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We consider a defaultable asset whose risk-neutral pricing dynamics are
described by an exponential Lévy-type martingale subject to default. This
class of models allows for local volatility, local default intensity and a locally
dependent Lévy measure. Generalizing and extending the novel adjoint ex-
pansion technique of Pagliarani, Pascucci and Riga [SIAM J. Financial Math.
4 (2013) 265–296], we derive a family of asymptotic expansions for the tran-
sition density of the underlying as well as for European-style option prices
and defaultable bond prices. For the density expansion, we also provide error
bounds for the truncated asymptotic series. Our method is numerically effi-
cient; approximate transition densities and European option prices are com-
puted via Fourier transforms; approximate bond prices are computed as finite
series. Additionally, as in Pagliarani, Pascucci and Riga (2013), for models
with Gaussian-type jumps, approximate option prices can be computed in
closed form. Sample Mathematica code is provided.

1. Introduction and literature review. A local volatility model is a model in
which the volatility σt of an asset X is a function of time t and the present level
of X. That is, σt = σ(t,Xt). Among local volatility models, perhaps the most
well known is the constant elasticity of variance (CEV) model of Cox (1975). One
advantage of local volatility models is that transition densities of the underlying—
as well as European option prices—are often available in closed-form as infinite
series of special functions [see Linetsky (2007) and references therein]. Another
advantage of local volatility models is that, for models whose transition density
is not available in closed form, accurate density and option price approximations
are readily available [see Pagliarani and Pascucci (2012), e.g.]. Finally, Dupire
(1994) shows that one can always find a local volatility function σ(t, x) that fits
the market’s implied volatility surface exactly. Thus, local volatility models are
quite flexible.

Despite the above advantages, local volatility models do suffer some short-
comings. Most notably, local volatility models do not allow for the underlying
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to experience jumps, the need for which is well documented in literature [see
Eraker (2004) and references therein]. Recently, there has been much interest
in combining local volatility models and models with jumps. Andersen and An-
dreasen (2000), for example, discuss extensions of the implied diffusion approach
of Dupire (1994) to asset processes with Poisson jumps (i.e., jumps with finite
activity). And Benhamou, Gobet and Miri (2009) derive analytically tractable op-
tion pricing approximations for models that include local volatility and a Poisson
jump process. Their approach relies on asymptotic expansions around small diffu-
sion and small jump frequency/size limits. More recently, Pagliarani, Pascucci and
Riga (2013) consider general local volatility models with independent Lévy jumps
(possibly infinite activity). Unlike, Benhamou, Gobet and Miri (2009), Pagliarani,
Pascucci and Riga (2013) make no small jump intensity/size assumption. Rather
the authors construct an approximated solution by expanding the local volatility
function as a power series. While all of the methods described in this paragraph
allow for local volatility and independent jumps, none of these methods allow for
state-dependent jumps.

Stochastic jump-intensity was recently identified as an important feature of eq-
uity models [see Christoffersen, Jacobs and Ornthanalai (2009)]. A locally depen-
dent Lévy measure allows for this possibility. Recently, two different approaches
have been taken to modeling assets with locally-dependent jump measures.
Mendoza-Arriaga, Carr and Linetsky (2010) time-change a local volatility model
with a Lévy subordinator. In addition to admitting exact option-pricing formulas,
the subordination technique results in a locally-dependent Lévy measure. Jacquier
and Lorig (2013) considers another class of models that allow for state-dependent
jumps. The author builds a Lévy-type processes with local volatility, local default
intensity, and a local Lévy measure by considering state-dependent perturbations
around a constant coefficient Lévy process. In addition to pricing formula, the
author provides an exact expansion for the induced implied volatility surface.

In this paper, we consider scalar Lévy-type processes with regular coefficients,
which naturally include all the models mentioned above. Generalizing and extend-
ing the methods of Pagliarani, Pascucci and Riga (2013), we derive a family of
asymptotic expansions for the transition densities of these processes, as well as
for European-style derivative prices and defaultable bond prices. The key contri-
butions of this manuscript are as follows:

• We allow for a locally-dependent Lévy measure and local default intensity,
whereas Pagliarani, Pascucci and Riga (2013) consider a locally independent
Lévy measure and do not allow for the possibility of default. A state-dependent
Lévy measure is an important feature because it allows for incorporating local
dependence into infinite activity Lévy models that have no diffusion component,
such as Variance-Gamma [Madan, Carr and Chang (1998)] and CGMY/Kobol
[Boyarchenko and Levendorskiı̆ (2002), Carr et al. (2002)].
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• Unlike Benhamou, Gobet and Miri (2009), we make no small diffusion or small
jump size/intensity assumption. Our formulae are valid for any Lévy type pro-
cess with smooth and bounded coefficients, independent of the relative size of
the coefficients.

• Whereas Pagliarani, Pascucci and Riga (2013) expand the local volatility and
drift functions as a Taylor series about an arbitrary point, that is, f (x) =∑

n an(x − x̄)n, in order to achieve their approximation result, we expand the
local volatility, drift, killing rate and Lévy measure in an arbitrary basis, that is,
f (x) = ∑

n cnBn(x). This is advantageous because the Taylor series typically
converges only locally, whereas other choices of the basis functions Bn may
provide global convergence in suitable functional spaces.

