i−1 −Div(A∇ui,i−1) = 0 in ]0, Ti−2]× Ω , (4.10)

u(0, Li−1, Li) = ui,i
(
Ti−2, Li; (aLi−1 + c)+

)
in Ω , (4.11)

where A and ~v are defined in (4.8)-(4.9). Moreover, as the coefficients of second
order terms vanish at the boundaries Γ−1 and Γ−2 , we just consider the additional
boundary conditions

ui,i−1(t, Li−1, Li) = 0 on [0, Ti−2]× Γ+
1 , (4.12)

ui,i−1(t, Li−1, Li) = Mδi(Li − (aLi−1 + c)+)+ on [0, Ti−2]× Γ+
2 , (4.13)

which are based on financial arguments.

4.2.2. Crank-Nicholson characteristics discretization

The method of characteristics is used for the time discretization and it is included
in the more general setting of upwinding methods, which take in account the local
direction of the flux. More precisely, it is based on a finite differences scheme for
the discretization of the material derivative, i. e., the time derivative along the
characteristic lines of the convective part of the equation. In this section we will
also introduce the variational formulation for the time discretized problem.

First, we define the characteristics curve through L = (Li−1, Li) at time t̄,
Xe(L, t̄; τ), which verifies:

∂τXe(L, t̄; τ) = ~v(Xe(L, t̄; τ)), Xe(L, t̄; t̄) = L . (4.14)

The final value problem (4.14) can be exactly solved and we obtain:

X1
e (L, t̄; τ) = Li−1 exp

(
1
2
σi−1σi + (σi−1)2 +

δiLiσ
i−1σi

1 + δiLi
(t̄− τ)

)

X2
e (L, t̄; τ) = Li exp

(
(
1
2
σi−1σi + (σi)2)(t̄− τ)

)
Now, for i = 1, ..., N , let us consider the time step ∆t = Ti−1

N and the time
meshpoints tn = n∆t, n = 0, 1

2 , 1,
3
2 , . . . , N . The material derivative approximation

by characteristics method is given by:

Dui,i−1

Dt
≈ (ui,i−1)n+1 − (ui,i−1)n ◦Xn

e

∆t

where Xn
e (L) := Xe(L, tn+1; tn), the components of which are given by



April 21, 2010 10:56 WSPC/INSTRUCTION FILE m3as-pas-tab-vaz-
10rev3

Mathematical analysis and numerical methods for a PDE model governing ratchet cap pricing 13

Xn,1
e (L) = Li−1 exp

(
1
2
σi−1σi + (σi−1)2 +

δiLiσ
i−1σi

1 + δiLi
∆t
)

Xn,2
e (L) = Li exp

(
(
1
2
σi−1σi + (σi)2)∆t

)
Next, we consider a Crank-Nicholson scheme around (Xe(x, tn+1; τ), τ) for

τ = tn+ 1
2
. So, for n=0,...,N-1, the time discretized equation can be written as:

Find (ui,i−1)n+1 such that:

(ui,i−1)n+1(L)− (ui,i−1)n(Xn
e (L))

∆t
− 1

2
Div(A∇(ui,i−1)n+1)(L)−

−1
2
Div(A∇(ui,i−1)n)(Xn

e (L)) = 0 .
(4.15)

Now, multiplying equation (4.15) by a suitable test function ψ and integrating
in Ω, we have:

∫
Ω

(ui,i−1)n+1 −Πn
i ◦Xn

e

∆t
ψdL− 1

2

∫
Ω

Div(A∇(ui,i−1)n+1)ψdL−

−1
2

∫
Ω

Div(A∇(ui,i−1)n)(Xn
e (L))ψdL = 0 .

(4.16)

Applying Lemma 3.4 that appears in Bermúdez, Nogueiras and Vázquez3 and
the usual Green’s formula, equation (4.16) is equivalent to:

∫
Ω

(ui,i−1)n+1 − (ui,i−1)n ◦Xn
e

∆t
ψdL+

1
2

∫
Ω

A∇(ui,i−1)n+1∇ψdL+

+
1
2

∫
Ω

(Fne )−1(A∇(ui,i−1)n)(Xn
e (L))∇ψdL+

+
1
2

∫
Ω

Div(Fne )−t(A∇(ui,i−1)n)(Xn
e (L))ψdL = (4.17)

=
1
2

∫
Γ

~n ·A∇(ui,i−1)n+1ψdAL+

+
1
2

∫
Γ

(Fne )−t~n · (A∇(ui,i−1)n)(Xn
e (L))ψdAL .

