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Abstract

In this paper the mathematical analysis of a model for pricing stock
loan contracts, when the accumulative dividend yield associated to
the stock is returned by the lender to the borrower on redemption, is
carried out. More precisely, the model is formulated in terms of an
obstacle problem associated to a Kolmogorov equation and the exis-
tence and uniqueness in the set of solutions with polynomial growth
are obtained. Also some regularity properties of the solution are ana-
lyzed. Next, for the numerical solution of the problem the combination
of Crank-Nicolson Lagrange-Galerkin with the augmented Lagrangian
active set method is described. Finally, some numerical examples il-
lustrate the theoretical properties of the optimal redeeming boundary
previously stated in the literature.

Keywords: Stock loans, Kolmogorov equation, free boundary, characteris-
tics time discretization, finite elements, augmented Lagrangian active set
method

1 Introduction

A stock loan is a contract between a lender (for example, a bank) and a
borrower (for example, a client of the bank). The borrower owns a share of
a stock which acts as the collateral of the loan obtained from the lender. At
any time before or at loan maturity, the borrower may recover the stock by
repaying the lender the principal and the fixed interest rate associated to the
loan. Otherwise, the borrower can surrender the stock instead of paying the
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loan. The product is a way of financing in which stocks are employed as the
only guarantee for the loan, being the secured feature one advantage with
respect to traditional loans. The stock loan price must be here understood
as the fair price that the lender should charge to the borrower and this is
the target of the pricing problem here addressed. On the other hand, as
the borrower has the option to redeem, for him/her the question about the
optimal redeeming strategy arises.

An important feature from the financial and mathematical point of view
are the contract specifications concerning the destination of the dividends
associated to the stock: they can be either gained by the lender or by the
borrower and in both cases, also either before or on redemption. The first
attempt of a quantitative analysis to price a stock loan contract appears in
[21], where the case in which the dividends of the stock are collected by the
lender until redemption and not credited to the borrower. Thus, under this
dividend treatment by the contract, the pricing problem is formulated as an
American call option with a time dependent strike. Moreover, in [21] the
authors deduce a pricing formula when the maturity of the loan is infinite
by analogy with the American perpetual option with time varying exercise
value. Finally, the paper indicates different interesting open problems and
some of them are treated in [8]. Thus, in [8] the different PDE based pric-
ing models for the finite maturity case subjected to different possibilities of
dividend yield distribution are presented; the mathematical analysis mainly
focuses on the properties of the redeeming boundary, which is the unknown
free boundary that separates the redemption region from the no redemp-
tion one, thus characterizing the optimal redemption policy to be followed
by the borrower. More precisely, the first three situations analyzed in [8]
correspond to the cases of dividend gained by the lender before redemption,
reinvested dividend returned to the borrower on redemption and dividend
always delivered to the borrower, and all lead to one-dimensional Black-
Scholes variational inequalities. From the mathematical point of view, the
most complex case arises when the accumulative dividend yield is returned
to the borrower on redemption. In this fourth case, the introduction of a
path dependent variable allows to pose an obstacle problem associated to
an ultraparabolic PDE of Kolmogorov type, as in the case of Asian options
with continuous arithmetic averaging. For this case, in [8] the existence of
a redeeming boundary and their properties are analyzed. We also acknowl-
edge the recent paper [22], that analyzes the stock loan pricing problem
under a pair of regime switching examples: a single regime jump and a two-
state Markov change, although the policy in the contract about the stock
dividends is not treated.

In the present paper, for the first time the mathematical analysis of the
PDE model for the stock loan pricing problem is addressed in the case when
the accumulative dividend yield is returned to the borrower on redemption.
Furthermore, the optimal regularity of the solution in anisotropic Sobolev
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spaces is analyzed. For this purpose, the techniques developed in [17] and
[15] to study obstacle problems associated to hypoelliptic equations of Kol-
mogorov type are applied.

Secondly, as the analytical solution cannot be obtained, we propose a
numerical method to approximate it. More precisely, first the unbounded
domain is truncated to a large enough computational bounded domain with
appropriate boundary conditions. Next, taking into account that the Kol-
mogorov equation is strongly convection-dominated, we propose the charac-
teristics method to discretize the material derivative associated to the time
derivative and first order spatial derivatives terms. The classical method of
characteristics of first order has been introduced in [19] and first applied for
the resolution of financial problems in [20] for vanilla options and for pric-
ing Asian options in [11]. More recently, the higher order Crank-Nicolson
Lagrange-Galerkin method has been analyzed in [3] and [4] for a general
(possibly degenerated) convection-diffusion-reaction equation and applied
to pricing problems of Asian options with continuous arithmetic averaging
in [5]. Additionally to the discretization method, in order to deal with the
nonlinearity associated to the obstacle condition (free boundary problem),
the augmented Lagrangian active set method proposed in [14] is used. For
Asian options, this method has been compared with an alternative duality
method in [6]. For the discretization in the asset and accumulative dividend
variables, a piecewise quadratic finite elements method is considered, so that
the joint time and spatial discretization falls in the frame of the so called
Lagrange-Galerkin methods. In order to validate the performance of the
proposed numerical techniques, we verify all qualitative properties theoreti-
cally proved in [8] about the redemption region and the optimal redeeming
boundary.

The paper is organized as follows. In Section 2 some notations and the
mathematical model are stated. Section 3 is devoted to the statement of
the existence of solution and the theoretical properties of the redemption
boundary are recalled. Numerical techniques are described in Section 4. In
Section 5 some numerical results illustrate the performance of the proposed
numerical methods. Finally, in the Appendix we develop the proofs related
to the existence and uniqueness of the solution for the obstacle problem
associated to the Kolmogorov equation.