• Using techniques from pseudo-differential calculus, we provide explicit for-
mulae for the Fourier transform of every term in the transition density and
option-pricing expansions. In the case of state dependent Gaussian jumps, the
respective inverse Fourier transforms can be explicitly computed, thus provid-
ing closed form approximations for densities and prices. In the general case,
the density and pricing approximations can be computed quickly and easily as
inverse Fourier transforms. Additionally, when considering defaultable bonds,
approximate prices are computed as a finite sum; no numerical integration is
required even in the general case.

• For models with Gaussian-type jumps, we provide pointwise error estimates for
transition densities. Thus, we extend the previous results of Pagliarani, Pascucci
and Riga (2013) where only the purely diffusive case is considered. Addition-
ally, our error estimates allow for jumps with locally dependent mean, variance
and intensity. Thus, for models with Gaussian-type jumps, our results also ex-
tend the results of Benhamou, Gobet and Miri (2009), where only the case of a
constant Lévy measure is considered.

The rest of this paper proceeds as follows. In Section 2, we introduce a general
class of exponential Lévy-type models with locally-dependent volatility, default
intensity and Lévy measure. We also describe our modeling assumptions. Next,
in Section 3, we introduce the European option-pricing problem and derive a par-
tial integro-differential equation (PIDE) for the price of an option. In Section 4,
we derive a formal asymptotic expansion (in fact, a family of asymptotic expan-
sions) for the function that solves the option pricing PIDE (Theorem 1). Next, in
Section 5, we provide rigorous error estimates for our asymptotic expansion for
models with Gaussian-type jumps (Theorem 2). Lastly, in Section 6, we provide
numerical examples that illustrate the effectiveness and versatility of our meth-
ods. Technical proofs are provided in the Appendix. Some concluding remarks are
given in Section 7.

We mention specifically that the arguments needed to provide rigorous er-
ror estimates for our asymptotic expansions are quite extensive. As such, in this
manuscript, we provide only an outline of the proof of Theorem 2. The full proof
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of Theorem 2, as well as further numerical examples, can be found in the compan-
ion paper of Lorig, Pagliarani and Pascucci (2013).

2. General Lévy-type exponential martingales. For simplicity, we assume
a frictionless market, no arbitrage, zero interest rates and no dividends. Our results
can easily be extended to include locally dependent interest rates and dividends.
We take, as given, an equivalent martingale measure Q, chosen by the market on a
complete filtered probability space (�,F, {Ft , t ≥ 0},Q) satisfying the usual hy-
pothesis of completeness and right continuity. The filtration Ft represents the his-
tory of the market. All stochastic processes defined below live on this probability
space and all expectations are taken with respect to Q. We consider a defaultable
asset S whose risk-neutral dynamics are given by

St = I{ζ>t}eXt ,

dXt = μ(t,Xt) dt + σ(t,Xt) dWt +
∫
R

dN̄t (t,Xt−, dz)z,

dN̄t (t,Xt−, dz) = dNt(t,Xt−, dz) − ν(t,Xt−, dz) dt,

ζ = inf
{
t ≥ 0 :

∫ t

0
γ (s,Xs) ds ≥ E

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.(1)

Here, X is a Lévy-type process with local drift function μ(t, x), local volatility
function σ(t, x) ≥ 0 and state-dependent Lévy measure ν(t, x, dz). We shall de-
note by FX

t the filtration generated by X. The random variable E ∼ Exp(1) has
an exponential distribution and is independent of X. Note that ζ , which represents
the default time of S, is constructed here trough the so-called canonical construc-
tion [see Bielecki and Rutkowski (2002)], and is the first arrival time of a doubly
stochastic Poisson process with local intensity function γ (t, x) ≥ 0. This way of
modeling default is also considered in a local volatility setting in Carr and Linetsky
(2006), Linetsky (2006), and for exponential Lévy models in Capponi, Pagliarani
and Vargiolu (2014).

We assume that the coefficients are measurable in t and suitably smooth in
x to ensure the existence of a solution to (1) [see Oksendal and Sulem (2005),
Theorem 1.19]. We also assume the following boundedness condition which is
rather standard in the financial applications: there exists a Lévy measure

ν̄(dz) := sup
(t,x)∈R+×R

ν(t, x, dz)

such that ∫
R

ν̄(dz)min
(
1, z2)

< ∞,

∫
|z|≥1

ν̄(dz)ez < ∞,

(2) ∫
|z|≥1

ν̄(dz)|z| < ∞.
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Since ζ is not FX
t -measurable, we introduce the filtration FD

t = σ({ζ ≤ s), s ≤
t} in order to keep track of the event {ζ ≤ t}. The filtration of a market observer
then is Ft = FX

t ∨ FD
t . In the absence of arbitrage, S must be an Ft -martingale.

Thus, the drift μ(t, x) is fixed by σ(t, x), ν(t, x, dz) and γ (t, x) in order to satisfy
the martingale condition2

μ(t, x) = γ (t, x) − a(t, x) −
∫
R

ν(t, x, dz)
(
ez − 1 − z

)
,

(3)

a(t, x) := 1

2
σ 2(t, x).

We remark that the existence of the density of X is not strictly necessary in our
analysis. Indeed, since our formulae are carried out in Fourier space, we provide
approximations of the characteristic function of X and all of our computations are
still formally correct even when dealing with distributions that are not absolutely
continuous with respect to the Lebesgue measure.

3. Option pricing. We consider a European derivative expiring at time T with
payoff H(ST ) and we denote by V its no-arbitrage price. For convenience, we
introduce

h(x) := H
(
ex)

and K := H(0).