Notice that the tensor (Fne )−t can be easily computed by

(Fne )−t(L) =
(
b11 0
b21 b22

)
,

with
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14 A. Pascucci, M. Suárez-Taboada and C. Vázquez

b11(L) = exp
(

1
2
σi−1σi + (σi−1)2 +

δiLiσ
i−1σi

1 + δiLi
∆t
)

b21(L) = Li−1∆t
(
δiσ

i−1σi1 + δiLi − δ2
i σ

i−1σiLi

1 + δiLi
2

)
exp

(
(
1
2
σi−1σi + (σi)2)∆t

)
b22(L) = exp

(
(
1
2
σi−1σi + (σi)2)∆t

)
.

Next, let us precise the boundary integrals appearing in formulation (4.17).
First, notice that we have ~n ·A∇(ui,i−1)n+1 = 0 on Γ−1 ∪Γ−2 and ψ = 0 on Γ+

1 ∪Γ+
2 .

Therefore, the first boundary integral on the right hand side of equation (4.17)
vanishes. Moreover, for the second integral, we have∫

Γ

(Fne )−t~n · (A∇(ui,i−1)n)(Xn
e (L))ψdAL =

∫
Γ−1 ∪Γ−2

gnψdAL, (4.18)

where gn :]0,∞)×]0,∞)→ R is given by,

gn(L)=


− 1

2 ((Fne )−t)21(σi)2L2
i
∂(ui,i−1)n

∂Li
(Xn

e (L)) on Γ−1

− 1
2 ((Fne )−t)12(σi−1)2L2

i−1
∂(ui,i−1)n

∂Li−1
(Xn

e (L)) on Γ−2

Therefore, equation (4.17) becomes∫
Ω

(ui,i−1)n+1 − (ui,i−1)n ◦Xn
e

∆t
ψdL+

1
2

∫
Ω

A∇(ui,i−1)n+1∇ψdL+

+
1
2

∫
Ω

(Fne )−1(A∇(ui,i−1)n)(Xn
e (L))∇ψdL+

+
1
2

∫
Ω

Div(Fne )−t(A∇(ui,i−1)n)(Xn
e (L))ψdL = (4.19)

=
1
2

∫
Γ−1 ∪Γ−2

gn(L)ψdAL,

for all ψ ∈ H1
0,ΓD

(Ω), where the involved functional sets are,

H1
ΓD

(Ω) = {ψ ∈ H1(Ω)/ψ|
Γ+

1

= 0, ψ|
Γ+

2

= Mδi(Li − aLi−1 − c)+} ,

H1
0,ΓD

(Ω) = {ψ ∈ H1(Ω)/ψ|ΓD
= 0}.

4.2.3. Finite elements discretization

As we mention at the beginning of the section, we use the characteristics-Crank-
Nicholson method for the time discretization jointly with finite elements for spatial
discretization. For this purpose, we consider {τh} a quadrangular mesh of the do-
main Ω. Let (T,Q2,ΣT ) be a family of quadratic Lagrangian finite elements, where
Q2 is the space of polynomials defined in T ∈ τh with degree less or equal than two
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in each spatial variable and ΣT the subset of nodes of the element T . Now, let us
define the subset of finite elements Vh and the space of test functions Vh,ΓD

:

Vh = {ϕh ∈ C0(Ω̄) : ϕhT
∈ Q2,∀T ∈ τh} ,

Vh,ΓD
= {ϕh ∈ Vh : ϕh = 0, on ΓD} ,

where C0(Ω̄) is the space of continuous functions on Ω̄. Further details about the
application of this characteristics-Crank-Nicholson method to the ratchet caplet
pricing problem can be found in Taboada and Vázquez15. The numerical analysis
of the method for a more general equation can be found in Bermúdez, Nogueiras
and Vázquez1,2.