2 Formulation of the pricing problem

We assume that the risk neutral price of the stock evolves according to
the classical geometric Brownian motion dynamics

dSt = (r − δ)Stdt+ σStdWt, (2.1)
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where W is a standard real Brownian motion on a filtered probability space
(Ω,F ,P, (Ft)t≥0). The parameters r, δ and σ denote the risk-free interest
rate, the dividend yield and the volatility respectively. Hereafter we assume
that the dividend yield is a positive constant, that is

δ > 0. (2.2)

As indicated in the introduction, we consider a stock loan in which the
borrower receives a loan from the lender who in turn receives the stock as
collateral. The loan contract provides that the accumulative dividends of the
stock will be returned to the borrower on redemption. Redemption can take
place at any time before or at the loan maturity and in case of no redemption
the lender maintains the stock. The parameters of the stock loan contract
are the principal value K, the (continuously compounded) interest rate γ of
the loan and the maturity T .

Let us assume that the initial date of the loan is t = 0: then the intrinsic
value of the stock loan is given by(

St −Keγt + It
)+
, t ∈ [0, T ], (2.3)

where the auxiliary path dependent process

It = δ

∫ t

0
er(t−u)Sudu, t ∈ [0, T ], (2.4)

represents the value of the accumulative dividends. In differential form, we
have

dIt = (rIt + δSt)dt. (2.5)

By classical arguments (see, for instance, Chap. 11 in [18]), the unique price
of the stock loan which avoids the introduction of arbitrage opportunities
is given by Vt = V (t, St, It) where V is the solution to the following free-
boundary problem{

max{LV,Ψ− V } = 0 in [0, T [×R2
+,

V (T, S, I) = Ψ(T, S, I) (S, I) ∈ R2
+.

(2.6)

In (2.6), L is the Kolmogorov operator related to the processes (St, It) in
(2.1)-(2.5), that is

LV =
σ2S2

2
∂SSV + (r − δ)S∂SV + (rI + δS)∂IV + ∂tV − rV, (2.7)

and
Ψ(t, S, I) =

(
S −Keγt + I

)+ (2.8)

is the payoff/obstacle function.
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The existence of solutions to (2.6) is a delicate matter. Indeed, on the
one hand it is well-known that obstacle problems do not generally admit clas-
sical (smooth) solutions; on the other hand, L is not a uniformly parabolic
operator and the classical PDE theory of generalized solutions does not
apply to problem (2.6). We emphasize that, differently from the standard
Black&Scholes case, (2.6) is a two-dimensional time-dependent problem and
does not admit dimension reduction; indeed, the solution V is a function of
the time variable t and the spatial variables S and I. Operator L is not
uniformly parabolic because only the first order derivative with respect to I
appears; in other terms, we have two spatial variables but only one source
of diffusion (i.e. one Brownian motion). We mention that similar operators
to L were recently studied in [10], [17], [1] and [15] in connection with the
analysis of American Asian options. Taking into account certain analogies
between stock loans and Asian options, in the Appendix (cf. Theorem 6.3)
we give some results on the existence and optimal regularity of solutions;
moreover, we prove the following stochastic representation formula for the
solution to (2.6):

V (t, S, I) = sup
τ∈Tt,T

E
[
e−r(τ−t) (Sτ −Keγτ + Iτ )+ | St = S, It = I

]
. (2.9)

In (2.9), Tt,T denotes the set of all (Ft)-stopping times with values in [t, T ].
We remark explicitly that the first equation in (2.6) can be decomposed

in the following system on (0, T )× R2
+

LV ≤ 0,
V ≥ Ψ,
LV · (V −Ψ) = 0,

(2.10)

where the third equation is known as complementarity condition. Then, as
for most contracts with the early exercise feature, the domain of the solution
V can be divided in two regions:

i) the redemption region

R0 = {(t, S, I) ∈ [0, T )× R2
+ | V (t, S, I) = Ψ(t, S, I)}; (2.11)

ii) the no-redemption region

R+ = {(t, S, I) ∈ [0, T )× R2
+ | V (t, S, I) > Ψ(t, S, I)}. (2.12)

The surface separating the two regions is the so-called optimal redeeming
boundary which identifies the critical price of the stock at which it is worth
redeeming the loan.

Taking for granted the existence and exploiting the regularity of the solu-
tion V , in [8] some qualitative properties of the optimal redeeming boundary
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have been proved. Specifically, early redemption never happens for r > γ;
while when r = γ it is optimal to hold the loan before maturity, even if in
some occasion early redemption may be optimal as well. Furthermore, for
r < γ the redemption region is non-empty. These results are summarized in
the following proposition proved in [8]:

Proposition 2.1. Assume that δ > 0. We have:

i) if r > γ then R0 = ∅;

ii) if r = γ then it is optimal to hold the stock loan before maturity;

iii) if r < γ and we put

O = {(t, I) ∈ [0, T )× R+ | I ≥ Keγt}

then
{(t, S, I) ∈ [0, T )× R2

+ | (t, I) ∈ O} ⊂ R0. (2.13)

Moreover the optimal redeeming boundary is a graph, that is there
exists a function S∗ : O −→ R+ such that

R0 = {(t, S, I) | S ≥ S∗(t, I)} .

The function S∗ is monotonically decreasing in t and I, with

lim
t→T

S∗(t, I) = eγTK − I. (2.14)

The above result is based on the existence and other properties of the
solution V , which we examine in detail in this paper. In particular, we put
some emphasis on the regularity properties of generalized solutions because
those properties also give some hint for the efficient numerical solution of
(2.6): specifically, we will show that the numerical schemes can take advan-
tage of the degenerate structure of L as a strongly convection-dominated
operator.

3 Anisotropic regularity of solutions

In the appendix we prove the existence of solutions to problem (2.6)
in the anisotropic Sobolev spaces Sp defined in (3.16). It is interesting
to notice that the regularity in Sp is optimal for this kind of problems and
gives a clear picture of the peculiar properties of the solution. Other notions
of generalized solutions (for instance, in the viscosity or variational sense)
can be considered as well, albeit the stochastic representation (2.9) entails
uniqueness among different solutions.
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To introduce a suitable functional setting, we denote by

Y = (r − δ)S∂S + (rI + δS)∂I + ∂t (3.15)

the first order part of L. For any Ω, domain of R3, and p ≥ 1, we define the
anisotropic Sobolev spaces

Sp(Ω) = {U ∈ Lp(Ω) | ∂SU, ∂SSU, Y U ∈ Lp(Ω)} (3.16)

endowed with the semi-norm

‖U‖Sp = ‖U‖Lp + ‖∂SU‖Lp + ‖∂SSU‖Lp + ‖Y U‖Lp .