PROPOSITION 1. The price Vt is given by

Vt = K + I{ζ>t}E
[
e− ∫ T

t γ (s,Xs) ds(h(XT ) − K
)|Xt

]
, t ≤ T .(4)

The proof can be found in Section 2.2 of Linetsky (2006). Because our notation
differs from that of Linetsky (2006), and because a short proof is possible by using
the results of Jeanblanc, Yor and Chesney (2009), for the reader’s convenience, we
provide a derivation of Proposition 1 here.

PROOF OF PROPOSITION 1. Using risk-neutral pricing, the value Vt of the
derivative at time t is given by the conditional expectation of the option payoff

Vt = E
[
H(ST )|Ft

]
= E

[
h(XT )I{ζ>T }|Ft

] + KE[I{ζ≤T }|Ft ]
= E

[
h(XT )I{ζ>T }|Ft

] + K − KE[I{ζ>T }|Ft ]
= K + I{ζ>t}E

[
e− ∫ T

t γ (s,Xs) ds(h(XT ) − K
)|FX

t

]
= K + I{ζ>t}E

[
e− ∫ T

t γ (s,Xs) ds(h(XT ) − K
)|Xt

]
,

2We provide a derivation of the martingale condition in Section 3, Remark 1 below.
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where we have used Corollary 7.3.4.2 from Jeanblanc, Yor and Chesney (2009) to
write

E
[(

h(XT ) − K
)
I{ζ>T }|Ft

] = I{ζ>t}E
[(

h(XT ) − K
)
e− ∫ T

t γ (s,Xs) ds |FX
t

]
. �

REMARK 1. By Proposition 1 with K = 0 and h(x) = ex , we have that the
martingale condition St = E[ST |Ft ] is equivalent to

I{ζ>t}eXt = I{ζ>t}E
[
e− ∫ T

t γ (s,Xs) ds+XT |Ft

]
.

Therefore, we see that S is a martingale if and only if the process exp(− ∫ t
0 γ (s,

Xs) ds + Xt) is a martingale. The drift condition (3) follows by applying the Itô’s
formula to the process exp(− ∫ t

0 γ (s,Xs) ds + Xt) and setting the drift term to
zero.

From (4), one sees that, in order to compute the price of an option, we must
evaluate functions of the form3

v(t, x) := E
[
e− ∫ T

t γ (s,Xs) dsh(XT )|Xt = x
]
.(5)

By a direct application of the Feynman–Kac representation theorem [see, e.g.,
Pascucci (2011), Theorem 14.50], the classical solution of the following Cauchy
problem: (

∂t +A(t))v = 0, v(T , x) = h(x),(6)

when it exists, is equal to the function v(t, x) in (5), where

A(t)f (x) = γ (t, x)
(
∂xf (x) − f (x)

) + a(t, x)
(
∂2
xf (x) − ∂xf (x)

)
−

∫
R

ν(t, x, dz)
(
ez − 1 − z

)
∂xf (x)(7)

+
∫
R

ν(t, x, dz)
(
f (x + z) − f (x) − z∂xf (x)

)
,

is the characteristic operator of the SDE (1). In order to shorten the notation, in the
sequel we will suppress the explicit dependence on t in A(t) by referring to it just
as A.

Sufficient conditions for the existence and uniqueness of solutions of second-
order elliptic integro-differential equations are given in Theorem II.3.1 of Garroni
and Menaldi (1992). We denote by p(t, x;T ,y) the fundamental solution of the

3Note: we can accommodate stochastic interest rates and dividends of the form rt = r(t,Xt ) and
qt = q(t,Xt ) by simply making the change: γ (t, x) → γ (t, x) + r(t, x) and μ(t, x) → μ(t,Xt ) +
r(t,Xt ) − q(t,Xt ).
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operator (∂t + A), which is defined as the solution of (6) with h = δy . Note that
p(t, x;T ,y) represents also the transition density of logS4

p(t, x;T ,y) dy =Q[logST ∈ dy| logSt = x], x, y ∈R, t < T .

Note also that p(t, x;T ,y) is not a probability density since (due to the possibility
that ST = 0) we have ∫

R
p(t, x;T ,y) dy ≤ 1.

Given the existence of the fundamental solution of (∂t +A), we have that for any h

that is integrable with respect to the density p(t, x;T , ·), the Cauchy problem (6)
has a classical solution that can be represented as

v(t, x) =
∫
R

h(y)p(t, x;T ,y) dy.

REMARK 2. If G is the generator of a scalar Markov process and dom(G)

contains S(R), the Schwartz space of rapidly decaying functions on R, then G

must have the following form:

Gf (x) = −γ (x)f (x) + μ(x)∂xf (x) + a(x)∂2
xf (x)

(8)
+

∫
R

ν(x, dz)
(
f (x + z) − f (x) − I{|z|<R}z∂xf (x)

)
,

where γ ≥ 0, a ≥ 0, ν is a Lévy measure for every x and R ∈ [0,∞] [see Hoh
(1998), Proposition 2.10]. If one enforces on G the drift and integrability conditions
(2) and (3), which are needed to ensure that S is a martingale, and allow setting
R = ∞, then the operators (7) and (8) coincide (in the time-homogeneous case).
Thus, the class of models we consider in this paper encompasses all nonnegative
scalar Markov martingales that satisfy the regularity and boundedness conditions
of Section 2.