5. Numerical results

In this section we show some numerical tests to illustrate the performance of the
analytical approximation of Section 4.1 and the finite elements solution of Section
4.2, in comparison with standard Monte Carlo simulation.

FORTRAN scientific computing language has been chosen for the implementa-
tion of the Lagrange-Galerkin numerical methods, MATLAB for Monte Carlo and
MATHEMATICA for the computations related to the approximation by means of
fundamental solutions. As indicated in the previous section, we only consider the
case b equal to zero in the expression (2.1).

Moreover, concernig the data volatilities and correlations have been taken con-
stant in time. In Table 1 and Table 2 we show the data for the different tests. More
precisely, Table 1 shows the constant volatilities, correlations and accrual jointly
with the constants appearing in the strike definition (2.1) while Table 2 shows the
forward LIBOR spot values for the different tests.

Concerning to standard Monte Carlo, we determine the 99% confidence intervals
related to 500.000 simulations. The computational time for each price is approxi-
mately 26 minutes on a Intel(R) Core(TM)2 Duo CPU T8100 2.10 GHz.

In the finite elements method, the spatial quadrangular meshes used are struc-
tured, uniform and with edges parallel to the axis with 4096 elements and 16641
nodes. Pricing a ratchet caplet using finite elements takes about 26 minutes. No-
tice that this method provides simultaneously the prices for the 16641 mesh nodes,
prices for any LIBOR values can be easily obtained from them by interpolation.

The analytical approximation method results to be very fast as it gives one
ratchet caplet price in about 0.031 seconds, while keeping a good level of precision,
especially for not too long maturities.

Finally, comparison of the computed numerical results are shown in Table 3,
Table 4 and Table 5 for different spot values of the forward LIBOR rates.
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6. Conclusions

In this paper different approaches for the pricing of a particular interest rate deriva-
tive, the ratchet cap, in the framework of LMM for forward LIBOR interest rates
have been considered. Besides classical Monte Carlo simulation, two methods based
on an appropriate PDE formulation of the problem have been developed.

The PDE approach leads to a sequence of nested Cauchy problems for which
existence and uniqueness results have been proved. This theoretical approach allows
to approximate the analytical solution by freezing a variable coefficient and using
the fundamental solutions associated to the resulting constant coefficient operators.

On the other hand, the departure point for the finite element approximation is
the domain truncation to obtain an initial-boundary value problem and the consid-
eration of suitable boundary conditions at the artificial boundaries. In this formu-
lation setting, a Crank-Nicholson-characteristics time discretization combined with
piecewise quadratic elements is the proposed numerical method.

The obtained results confirm that the computed prices for different data sets are
very close each other for the three methods. The main pros of the finite elements
approach are the precision and the fact that many prices can be computed in a
single run at a moderate computational cost. The pros of the proposed analytical
approximation method are the precision and the very fast computing.

Index frequency Semi Annual
δi 0.5

ρi−1,i 0.8
σi 0.2
σi−1 0.2
a, b,c 0.9, 0.0, 0.01
t 0

Table 1. Numerical data (I).

At-the-money In-the-money Out-of-the-money
Li−1

0 0.05 0.03 0.06
Li0 0.05 0.05 0.05

Table 2. Numerical data (II).



April 21, 2010 10:56 WSPC/INSTRUCTION FILE m3as-pas-tab-vaz-
10rev3

Mathematical analysis and numerical methods for a PDE model governing ratchet cap pricing 17

Ti−2 Ti−1 Monte Carlo Anal. Appr. Fin. Elem.
0.5 1.0 [0.0014551, 0.0015599] 0.00150373 0.00151720
1.5 2.0 [0.0021582, 0.0023049] 0.00220159 0.00224088
2.5 3.0 [0.0027734, 0.0029599] 0.00280634 0.00287529
3.5 4.0 [0.0033225, 0.0035454] 0.00334588 0.00344715
4.5 5.0 [0.0038577, 0.0041172] 0.00383673 0.00397233

Table 3. Tests results for ratchet caplet i At-the-money (Li−1
0 = 0.05).