If U ∈ Sp(H) for any compact subset H ⊆ Ω, then we write U ∈ Sploc(Ω).
Next we introduce the notion of strong solution of the free boundary problem
(2.6).

Definition 3.1 (Strong solution). A strong solution to problem (2.6) is a
function V ∈ S1

loc ∩ C(]0, T ]× R2
+) which satisfies the differential inequality

a.e. in ]0, T [×R2
+ and the final condition in the pointwise sense.

Existence and uniqueness of a strong solution V will be proved in The-
orem 6.3. In this section we analyze the regularity properties of V and, in
particular, compare the anisotropic Hölder continuity of V with the classical
Euclidean regularity.

For greater convenience, we put x = (S, I) and, using the matrix nota-
tion, we rewrite the vector field Y in (3.15) as

Y = 〈Bx,∇x〉+ ∂t

where B is the convection matrix

B =
(
r − δ 0
δ r

)
and ∇x is the gradient in the variables x. It is possible to introduce a
functional setting, induced by the convection field Y , which is natural for
the study of the interior regularity of strong solutions. Let us first consider
an operator in R3 of the form

L̄ = ā(t, x)∂x1x1 + Y, (3.17)

with Y as in (3.15). It is known (cf. [9], Theorem 1.4) that under the
assumption (2.2) (i.e. δ > 0) and if the coefficient ā is a smooth function
such that

1
µ
≤ ā ≤ µ on R3, (3.18)
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where µ is a positive constant, then L̄ has a fundamental solution which can
be globally estimated by Gaussian functions from above and below. More-
over, if the coefficient ā in (3.17) is constant, then operator L̄ is invariant3

w.r.t. the left translations in the group law

(τ, ξ) ∗ (t, x) = (τ + t, x+ etBξ), (3.19)

where the exponential matrix of B is equal to

etB = et(r−δ)
(

1 0
etδ − 1 etδ

)
.

Notice that the pricing operator L is locally of the form (3.17) since the
function ā(t, S, I) = σ2S2

2 verifies the non-degeneracy condition (3.18) on
any compact subset of R × R2

+. Consequently, it is natural to characterize
the interior regularity of solutions to L in terms of the group law (3.19).
Indeed, the following embedding theorem holds (cf. [10]).

Theorem 3.2 (Embedding theorem). Let O,Ω be bounded domains of R3

such that O ⊂⊂ Ω and p > 6. There exists a positive constant c, only
dependent on B, Ω, O and p, such that

‖U‖
C1,α
B (O)

≤ c‖U‖Sp(Ω), α = 1− 6
p
, (3.20)

for any u ∈ Sp(Ω). In (3.20), C1,α
B is the anisotropic Hölder space defined

by the following norms4:

‖U‖
C0,α
B (Ω)

= sup
Ω
|U |+ sup

(t,x),(τ,ξ)∈Ω

(t,x)6=(τ,ξ)

|U(t, x)− U(τ, ξ)|
‖(τ, ξ)−1 ∗ (t, x)‖αB

,

‖U‖
C1,α
B (Ω)

= ‖U‖
C0,α
B (Ω)

+ ‖∂x1U‖C0,α
B (Ω)

+ sup
(t,x),(τ,ξ)∈Ω

(t,x) 6=(τ,ξ)

|U(t, x)− U(τ, ξ)− (x1 − ξ1)∂x1U(τ, ξ)|
‖(τ, ξ)−1 ∗ (t, x)‖1+α

B

,

where ‖ · ‖B is the anisotropic norm in R3 defined by

‖(t, x1, x2)‖B = |t|
1
2 + |x1|+ |x2|

1
3 .

3L̄ is left-∗-invariant if

L̄U ((τ, ξ) ∗ (t, x)) =
(
L̄U

)
((τ, ξ) ∗ (t, x)) .

4We adopt the notation x = (S, I) and ξ = (S′, I ′).
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As a consequence of Theorem 3.2, the strong solutions to problem (2.6)
belong locally to the space C1,α

B for any α < 1. Actually, according to the
recent results in [12], the solutions to (2.6) belong to the class S∞loc and this
regularity is optimal.

Now we briefly compare the intrinsic notion of C1,α
B -regularity with the

more familiar regularity in the standard Euclidean sense. First notice that,
for any bounded domain Ω, there exists a positive constant cΩ such that

‖(τ, ξ)−1 ∗ (t, x)‖B = ‖(t− τ, x− ξ) + (0, (Id2 − e(t−τ)B)ξ)‖B
≤ cΩ|(t− τ, x− ξ)|

1
3 , (τ, ξ), (t, x) ∈ Ω,

where Id2 is the identity matrix in R2. It immediately follows that

C0,α
B (Ω) ⊆ C0,α

3 (Ω)

where C0,α denotes the standard Euclidean Hölder space.

Remark 3.3 (Euclidean regularity). If U ∈ C1,α
B (Ω) then U, ∂SU ∈ C0,α

3 (Ω)
and also

|U((t, x) ∗ (τ, 0))− U(t, x)| = |U((t+ τ, eτBx))− U(t, x)| ≤ cΩ|τ |
1+α

2 .
(3.21)

Estimate (3.21) is equivalent to the Hölder regularity of order 1+α
2 along the

integral curves of Y . As a matter of fact, if we identify Y with the vector
field Y (t, x) = (1, Bx), then γ(τ) := (t+ τ, eτBx) is the integral curve of Y
starting from (t, x), that is the solution of the problem{

γ̇(τ) = Y (γ(τ)),
γ(0) = (t, x).