REMARK 3. In what follows, we shall systematically make use of the lan-
guage of pseudo-differential calculus. More precisely, let us denote by

ψξ(x) = ψx(ξ) = 1√
2π

eiξx, x, ξ ∈ R,

the so-called oscillating exponential function. Then A can be characterized by its
action on oscillating exponential functions. Indeed, we have

Aψξ(x) = φ(t, x, ξ)ψξ (x),

4Here with logS we denote the process Xt I{ζ>t} − ∞I{ζ≤t}.
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where

φ(t, x, ξ) = γ (t, x)(iξ − 1) + a(t, x)
(−ξ2 − iξ

)
(9)

−
∫
R

ν(t, x, dz)
(
ez − 1 − z

)
iξ +

∫
R

ν(t, x, dz)
(
eiξz − 1 − iξz

)
,

is called the symbol of A. Noting that

ez∂xu(x) =
∞∑

n=0

zn

n! ∂
n
x u(x) = u(x + z),

for any analytic function u(x), we have∫
R

ν(t, x, dz)
(
u(x + z) − u(x) − z∂xu(x)

)
(10)

=
∫
R

ν(t, x, dz)
(
ez∂x − 1 − z∂x

)
u(x).

Then A can be represented as

A = φ(t, x,D), D = −i∂x,

since by (9) and (10)

φ(t, x,D) = γ (t, x)(∂x − 1) + a(t, x)
(
∂2
x − ∂x

)
−

∫
R

ν(t, x, dz)
(
ez − 1 − z

)
∂x +

∫
R

ν(t, x, dz)
(
ez∂x − 1 − z∂x

)
.

If coefficients a(t), γ (t), ν(t, dz) are independent of x, then we have the usual
characterization of A as a multiplication by φ operator in the Fourier space:

A= F−1(
φ(t, ·)F)

, φ(t, ·) := φ(t, x, ·),
where F and F−1 denote the (direct) Fourier and inverse Fourier transform opera-
tors, respectively,

Ff (ξ) = f̂ (ξ) := 1√
2π

∫
R

e−iξxf (x) dx, F−1f (x) = 1√
2π

∫
R

eiξxf (ξ) dξ.

Moreover, if the coefficients a, γ, ν(dz) are independent of both t and x, then A

is the generator of a Lévy process X and φ(·) := φ(t, x, ·) is the characteristic
exponent of X:

E
[
eiξXt

] = etφ(ξ).
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4. Density and option price expansions (a formal description). Our goal is
to construct an approximate solution of Cauchy problem (6). We assume that the
symbol of A admits an expansion of the form

φ(t, x, ξ) =
∞∑

n=0

Bn(x)φn(t, ξ),(11)

where φn(t, ξ) is of the form

φn(t, ξ) = γn(t)(iξ − 1) + an(t)
(−ξ2 − iξ

)
−

∫
R

νn(t, dz)
(
ez − 1 − z

)
iξ +

∫
R

νn(t, dz)
(
eizξ − 1 − izξ

)
(12)

and {Bn}n≥0 is some expansion basis with Bn being an analytic function for each
n ≥ 0, and B0 ≡ 1 (see Examples 1, 2 and 3 below). Note that φn(t, ξ) is the
symbol of an operator

An := φn(t,D), D = −i∂x,

so that

Anψξ (x) = φn(t, ξ)ψξ (x).

Thus, formally the generator A can be written as follows:

A =
∞∑

n=0

Bn(x)An.(13)

Note that A0 is the generator of a time-dependent Lévy-type process X(0). In the
time-independent case, X(0) is a Lévy process and φ0(·) := φ0(t, ·) is its charac-
teristic exponent.

EXAMPLE 1 (Taylor series expansion). Pagliarani, Pascucci and Riga (2013)
approximate the drift and diffusion coefficients of A as a power series about an
arbitrary point x̄ ∈ R. In our more general setting, this corresponds to setting
Bn(x) = (x − x̄)n and expanding the diffusion and killing coefficients a(t, ·) and
γ (t, ·), as well as the Lévy measure ν(t, ·, dz) as follows:

a(t, x) =
∞∑

n=0

an(t, x̄)Bn(x), an(t, x̄) = 1

n!∂
n
x a(t, x̄),

γ (t, x) =
∞∑

n=0

γn(t, x̄)Bn(x), γn(t, x̄) = 1

n!∂
n
x γ (t, x̄),

ν(t, x, dz) =
∞∑

n=0

νn(t, x̄, dz)Bn(x), νn(t, x̄, dz) = 1

n!∂
n
x ν(t, x̄, dz)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.(14)



244 M. LORIG, S. PAGLIARANI AND A. PASCUCCI

In this case, (11) and (13) become (resp.)

φ(t, x, ξ) =
∞∑

n=0

(x − x̄)nφn(t, ξ), A =
∞∑

n=0

(x − x̄)nφn(t,D),

where, for all n ≥ 0, the symbol φn(t, ξ) is given by (12) with coefficients given
by (14). The choice of x̄ is somewhat arbitrary. However, a convenient choice
that seems to work well in most applications is to choose x̄ near Xt , the cur-
rent level of X. Hereafter, to simplify notation, when discussing implementation
of the Taylor-series expansion, we suppress the x̄-dependence: an(t, x̄) → an(t),
γn(t, x̄) → γn(t) and νn(t, x̄, dz) → νn(t, dz).