Ti−2 Ti−1 Monte Carlo Anal. Appr. Fin. Elem.
0.5 1.0 [0.012981, 0.013218] 0.0130957 0.0131012
1.5 2.0 [0.013164, 0.013462] 0.0132759 0.0132989
2.5 3.0 [0.013371, 0.001372] 0.0135010 0.0135448
3.5 4.0 [0.013606, 0.014004] 0.0137462 0.0138108
4.5 5.0 [0.013902, 0.014346] 0.0139994 0.0140839

Table 4. Tests results for ratchet caplet i In-the-money (Li−1
0 = 0.03).

Ti−2 Ti−1 Monte Carlo Anal. Appr. Fin. Elem.
0.5 1.0 [0.0002542, 0.0002981] 0.0002741 0.0002807
1.5 2.0 [0.0005890, 0.0006765] 0.0006273 0.0006430
2.5 3.0 [0.0009783, 0.0010905] 0.0010120 0.0010458
3.5 4.0 [0.0013795, 0.0015256] 0.0014000 0.0014557
4.5 5.0 [0.0017733, 0.0019517] 0.0017812 0.0018621

Table 5. Tests results for ratchet caplet i Out-of-the-money (Li−1
0 = 0.06).

7. Appendix: Computations related to the analytical
approximation

In this appendix we detail the intermediate computations to obtain the ratchet
caplet price via fundamental solutions approach.

First, we can compute explicitly

G3(t, xi−1, xi;Ti−2, yi−1, Ti−1, ηi) =∫
R

Γ̃i,i−1(t, xi−1, xi;Ti−2, yi−1, yi)Γ̄i,i(Ti−2, yi;Ti−1, ηi)dyi,
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obtaining the following expression:

G3(t, xi−1, xi;Ti−2, yi−1, Ti−1, ηi) =
exp(Mi)

(2π)3/2(σi)2σi−1τ
√
δi−1(1− ρ2

i−1,i)
, (7.1)

where we recall that τ = Ti−2 − t and Mi is given by

Mi =−
(

1
2 (σi)2δi−1 + ηi − yi

)2
2(σi)2δi−1

−

−
(σi−1)2τ − 4(xi−1 + xi − yi − yi−1) + 4(xi−yi)

2

(σi−1)2τ + 4(xi−1−yi−1)2

(σi)2τ

8
(
1− ρ2

i−1,i

) +

+
σi(2c̄i − 1)

(
(σi−1)2τ − (xi − yi)

)
ρi−1,i

4σi−1
(
1− ρ2

i−1,i

) −

−
(
(σi−1)2τ + 2(xi − yi)

)
(xi−1 − yi−1)ρi−1,i

2τσiσi−1
(
1− ρ2

i−1,i

) +

+
8c̄iρ2

i−1,i(−xi−1 + yi−1)− (σi)2τ
(
1 + 4(−1 + c̄i)c̄i(ρi−1,i)2

)
8
(
1− ρ2

i−1,i

)

(7.2)

Once G3 has been obtained, we compute

G4(t, xi−1, xi;Ti−2, yi−1, Ti−1) =

=
∫ ∞

log(aeyi−1+c)

G3(t, xi−1, xi;Ti−2, yi−1, Ti−1, ηi)(eηi − (aeyi−1 + c))dηi ,
(7.3)

the value of which is given by

G4(t, xi−1, xi;Ti−2, yi−1, Ti−1) =
exp(Hi)

4σi
√
−πBiτ((σi)2δi−1 + (σi−1)2τ(1− ρ2

i−1,i))
·

·

(
− 2 +K exp

(
1 + S1

i

4Bi

)
·
(

1 +N
(

Fi

2
√
Bi

))
+N

(
1 + Fi

2
√
Bi

))
,

(7.4)

where N denotes the standard normal distribution and

Hi(t, xi−1, xi;Ti−2, yi−1, Ti−1) =
S2
i

8
+
c̄i(xi−1 − yi−1)ρ2

i−1,i

1− ρ2
i−1,i

+
S3
i

2τ(1− ρ2
i−1,i)

+

+
S4
i

2(1− ρ2
i−1,i)

+
S5
i

τ(1− ρ2
i−1,i)