Notice that the C1,α
B -regularity of U does not imply the existence of the Eu-

clidean derivative ∂IU : roughly speaking, since ∂I is obtained by commuting
∂S and Y

[∂S , Y ] = ∂SY − Y ∂S = (r − δ)∂S + δ∂I ,

then intrinsically it has to be considered a third order derivative.

Keeping in mind the above remarks, in the numerical solution of problem
(2.6) we adopt the natural approach of using a semi-Lagrangian method for
time discretization, that mainly consists of a finite differences scheme along
the integral curves of the convective part Y of the equation.
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4 Numerical methods

In order to enumerate the numerical techniques, the main difficulties
and the way to overcome them numerically are briefly outlined. First, a
localization technique is used to cope with the initial formulation in an un-
bounded domain. Also, as the diffusive term is strongly degenerated, the
PDE can be understood as an example of extreme convective dominated
case, so that we propose a Crank-Nicolson characteristics time discretiza-
tion scheme combined with a piecewise quadratic Lagrange finite element
method. For the inequality constraints associated to the early redemption
opportunity, we propose a mixed formulation and the use of an augmented
Lagrangian active set technique.

4.1 Divergence form and localization in a bounded domain

Taking into account that we apply finite elements methods based on
variational formulation, we first rewrite the PDE in (2.6) in divergence form.
For simplicity, we introduce the new time variable τ = T − t and pose the
equivalent problem:

L[V ] ≥ 0 in (0, T )× R2
+ , (4.22)

V ≥ Λ in (0, T )× R2
+ , (4.23)

L[V ] · (V − Λ) = 0 in (0, T )× R2
+ , (4.24)

V (0, S, I) = Λ(0, S, I) in R2
+ , (4.25)

where the new operator and obstacle are respectively given by

L[V ] = ∂τV + ~v · ∇V − div(A∇V ) + rV, (4.26)

Λ(τ, S, I) = Ψ(T − τ, S, I), (4.27)

with

A(S, I) =
(

1
2σ

2S2 0
0 0

)
, (4.28)

~v(S, I) =
(

(σ2 − r + δ)S
−(δS + rI)

)
. (4.29)

As in most problems arising in finance, the numerical solution with finite
differences, finite volumes or finite elements requires the approximation of
the original problem in an unbounded domain by another one posed in a
bounded computational domain. This technique is known as localization
procedure, that has to be performed so that the truncation by the bounded
domain and the associated boundary conditions do not affect the solution
in the region of financial interest. For the classical problem of European
vanilla options and Dirichlet boundary conditions, a rigorous analysis has
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been carried out in [13]. In general, the required boundary conditions at the
new boundaries of the bounded domain are obtained with financial and/or
mathematical arguments.

For the localization purpose, let us consider both S∞ and I∞ large
enough real numbers suitably chosen and let the bounded domain be Ω =
(0, S∞)×(0, I∞), with Lipschitz boundary Γ, such that Γ = Γ+

1

⋃
Γ+

2

⋃
Γ−1
⋃

Γ−2 ,
where Γ−1 = Γ ∩ {S = 0}, Γ−2 = Γ ∩ {I = 0}, Γ+

1 = Γ ∩ {S = S∞}, Γ+
2 =

Γ ∩ {I = I∞}.
Then, problem (4.22)-(4.25) is replaced by the following one:

Find V : [0, T ]× Ω→ R such that

L[V ] ≥ 0 in (0, T )× Ω , (4.30)
V ≥ Λ in (0, T )× Ω , (4.31)

L[V ] · (V − Λ) = 0 in (0, T )× Ω , (4.32)
V (0, S, I) = Λ(0, S, I) in Ω , (4.33)

We note that in a certain abuse of notation we maintain the use of V
also for the solution in the new time variable.

Next, by applying the theory of second order partial differential equa-
tions with nonnegative characteristics that can be found in [16] and taking
into account the expression of the matrix A and the vector ~v, only boundary
conditions at Γ+

1 and Γ+
2 are required.

More precisely, following the ideas in [16], for simplicity let us introduce
the notation

x1 = S, x2 = I. (4.34)

Then, the operator associated to the Cauchy problem can be written in
the form:

L∗ =
2∑

i,j=1

a∗ij
∂2

∂xixj
+

2∑
j=1

b∗j
∂

∂xj
+ l∗ +

∂

∂t
, (4.35)

where the involved data are defined as follows

A∗(x1, x2) = (a∗ij) =

 σ2x2
1

2
0

0 0

 , (4.36)

v∗(x1, x2) = (b∗j ) =
(

(r − δ)x1

δx1 + rx2

)
, (4.37)

l∗(x1, x2) = −r. (4.38)

Thus, in terms of the inwards normal vector to the boundary of Ω,
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~m = (m1,m2), we introduce the following subsets of Γ:

Σ1 = {(x1, x2) ∈ Γ ,

2∑
i,j=1

a∗ijmimj > 0}, (4.39)

Σ2 =

(x1, x2) ∈ Γ− Σ1 ,
2∑
i=1

b∗i − 2∑
j=1

∂a∗ij
∂xj

mi < 0

 . (4.40)

As indicated in [16], the boundary conditions at Σ1 ∪ Σ2 for the initial
boundary value problem associated to (4.35) are required. So, considering
each boundary of Ω, we get:

• On boundary Γ+
1 : x1 = x∞1 , 0 ≤ x2 ≤ x∞2 , ~m = (−1, 0)

2∑
i,j=1

a∗ijmimj = a∗11m
2
1 =

σ2x2
1

2
> 0

• On boundary Γ+
2 : 0 ≤ x1 ≤ x∞1 , x2 = x∞2 , ~m = (0,−1)

2∑
i,j=1

a∗ijmimj = a∗11m
2
1 = 0

2∑
i=1

b∗i − 2∑
j=1

∂a∗ij
∂xj

mi = −(δx1 + rx∞2 ) < 0

• On boundary Γ−1 : x1 = 0, 0 ≤ x2 ≤ x∞2 , ~m = (1, 0)