EXAMPLE 2 (Two-point Taylor series expansion). Suppose f is an analytic
function with domain R and x̄1, x̄2 ∈ R. Then the two-point Taylor series of f is
given by

f (x) =
∞∑

n=0

(
cn(x̄1, x̄2)(x − x̄1) + cn(x̄2, x̄1)(x − x̄2)

)
(x − x̄1)

n(x − x̄2)
n,(15)

where

c0(x̄1, x̄2) = f (x̄2)

x̄2 − x̄1
,

(16)

cn(x̄1, x̄2) =
n∑

k=0

(k + n − 1)!
k!n!(n − k)!

(−1)kk∂n−k
x̄1

f (x̄1) + (−1)n+1n∂n−k
x̄2

f (x̄2)

(x̄1 − x̄2)k+n+1 .

For the derivation of this result, we refer the reader to Estes and Lancaster (1972),
López and Temme (2002). Note truncating the two-point Taylor series expan-
sion (15) at n = m results in an expansion which of f which is of order O(x2n+1).

The advantage of using a two-point Taylor series is that, by considering the first
n derivatives of a function f at two points x̄1 and x̄2, one can achieve a more
accurate approximation of f over a wider range of values than if one were to
approximate f using 2n derivatives at a single point (i.e., the usual Taylor series
approximation).

If we associate expansion (15) with an expansion of the form f (x) =∑∞
n=0 fnBn(x) then f0B0(x) = cn(x̄1, x̄2)(x − x̄1) + cn(x̄2, x̄1)(x − x̄2), which

is affine in x. Thus, the terms in the two-point Taylor series expansion would not
be a suitable basis in (11) since B0(x) �= 1. However, one can always introduce a
constant M and define a function

F(x) := f (x) − M so that f (x) = M + F(x).(17)

Then one can express f as

f (x) = M +
∞∑

n=1

(
Cn−1(x̄1, x̄2)(x − x̄1) + Cn−1(x̄2, x̄1)(x − x̄2)

)
(18)

× (x − x̄1)
n−1(x − x̄2)

n−1,
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where the Cn are as given in (16) with f → F . If we associate expansion (18) with
an expansion of the form f (x) = ∑∞

n=0 fnBn(x), then we see that f0B0(x) = M

and one can choose B0(x) = 1. Thus, as written in (18), the terms of the two-point
Taylor series can be used as a suitable basis in (11).

Consider the following case: suppose a(t, x), γ (t, x) and ν(t, x, dz) are of the
form

a(t, x) = f (x)A(t), γ (t, x) = f (x)(t),
(19)

ν(t, x, dz) = f (x)N(t, dz),

so that φ(t, x, ξ) = f (x)�(t, ξ) with

�(t, ξ) = (t)(iξ − 1) + A(t)
(−ξ2 − iξ

)
−

∫
R
N(t, dz)

(
ez − 1 − z

)
iξ +

∫
R
N(t, dz)

(
eiξz − 1 − iξz

)
.

It is certainly plausible that the symbol of A would have such a form since,
from a modeling perspective, it makes sense that default intensity, volatility and
jump-intensity would be proportional. Indeed, the Jump-to-Default CEV model
(JDCEV) of Carr and Linetsky (2006), Carr and Madan (2010) has a similar re-
striction on the form of the drift, volatility and killing coefficients.

Now, under the dynamics of (19), observe that φ(t, x, ξ) and A can be written
as in (11) and (13), respectively, with B0 = 1 and

Bn(x) = (
Cn−1(x̄1, x̄2)(x − x̄1) + Cn−1(x̄2, x̄1)(x − x̄2)

)
(20)

× (x − x̄1)
n−1(x − x̄2)

n−1, n ≥ 1.

As above Cn (capital “C”) are given by (16) with f → F := f − M and

φ0(t, ξ) = M�(t, ξ), φn(t, ξ) = �(t, ξ), n ≥ 1.

As in Example 1, the choice of x̄1, x̄2 and M is somewhat arbitrary. But a choice
that seems to work well is to set x̄1 = Xt − � and x̄2 = Xt + � where � > 0 is a
constant and M = f (Xt). It is also a good idea to check that, for a given choice of
x̄1 and x̄2, the two-point Taylor series expansion provides a good approximation
of f in the region of interest.

Note we assumed the form (19) only for sake of simplicity. Indeed, the gen-
eral case can be accommodated by suitably extending expansion (11) to the more
general form

φ(t, x, ξ) =
∞∑

n=0

3∑
i=1

Bi,n(x)φi,n(t, ξ),

where φi,n for i = 1,2,3 are related to the diffusion, jump and default symbols,
respectively. For brevity, however, we omit the details of the general case.
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EXAMPLE 3 (Nonlocal approximation in weighted L2-spaces). Suppose
{Bn}n≥0 is a fixed orthonormal basis in some (possibly weighted) space L2(R,

m(x) dx) and that φ(t, ·, ξ) ∈ L2(R,m(x) dx) for all (t, ξ). Then we can represent
φ(t, x, ξ) in the form (11) where now the {φn}n≥0 are given by

φn(t, ξ) = 〈
Bn(·), φ(t, ·, ξ)

〉
m
, n ≥ 0.

A typical example would be to choose Hermite polynomials Hn centered at x̄ as
basis functions, which (as normalized below) are orthonormal under a Gaussian
weighting

Bn(x) = Hn(x − x̄), Hn(x) := 1√
(2n)!!√π

∂n
x exp(−x2)

exp(−x2)
, n ≥ 0.(21)

In this case, we have

φn(t, ξ) = 〈
φ(t, ·, ξ),Bn

〉
m

:=
∫
R

φ(t, x, ξ)Bn(x)m(x) dx,

m(x) := exp
(−(x − x̄)2)

.