2Ai
+

S6
i

(1− ρ2
i−1,i)

2Ai
+

S7
i

τ2(1− ρ2
i−1,i)

2Ai

(7.5)
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Ai =− 1
2(σi)2δi−1

− 1
2(σi−1)2τ(1− ρ2

i−1,i)

Bi =
1

2(σi)2δi−1
+

1
2(σi)4δ2

i−1Ai

Ei =a exp(yi−1) + c

Fi =− 1
2

+
(ρi−1,i)2

4(σi)2δi−1(1− ρ2
i−1,i)Ai

− xi
2(σi)2(σi−1)2δi−1τ(1− ρ2

i−1,i)Ai
+

+
Cρi−1,i

4σiσi−1δi−1(1− ρ2
i−1,i)Ai

+
(xi−1 − yi−1)ρi−1,i

2(σi)3(σi−1)δi−1τ(1− ρ2
i−1,i)Ai

−

− 2Bi log(Ei)

(7.6)

S1
i =− 1 +

ρi−1,i

2(σi)2δi−1(1− ρ2
i−1,i)Ai

− xi
(σi)2(σi−1)2δi−1τ(1− ρ2

i−1,i)Ai
−

− (2c̄i − 1)ρi−1,i

2σiσi−1δi−1(1− ρ2
i−1,i)Ai

+
(xi−1 − yi−1)ρi−1,i

(σi)3si−1δi−1τ(1− ρ2
i−1,i)Ai

S2
i =(σi)2δi−1 +

(σi−1)2τ

(1− ρ2
i−1,i)

− 1
(1− ρ2

i−1,i)Ai
+

1
2Ai

S3
i =− τ(xi−1 + xi − yi−1) +

x2
i

(σi−1)2
+

(xi−1 − yi−1)2

(σi)2
−

− 2xi(xi−1 − yi−1)ρi−1,i

σiσi−1
+

(xi−1 − yi−1)ρi−1,i

2σiσi−1Ai

S4
i =

σiσi−1(2c̄i − 1)τρi−1,i

2
− σi(2c̄i − 1)xiρi−1,i

σi−1
+

+
σi−1(xi−1 − yi−1)ρi−1,i

σi
+

(σi)2τ
(
1 + 4(−1 + c̄i)c̄iρ2

i−1,i

)
4

S5
i =−

xi + (2c̄i − 1)(xi−1 − yi−1)ρ2
i−1,i − τ−1x2

i − (1− ρ2
i−1,i)

−1xi

4(σi−1)2
−

− σi(2c̄i − 1)xiρi−1,i

4(σi−1)3
+

(xi−1 − yi−1)ρi−1,i

4σiσi−1

S6
i =

(σi)2(2c̄i − 1)2ρ2
i−1,1

16(σi−1)2
+
σi(2c̄i − 1)ρi−1,i

8σi−1
−

−
(1− ρ2

i−1,i)σ
i(2c̄i − 1)ρi−1,i

8σi−1
+

1
16

S7
i =− xi(xi−1 − yi−1)ρi−1,i

2σi(σi−1)3
+

(xi−1 − yi−1)2ρ2
i−1,i

4(σi)2(σi−1)2

(7.7)

Finally, we use numerical integration with MATHEMATICA to compute

ūi,i−1(t, xi−1, xi;K) =
∫

R
G4(t, xi−1, xi;Ti−2, yi−1, Ti−1)dyi−1 .
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2. A. Bermúdez, M. R. Nogueiras and C. Vázquez, Numerical analysis of convection-
diffusion-reaction problems with higher order characteristics finite elements. Part II:
Fully discretized scheme and quadrature formulas, SIAM Journal on Numerical Anal-
ysis 44 (2006) 1854–1876.
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15. M. Suárez-Taboada and C. Vázquez, Numerical solution of a PDE model for a rachet-

cap pricing with BGM interest rate dynamics, Pre-print.
16. C. Vázquez, An upwind numerical approach for an American and European option

pricing model, Appl. Math. Comput. 97 (1998) 273–286.
17. P. Wilmott, Derivatives. The theory and practice of financial engineering, (Wiley,

1998).