2∑
i,j=1

a∗ijmimj = a∗11m
2
1 = 0

2∑
i=1

b∗i − 2∑
j=1

∂a∗ij
∂xj

mi = (−σ2 + r − δ)x1 = 0

• On boundary Γ−2 : 0 ≤ x1 ≤ x∞1 , x2 = 0, ~m = (0, 1)

2∑
i,j=1

a∗ijmimj = a∗11m
2
1 = 0

2∑
i=1

b∗i − 2∑
j=1

∂a∗ij
∂xj

mi = δx1 > 0
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Therefore, we obtain that Σ1 = Γ+
1 and Σ2 = Γ+

2 , so that Σ1 ∪ Σ2 =
Γ+

1 ∪ Γ+
2 .

Next, we propose the following non-homogeneous Neumann conditions:

∂V

∂S
(t, S, I) = g1(t, S, I) on [0, T ]× Γ+

1 , (4.41)

∂V

∂I
(t, S, I) = g2(t, S, I) on [0, T ]× Γ+

2 , (4.42)

the functions g1 and g2 being defined by

g1(t, S, I) =
∂Λ
∂S

(0, S, I) = 1, (t, S, I) ∈ [0, T ]× Γ+
1 , (4.43)

g2(t, S, I) =
∂Λ
∂I

(0, S, I) = 1, (t, S, I) ∈ [0, T ]× Γ+
2 , (4.44)

which are derived from the exercise value function Λ, provided that we
choose the bounded domain satisfying the condition

min(S∞, I∞) > K exp(γT ), (4.45)

that guarantees the inequality

S + I −K exp(γT ) > 0, ∀(S, I) ∈ Γ+
1 ∪ Γ+

2 . (4.46)

Notice that condition (4.45) is satisfied by the data in the forthcoming test
examples.

Moreover, we propose a mixed formulation to deal with obstacle problem
by introducing the multiplier P : [0, T ] × Ω −→ R, so that we can replace
equations (4.30)-(4.32) by the equation

Vτ − div (A∇V ) + ~v · ∇V + rV + P = 0 in (0, T )× Ω, (4.47)

and the complementarity conditions

V ≥ Λ, P ≤ 0, (V − Λ) · P = 0 in (0, T )× Ω. (4.48)

This kind of mixed formulations have been previously used in early exercise
Asian options with arithmetic averaging in [5] or in pension plans with early
retirement opportunity pricing problems in [7], for example. In practice,
we will apply the mixed formulation (4.47)-(4.48) to the fully discretized
problem.
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4.2 Discretization in time

Very often, in differential equations for pricing financial products, the
diffusive term is quite small relative to the convective one for some regions
of the domain or due to the presence of particular values of the involved
parameters. This is specially reinforced in the case of the equations here
considered for the stock loans pricing, due to the fact that there is no dif-
fusion in one of the spatial dimensions. In such circumstances numerical
schemes present difficulties.

A relatively large variety of ideas and approaches have been proposed
in widely different contexts to solve these difficulties and the characteristics
method for time discretization constitutes a possible up-winding scheme that
leads to symmetric and stable approximations, reducing temporal errors and
allowing for large time steps without loss of accuracy.

In order to cope with the extremely convection dominated feature that
appears in the Kolmogorov equation associated to the stock loan model,
we use the Crank-Nicolson Lagrange-Galerkin method to approximate the
material derivative

D

Dτ
= ∂τ + ~v · ∇ (4.49)

For this purpose, we define the characteristics curve through the point (S, I)
at time τ̄ , Xe(x, τ̄ ; τ), which verifies the following final value problem:

∂τXe((S, I), τ̄ ; τ) = ~v(Xe((S, I), τ̄ ; τ)), Xe((S, I), τ̄ ; τ̄) = (S, I) . (4.50)

The final value problem (4.50) can be exactly solved, so that depending
on the parameter values, we obtain:

• If σ2 − r + δ = 0

X1
e ((S, I), τ̄ ; τ) = S

X2
e ((S, I), τ̄ ; τ) = −δ

r
S + exp(r(τ̄ − τ))

(
I +

Sδ

r

)

• If σ2 − r + δ 6= 0

X1
e ((S, I), τ̄ ; τ) = S exp(−(σ2 − r + δ)(τ̄ − τ))

X2
e ((S, I), τ̄ ; τ) =

−δS exp(−(σ2 − r + δ)(τ̄ − τ))
σ2 + δ

+

exp(r(τ̄ − τ))
(
I +

Sδ

σ2 + δ

)

Next, in order to describe the time discretization taking into account
previous computations, for N > 0 let us consider the time step ∆τ = T

N and

14



the time meshpoints τn = n∆τ, n = 0, 1
2 , 1,

3
2 , . . . , N . Then, at time τn+ 1

2

the material derivative approximation by characteristics method is given by:

DV

Dτ
≈ V n+1 − V n ◦Xn

e

∆τ
,

where Xn
e (S, I) := Xe(S, I, τn+1; τn), the components of which are given by

• If σ2 − r + δ = 0

Xn,1
e (S, I) = S, Xn,2

e (S, I) = −δ
r
S + exp(r∆τ)

(
I +

Sδ

r

)

• If σ2 − r + δ 6= 0

Xn,1
e (S, I) = S exp(−(σ2 − r + δ)∆τ),

Xn,2
e (S, I) =

−δS exp(−(σ2 − r + δ)∆τ)
σ2 + δ

+ exp(r∆τ)
(
I +

Sδ

σ2 + δ

)

The velocity field ~v is shown in Figures 1 and 2 for the conditions σ2 −
δ + r > 0 and σ2 − δ + r > 0, respectively.