Once again, the choice of x̄ is arbitrary. But it is logical to choose x̄ near Xt , the
present level of the underlying X. Note that, in the case of an L2 orthonormal ba-
sis, differentiability of the coefficients (a(t, ·), γ (t, ·), ν(t, ·, dz)) is not required.
This is a significant advantage over the Taylor and two-point Taylor basis func-
tions considered in Examples 1 and 2, which do require differentiability of the
coefficients.

Now, returning to Cauchy problem (6), we suppose that v = v(t, x) can be writ-
ten as follows:

v =
∞∑

n=0

vn.(22)

Following Pagliarani, Pascucci and Riga (2013), we insert expansions (13)
and (22) into Cauchy problem (6) and find

(∂t +A0)v0 = 0, v0(T , x) = h(x),(23)

(∂t +A0)vn = −
n∑

k=1

Bk(x)Akvn−k, vn(T , x) = 0.(24)

We are now in a position to find the explicit expression for v̂n, the Fourier trans-
form of vn in (23)–(24).

THEOREM 1. Suppose h ∈ L1(R, dx) and let ĥ denote its Fourier transform.
Suppose further that vn and its Fourier transform v̂n exist, and that both the left-
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and right-hand side of (23)–(24) belong to L1(R, dx). Then v̂n(t, ξ) is given by

v̂0(t, ξ) = exp
(∫ T

t
φ0(s, ξ) ds

)
ĥ(ξ),(25)

v̂n(t, ξ) =
n∑

k=1

∫ T

t
exp

(∫ s

t
φ0(u, ξ) du

)
Bk(i∂ξ )φk(s, ξ)v̂n−k(s, ξ) ds,

(26)
n ≥ 1.

Note that the operator Bk(i∂ξ ) acts on everything to the right of it.

PROOF. See Appendix A. �

REMARK 4. To compute survival probabilities v(t, x) = v(t, x;T ) over the
interval [t, T ], one assumes a payoff function h(x) = 1. Note that the Fourier trans-
form of a constant is simply a Dirac delta function: ĥ(ξ) = δ(ξ). Thus, when com-
puting survival probabilities, (possibly defaultable) bond prices and credit spreads,
no numerical integration is required. Rather, one simply uses the following iden-
tity: ∫

R
û(ξ)∂n

ξ δ(ξ) dξ = (−1)n∂n
ξ û(ξ)|ξ=0

to compute inverse Fourier transforms.

REMARK 5. Assuming v̂n ∈ L1(R, dx), one recovers vn using

vn(t, x) =
∫
R

dξ
1√
2π

eiξx v̂n(t, ξ).(27)

As previously mentioned, to obtain the FK transition densities p(t, x;T ,y) one
simply sets h(x) = δy(x). In this case, ĥ(ξ) becomes ψy(−ξ).

When the coefficients (a, γ, ν) are time-homogeneous, then the results of The-
orem 1 simplify considerably, as we show in the following corollary.

COROLLARY 1 (Time-homogeneous case). Suppose that X has time-
homogeneous dynamics with the local variance, default intensity and Lévy measure
given by a(x), γ (x) and ν(x, dz), respectively. Then the symbol φn(t, ξ) = φn(ξ)

is independent of t . Define

τ(t) := T − t.

Then, for n ≤ 0 we have

vn(t, x) = un

(
τ(t), x

)
,
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where

û0(τ, ξ) = eτφ0(ξ)ĥ(ξ),

ûn(τ, ξ) =
n∑

k=1

∫ τ

0
e(τ−s)φ0(ξ)Bk(i∂ξ )φk(ξ)ûn−k(s, ξ) ds, n ≥ 1.

PROOF. The proof is an algebraic computation. For brevity, we omit the de-
tails. �

EXAMPLE 4. Consider the Taylor density expansion of Example 1. That is,
Bn(x) = (x − x̄)n. Then, in the time-homogeneous case, we find that û1(t, ξ) and
û2(t, ξ) are given explicitly by

û1(t, ξ) = etφ0(ξ)(t ĥ(ξ)x̄φ1(ξ) + itφ1(ξ)ĥ′(ξ) + 1
2 it2ĥ(ξ)φ1(ξ)φ′

0(ξ)

+ it ĥ(ξ)φ′
1(ξ)

)
,

û2(t, ξ) = etφ0(ξ)(1
2 t2ĥ(ξ)x̄2φ2

1(ξ) + t ĥ(ξ)x̄2φ2(ξ) − it2x̄φ2
1(ξ)ĥ′(ξ)

− 2it x̄φ2(ξ)ĥ′(ξ)

− 1
2 it3ĥ(ξ)x̄φ2

1(ξ)φ′
0(ξ) − it2ĥ(ξ)x̄φ2(ξ)φ′

0(ξ)

− 1
2 t3φ1(ξ)2ĥ′(ξ)φ′

0(ξ) − t2φ2(ξ)ĥ′(ξ)φ′
0(ξ)

− 1
8 t4ĥ(ξ)φ2

1(ξ)
(
φ′

0(ξ)
)2 − 1

3 t3ĥ(ξ)φ2(ξ)
(
φ′

0(ξ)
)2

− 3
2 it2ĥ(ξ)x̄φ1(ξ)φ′

1(ξ)