Figure 1: Velocity field in the domain Ω for σ2 − δ + r > 0

Remark 4.1. Note that the velocity field at the boundary Γ+
2 points towards

the interior of the domain if σ2 − r + δ ≥ 0 (see Figure 1). Also, if the
quantity σ2 − r + δ < 0 then the velocity field at the boundaries Γ+

2 and Γ+
1

15



Figure 2: Velocity field in the domain Ω for σ2 − δ + r < 0

points towards the interior of the domain (see Figure 2). So, even for small
enough time steps, the point Xn

e (S, I) may not belong to the domain and
some approximations will be used. More precisely, if the point Xn

e (S, I) is
located outside the domain, we use a suitable Taylor approximation at the
corresponding boundary, taking in account the functions appearing in the
Neumann boundary conditions (4.41) and (4.42).

Next, if we consider a Crank-Nicolson scheme around the particular point(
Xe((S, I), τn+1; τ), τ

)
with τ = τn+ 1

2 for n = 0, ..., N − 1, then the time
discretized PDE operator can be written as follows:

L[V ]
(
Xe((S, I), tn+1; tn+ 1

2 ), tn+ 1
2

)
≈

V n+1(S, I)− V n(Xn
e (S, I))

∆τ
− 1

2
div(A∇V n+1)(S, I)

−1
2

div(A∇V n)(Xn
e (S, I)) +

1
2

(rV n+1(S, I)) +
1
2

(rV n(Xn
e (S, I))) .(4.51)

For simplicity, let us introduce the notation
(
L[V ]

)n+ 1
2 :

(
L[V ]

)n+ 1
2 (S, I) = L[V ]

(
Xe((S, I), τn+1; τn+ 1

2 ), τn+ 1
2

)
. (4.52)

In order to state the weak formulation for the semi-discretized problem, we
multiply the terms in (4.51) by a suitable test function ψ and integrating in
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Ω, we have: ((
L[V ]

)n+ 1
2 , ψ

)
≈
∫

Ω

V n+1 − V n ◦Xn
e

∆τ
ψ dSdI

−1
2

∫
Ω

div(A∇V n+1)ψdSdI − 1
2

∫
Ω

(div(A∇V n)) ◦Xn
e ψ dSdI

+
1
2

∫
Ω
rV n+1ψ dSdI +

1
2

∫
Ω

(rV n) ◦Xn
e ψ dSdI (4.53)

where notation dA is used for the integration measure in Γ.
Next, applying a Lemma that appears in [5] and the usual Green’s for-

mula, expression (4.53) is equivalent to:

((
L[V ]

)n+ 1
2 , ψ

)
≈∫

Ω

V n+1 − V n ◦Xn
e

∆τ
ψ dSdI +

1
2

∫
Ω
A∇V n+1∇ψ dSdI

+
1
2

∫
Ω

(Fne )−1(A∇V n) ◦Xn
e∇ψ dSdI

+
1
2

∫
Ω

(div(Fne )−t(A∇V n)) ◦Xn
e ψ dSdI

+
1
2

∫
Ω
rV n+1ψ dSdI

− 1
2

∫
Γ
~n ·A∇V n+1ψ dA

+
1
2

∫
Ω

(rV n) ◦Xn
e ψ dSdI

− 1
2

∫
Γ

(
(Fne )−t~n · (A∇V n)

)
◦Xn

e ψ dA . (4.54)

Notice that the tensor (Fne )−t(S, I) = (∇Xe(S, I, τn+1; τn))−t can be
easily computed and takes the form

(Fn
e )−t =

(
b11 b12

0 b22

)
,

where the tensor components are actually independent of S and I. More
precisely, by taking into account the different cases depending on the value
of σ2 − r + δ, we have:

• If σ2 − r + δ = 0:

b11 = exp(r∆τ), b22 = 1, b12 =
δ

r
(1− exp(r∆τ)).
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• If σ2 − r + δ 6= 0:

b11 = exp(r∆τ),
b22 = exp(−(σ2 − r + δ)∆τ),

b12 =
δ exp(−(σ2 − r + δ)∆τ)

σ2 + δ
− δ exp(r∆τ)

σ2 + δ
.

Next, let us precise the boundary integrals appearing in formulation (4.54).
First, notice that we have ~n · A∇V n+1 = 0 on Γ−1 ∪ Γ−2 and we can use the
Neumann boundary conditions on Γ+

1 ∪Γ+
2 . Therefore, in the first boundary

integral on the right hand side of equation (4.54) we can introduce the
function

ḡn+1 =
{
a11 g

n+1
1 on Γ+

1

a11 g
n+1
2 on Γ+

2

(4.55)

Moreover, for the second integral, we have∫
Γ

(
(Fne )−t~n · (A∇V n)

)
◦Xn

e ψ dA =
∫

Γ
gnψ dA, (4.56)

where gn : (0,∞)× (0,∞)→ R is given by

gn(S, I) =



0 on Γ−1

−((Fne )−t)11a11(Xn
e (S, I))

∂V

∂I
(Xn

e (S, I)) on Γ+
1

−1
2((Fne )−t)12a11(Xn

e (S, I))
∂V n

∂I
(Xn

e (S, I)) on Γ−2

−((Fne )−t)12a11(Xn
e (S, I))

∂V

∂I
(Xn

e (S, I)) on Γ+
2

Therefore, expression (4.54) becomes ((
L[V ]

)n+ 1
2 , ψ

)
≈∫

Ω

V n+1 − V n ◦Xn
e

∆τ
ψ dSdI +

1
2

∫
Ω
A∇V n+1∇ψ dSdI

+
1
2

∫
Ω

(
(Fne )−1(A∇V n)

)
◦Xn

e∇ψ dSdI

+
1
2

∫
Ω
rV n+1ψdSdI

+
1
2

∫
Ω

(
div(Fne )−t(A∇V n)

)
◦Xn

e ψ dSdI

−1
2

∫
Γ
gn(S, I)ψ dA

+
1
2

∫
Ω

(rV n) ◦Xn
e ψ dSdI −

1
2

∫
Γ+

1 ∪Γ+
2

ḡn+1ψ dA (4.57)
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for all ψ ∈ H1(Ω).

4.3 Finite elements discretization

In order to obtain the fully discretized problem, we combine the previ-
ously describe time discretization with a finite elements based spatial dis-
cretization. For this purpose, we consider a family of quadrangular meshes
{τh} of the domain Ω. Associated to the mesh {τh}, let (T,Q2,ΣT ) be a
family of quadratic Lagrangian finite elements, where Q2 denotes the space
of polynomials defined in T ∈ τh with degree less or equal than two in each
spatial variable and ΣT the subset of nodes of the element T . Now, let us
define the finite elements space Vh:

Vh = {ϕh ∈ C0(Ω̄) : ϕhT ∈ Q2,∀T ∈ τh} ,

where C0(Ω̄) denotes the space of continuous functions on Ω̄.
Therefore, if Vh ∈ Vh denotes the finite element approximation of V ∈

H1(Ω), then the spatial discretization of (4.57) can be written in the form

((
L[Vh]

)n+ 1
2 , ψh

)
≈∫

Ω

V n+1
h − V n

h ◦Xn
e

∆τ
ψh dSdI +

1
2

∫
Ω
A∇V n+1

h ∇ψh dSdI

+
1
2

∫
Ω

(
(Fne )−1(A∇V n

h )
)
◦Xn

e∇ψh dSdI

+
1
2

∫
Ω
rV n+1

h ψhdSdI

+
1
2

∫
Ω

(
div(Fne )−t(A∇V n

h )
)
◦Xn

e ψh dSdI

−1
2

∫
Γ
gnh(S, I)ψh dA

+
1
2

∫
Ω

(rV n
h ) ◦Xn

e ψhdSdI −
1
2

∫
Γ+

1 ∪Γ+
2

ḡn+1ψh dA (4.58)

for all ψh ∈ Vh.

4.4 Mixed formulation and augmented Lagrangian active set
method

Once the previous discretizations have been applied, we are led to the
following fully discretized complementarity problem at each time step n:

MhV
n
h ≥ bn−1

h , V n
h ≥ Λh,

(
MhV

n
h − bn−1

h

)
·
(
V n
h − Λh

)
= 0, (4.59)
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where Mh denotes the finite elements matrix, V n
h denotes de vector contain-

ing the values of the solution at the nodes of the finite element mesh and
Λh is the vector of the node values of the function Λ. So, the corresponding
mixed formulation of the complementarity problem (4.59) can be written in
the form

MhV
n
h + Pnh = bn−1

h , (4.60)

jointly with the complementarity conditions

V n
h ≥ Λh, Pnh ≤ 0, Pnh ·

(
V n
h − Λh

)
= 0, (4.61)

where Pnh denotes the vector containing the nodal values of the multiplier.
The basic iteration of the augmented Lagrangian active set algorithm

has been introduced in [14] and mainly consists of two steps. In the first
one the domain is decomposed into active and inactive parts (depending
on whether the constraints are active or not), and in the second step, a
reduced linear system associated to the inactive part is solved. Although
the algorithm can be used in bilateral problems (in case of upper and lower
constraints), we use the algorithm for unilateral problems, which are based
on the augmented Lagrangian formulation. The method has been already
successfully used when pricing early exercise Asian option with continuous
arithmetic average [6] and pension plans [7]. We address the reader to both
papers for further details on the algorithm.

5 Numerical results

After verifying the performance of the numerical methods with some
academic test with analytical solution, we consider the real test proposed
in [8] in which the authors apply the shooting grid method introduced in
[2]. More precisely, the financial data appearing in the stock loan are the
following:

σ = 0.4, r = 0.05, δ = 0.03, γ = 0.09, K = 0.7, T = 3. (5.62)

We notice that for the previous data set, the relation r < γ holds, so that
Proposition 2.1 states the existence of a redeeming boundary and that the
redemption region always contains a specific known region. The numerical
solution confirms those results.

After using different meshes, time discretization steps and parameters
of the numerical method, we show the results obtained for the localization
parameters S∞ = 3K and L∞ = 3K, a quadrangular finite elements mesh
with 4096 elements and 16641 nodes, and the time step ∆τ = 0.001. Notice
that the particular choice of the bounded domain guarantees that condition
(4.45) is satisfied.
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Figure 3 shows the computed optimal redeeming boundary at the times
to maturity τ = T − t = 0, 1, and 3, which coincide with those presented in
[8] by using different scales in the axes. The boundaries have been computed
by taking into account that the multiplier passes from zero in the redemp-
tion region to a negative value in the continuation region. The redemption
region is located above the redeeming boundary curve and condition (2.13)
is numerically satisfied. On the other hand, also the limit property (2.14) is
clearly illustrated by Figure 3.

Figure 4 shows the computed stock loan value for r < γ with the data
in (5.62) at t = 0 which qualitatively resembles the kind of results obtained
for Asian options with early exercise opportunity (see [5, 6], for example).
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Figure 3: Optimal redeeming boundary for σ = 0.4, r = 0.05, d = 0.03, γ =
0.09, K = 0.7 and T = 3.

In addition to the example in [8], also the tests corresponding to cases
with r = γ and r ≥ γ have been performed: also in these cases the numerical
results agree with the theoretical results of Proposition 2.1. The following
experiments have been performed with the same parameters of the numerical
methods as in previous case.

In the case r = γ the following financial data set has been chosen:

σ = 0.4, r = 0.09, δ = 0.03, γ = 0.09, K = 0.7, T = 3. (5.63)

For these data, Figure 5 shows the computed stock loan prices for t =
0. Taking into account that the no redemption region corresponds to the
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Figure 4: Stock loan price at t = 0 for the data σ = 0.4, r = 0.05, d =
0.03, γ = 0.09, K = 0.7 and T = 3.

points where the multiplier is identically zero, we notice that in this case
the multiplier vanishes in the whole domain, thus confirming the theoretical
property proved for this case in Proposition 2.1.