− 3
2 t2φ1(ξ)ĥ′(ξ)φ′

1(ξ) − 2
3 t3ĥ(ξ)φ1(ξ)φ′

0(ξ)φ′
1(ξ)

− 1
2 t2ĥ(ξ)

(
φ′

1(ξ)
)2 − 2it ĥ(ξ)x̄φ′

2(ξ)

− 2t ĥ′(ξ)φ′
2(ξ) − t2ĥ(ξ)φ′

0(ξ)φ′
2(ξ) − 1

2 t2φ1(ξ)2ĥ′′(ξ)

− tφ2(ξ)ĥ′′(ξ) − 1
6 t3ĥ(ξ)φ2

1(ξ)φ′′
0 (ξ)

− 1
2 t2ĥ(ξ)φ2(ξ)φ′′

0 (ξ) − 1
2 t2ĥ(ξ)φ1(ξ)φ′′

1 (ξ) − t ĥ(ξ)φ′′
2 (ξ)

)
.

Higher order terms are quite long. However, they can be computed quickly and
explicitly using the Mathematica code provided in Appendix B. The code in the
Appendix can be easily modified for use with other basis functions.

REMARK 6. As in Pagliarani, Pascucci and Riga (2013), when considering
models with Gaussian-type jumps, that is, models with a state-dependent Lévy
measure ν(t, x, dz) of the form (28) below, all terms in the expansion for the tran-
sition density become explicit. Likewise, for models with Gaussian-type jumps,
all terms in the expansion for the price of an option are also explicit, assuming the
payoff is integrable against Gaussian functions.
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REMARK 7. Many common payoff functions (e.g., calls and puts) are not in-
tegrable: h /∈ L1(R, dx). Such payoffs may sometimes be accommodated using
generalized Fourier transforms. Assume

ĥ(ξ) :=
∫
R

dx
1√
2π

e−iξxh(x) < ∞ for some ξ = ξr + iξi with ξr , ξi ∈ R.

Assume also that φ(t, x, ξr + iξi) is analytic as a function of ξr . Then the formulas
appearing in Theorem 1 and Corollary 1 are valid and integration in (27) is with
respect to ξr (i.e., dξ → dξr ). For example, the payoff of a European call option
with payoff function h(x) = (ex − ek)+ has a generalized Fourier transform

ĥ(ξ) =
∫
R

dx
1√
2π

e−iξx(
ex − ek)+ = −ek−ikξ

√
2π(iξ + ξ2)

,

ξ = ξr + iξi, ξr ∈ R, ξi ∈ (−∞,−1).

In any practical scenario, one can only compute a finite number of terms in (22).
Thus, we define v(N), the N th order approximation of v by

v(N)(t, x) =
N∑

n=0

vn(t, x) =
∫
R

dξ
1√
2π

eiξx v̂(n)(t, ξ),

v̂(N)(t, ξ) :=
N∑

n=0

v̂n(t, ξ).

The function u(N)(t, x) (which we use for time-homogeneous cases) and the ap-
proximate FK transition density p(N)(t, x;T ,y) are defined in an analogous fash-
ion.

5. Pointwise error bounds for Gaussian models. In this section, we state
some pointwise error estimates for p(N)(t, x;T ,y), the N th order approximation
of the FK density of (∂t +A) with A as in (7). Throughout this section, we assume
Gaussian-type jumps with (t, x)-dependent mean, variance and jump intensities.
Furthermore, we work specifically with the Taylor series expansion of Example 1.
That is, we use basis functions Bn(x) = (x − x̄)n.

THEOREM 2. Assume that

m ≤ a(t, x) ≤ M, 0 ≤ γ (t, x) ≤ M, t ∈ [0, T ], x ∈ R,

for some positive constants m and M , and that

ν(t, x, dz) = λ(t, x)Nμ(t,x),δ2(t,x)(dz)
(28)

:= λ(t, x)√
2πδ(t, x)

e−(z−μ(t,x))2/(2δ2(t,x)) dz,
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with

m ≤ δ2(t, x) ≤ M, 0 ≤ λ(t, x),
∣∣μ(t, x)

∣∣ ≤ M, t ∈ [0, T ], x ∈ R.

Moreover assume that a, γ,λ, δ,μ and their x-derivatives are bounded and Lips-
chitz continuous in x, and uniformly bounded with respect to t ∈ [0, T ]. Let x̄ = y

in (14). Then, for N ≥ 1, we have5∣∣p(t, x;T ,y) − p(N)(t, x;T ,y)
∣∣

(29)
≤ gN(T − t)

(
̄(t, x;T ,y) + ‖∂xν‖∞̃(t, x;T ,y)

)
,

for any x, y ∈ R and t < T , where

gN(s) =O(s) as s → 0+.

Here, the function ̄ is the fundamental solution of the constant coefficients jump-
diffusion operator

∂tu(t, x) + M̄

2
∂xx + M̄

∫
R

(
u(t, x + z) − u(t, x)

)
NM̄,M̄ (dz),(30)

where M̄ is a suitably large constant, and ̃ is defined as

̃(t, x;T ,y) =
∞∑

k=0

M̄k/2(T − t)k/2
√

k! Ck+1̄(t, x;T ,y),

and where C is the convolution operator acting as

Cf (x) =
∫
R

f (x + z)NM̄,M̄ (dz).