Finally, for the case r > γ the following financial data set has been taken:

σ = 0.4, r = 0.13, δ = 0.03, γ = 0.09, K = 0.7, T = 3. (5.64)

For these data, Figure 6 shows the computed stock loan prices for t = 0.
Again the numerical solution confirms the theoretical properties proved for
this case in Proposition 2.1.

6 Appendix: existence and stochastic representa-
tion of strong solutions

The goal of this appendix is the proof of the existence of a strong solution
(cf. Definition 3.1) to problem (2.6). As an intermediate result, we first
construct a supersolution.
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Figure 5: Stock loan price at t = 0 for the data σ = 0.4, r = 0.09, d =
0.03, γ = 0.09, K = 0.7 and T = 3.

Definition 6.1. A function V̄ ∈ C2([0, T [×R2
+) ∩ C([0, T ]× R2

+) such that

LV̄ ≤ 0 and V̄ ≥ Ψ in ]0, T [×R2
+, (6.65)

is called a supersolution to problem (2.6).

As the following lemma shows, it is not difficult to give the explicit
expression of a supersolution to (2.6) with Ψ as in (2.8).

Lemma 6.2. For any β and q suitably large constants, the function

V̄ (t, S, I) = βe−qt
√
S2 + I2 (6.66)

is a super-solution to problem (2.6).

Proof. We have

LV̄ (t, S, I) =
βe−qt

2 (I2 + S2)3/2
W (S, I)
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Figure 6: Stock loan price at t = 0 for the data σ = 0.4, r = 0.11, d =
0.03, γ = 0.09, K = 0.7 and T = 3.

where

W (S, I) = −2
(
S2 + I2

) (
q
(
S2 + I2

)
+ δS (S − I)

)
+ σ2S2I2.

Therefore LV̄ ≤ 0 if and only if W (S, I) ≤ 0. By using repeatedly the
elementary inequality

SI ≤ S2 + I2

2
,

we have

W (S, I) ≤ S2 + I2

2
((
−4q + σ2

) (
S2 + I2

)
− 4δS (S − I)

)
≤ S2 + I2

2
(
S2
(
−4q − 2δ + σ2

)
+ I2

(
−4q + 2δ + σ2

))
.

Thus W (S, I) ≤ 0 if q is positive and suitably large. Once q is fixed, it is
clear that there exists β > 0 such that

V̄ (t, S, I) ≥ Ψ(t, S, I), (t, S, I) ∈]0, T [×R2
+,

and therefore V̄ is a supersolution.
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Now we prove the main result of this appendix. Generally speaking,
we study problem (2.6) in the framework of hypoelliptic equations of Kol-
mogorov type. The obstacle problem for a general class of degenerate
parabolic operators including (3.17) was first studied in [10]. Existence,
uniqueness and Feynman-Kac representation of strong solutions to the free
boundary problem for arithmetic Asian options were studied in [15].

Theorem 6.3. There exists a strong solution V of problem (2.6) with Ψ as
in (2.8): we have that V ∈ Sploc

(
]0, T ]× R2

+

)
for any p ≥ 1 and

V ≤ V̄ (6.67)

where V̄ is the supersolution in (6.66). Moreover V is the unique solution
with polynomial growth5 of problem (2.6), which solves the optimal stopping
problem (2.9).

Proof. Following [15], let Dρ(x1, x2) denote the Euclidean ball centered at
(x1, x2) ∈ R2, with radius ρ. We consider the sequence of domains On =
Dn

(
n+ 1

n , 0
)
∩ Dn

(
0, n+ 1

n

)
covering R2

+. For any n ∈ N, the cylinder
Hn = ]0, T [×On is a L-regular domain in the sense that the Cauchy-Dirichlet
problem for L is well-posed because it is possible to find a barrier function
(cf. Remark 3.1 in [10]) at any point of the “parabolic” boundary

∂PHn := ∂Hn \ ({0} ×On).

In particular, since L satisfies condition (3.18) on any Hn, then by Theorem
3.1 in [10], for any n ∈ N problem{

max{LU − f,Ψ− U} = 0 in Hn,

U |∂PHn = Ψ.
(6.68)

has a strong solution U ∈ Sploc (Hn) ∩ C (Hn ∪ ∂PHn). Moreover, for every
p ≥ 1 and H ⊂⊂ Hn there exists a positive constant C, only depending on
H,Hn, p, ‖Ψ‖L∞(Hn) such that

‖Un‖Sp(H) ≤ C. (6.69)

Next we consider a sequence of cut-off functions χn ∈ C∞0 (R2
+), such that

χn = 1 on On−1, χn = 0 on R2
+ \On and 0 ≤ χn ≤ 1. We set

Ψn(t, S, I) = χn(S, I)Ψ(t, S, I) + (1− χn(S, I))V̄ (t, S, I) ,
5A function f has polynomial growth if

|f(t, S, I)| ≤ C (1 + Sp + Ip) , (t, S, I) ∈ [0, T ]× R2
+,

for some positive constants C, p.
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where V̄ is the supersolution in (6.66), and we denote by Vn the strong
solution to (6.68) with Ψ = Ψn. By the comparison principle we have
Ψ ≤ Vn+1 ≤ Vn ≤ V̄ . Therefore, by (6.69), for every compact set H and
n ∈ N such that Hn ⊃ H we have

‖Vn‖Sp(H) ≤ C, p ≥ 1,

for some constant C depending on H and p but not on n. Then we can pass
to the limit as n → ∞, on compact subsets of ]0, T [×R2

+, to get a strong
solution of max{LV −f,Ψ−V } = 0 in the space Sploc. A standard argument
based on barrier functions shows that V (t, ·) is continuous up to t = T
and attains the final datum. Finally, the uniqueness and the Feynman-Kac
representation of strong solutions is a consequence of the local summability
properties of the transition density of the process (cf. [15], Theorem 1-ii))
and it can be proved as in [17], Theorem 4.3.
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