PROOF. An outline of the proof is provided in Appendix C. For a detailed
proof, we refer to Lorig, Pagliarani and Pascucci (2013). �

REMARK 8. The functions Ck̄ take the following form:

Ck̄(t, x;T ,y)

= e−M̄(T −t)
∞∑

n=0

(M̄(T − t))n

n!
√

2πM̄(T − t + n + k)

exp
(
−(x − y + M̄(n + k))2

2M̄(T − t + n + k)

)
,(31)

k ≥ 0,

5Here, ‖∂xν‖∞ := max{‖∂xλ‖∞,‖∂xδ‖∞,‖∂xμ‖∞}, where ‖ · ‖∞ denotes the sup-norm on
(0, T ) ×R. Note that ‖∂xν‖∞ = 0 if λ, δ,μ are constants.
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and, therefore, ̃ can be explicitly written as

̃(t, x;T ,y) = e−M̄(T −t)
∞∑

n,k=0

(M̄(T − t))n+k/2

n!√k!
√

2πM̄(T − t + n + k + 1)

× exp
(
−(x − y + M̄(n + k + 1))2

2M̄(T − t + n + k + 1)

)
.

By Remark 8, it follows that, when k = 0 and x �= y, the asymptotic behavior
as t → T of the sum in (31) depends only on the n = 1 term. Consequently, we
have ̄(t, x;T ,y) = O(T − t) as (T − t) tends to 0. On the other hand, for k ≥ 1,
Ck̄(t, x;T ,y), and thus also ̃(t, x;T ,y), tends to a positive constant as (T − t)

goes to 0. It is then clear by (29) that, with x �= y fixed, the asymptotic behavior
of the error, when t tends to T , changes from (T − t) to (T − t)2 depending on
whether the Lévy measure is locally-dependent or not.

Theorem 2 extends the previous results in Pagliarani, Pascucci and Riga (2013)
where only the purely diffusive case (i.e., λ ≡ 0) is considered. In that case, an
estimate analogous to (29) holds with

gN(s) = O
(
s(N+1)/2)

as s → 0+.

Theorem 2 shows that for jump processes, increasing the order of the expansion
for N greater than one, theoretically does not give any gain in the rate of con-
vergence of the asymptotic expansion as t → T −; this is due to the fact that the
expansion is based on a local (Taylor) approximation while the PIDE contains a
nonlocal part. This estimate is in accord with the results in Benhamou, Gobet and
Miri (2009) where only the case of constant Lévy measure is considered. Thus,
Theorem 2 extends the latter results to state dependent Gaussian jumps using a
completely different technique. Extensive numerical tests showed that the first-
order approximation gives extremely accurate results and the precision seems to
be further improved by considering higher order approximations.

COROLLARY 2. Under the assumptions of Theorem 2, we have the following
estimate for the error on the approximate prices:∣∣v(t, x) − v(N)(t, x)

∣∣
≤ gN(T − t)

∫
R

∣∣h(y)
∣∣(̄(t, x;T ,y) + ‖∂xν‖∞̃(t, x;T ,y)

)
dy,

for any x ∈ R and t < T .

Some possible extensions of these asymptotic error bounds to general Lévy
measures are possible, though they are certainly not straightforward. Indeed, the
proof of Theorem 2 is based on some pointwise uniform estimates for the funda-
mental solution of the constant coefficient operator, that is, the transition density of
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a compound Poisson process with Gaussian jumps. When considering other Lévy
measures these estimates would be difficult to carry out, especially in the case of
jumps with infinite activity, but they might be obtained in some suitable normed
functional space. This might lead to error bounds for short maturities, which are
expressed in terms of a suitable norm, as opposed to uniform pointwise bounds.

REMARK 9. Since, in general, it is hard to derive the truncation error bound,
the reader may wonder how to determine the number of terms to include in the
asymptotic expansion. Though we provide a general expression for the nth term,
realistically, only the fourth-order term can be computed. That said, in practice,
three terms provide an approximation which is accurate enough for most appli-
cations (i.e., the resulting approximation error is smaller than the bid-ask spread
typically quoted on the market). Since v(n) only requires a single Fourier integra-
tion, there is no numerical advantage for choosing smaller n. As such, for financial
applications we suggest using n = 3 or n = 4.

6. Examples. In this section, in order to illustrate the versatility of our asymp-
totic expansion, we apply our approximation technique to a variety of different
Lévy-type models. We consider both finite and infinite activity Lévy-type mea-
sures and models with and without a diffusion component. We study not only op-
tion prices, but also implied volatilities. In each setting, if the exact or approximate
option price has been computed by a method other than our own, we compare this
to the option price obtained by our approximation. For cases where the exact or ap-
proximate option price is not analytically available, we use Monte Carlo methods
to verify the accuracy of our method.

Note that, some of the examples considered below do not satisfy the conditions
listed in Section 2. In particular, we will consider coefficients (a, γ, ν) that are not
bounded. Nevertheless, the formal results of Section 4 work well in the examples
considered.

6.1. CEV-like Lévy-type processes. We consider a Lévy-type process of the
form (1) with CEV-like volatility and jump-intensity. Specifically, the log-price
dynamics are given by

a(x) = 1
2δ2e2(β−1)x, ν(x, dz) = e2(β−1)xN(dz), γ (x) = 0,

(32)
δ ≥ 0, β ∈ [0,1],

where N(dx) is a Lévy measure. When N ≡ 0, this model reduces to the CEV
model of Cox (1975). Note that, with β ∈ [0,1), the volatility and jump-intensity
increase as x → −∞, which is consistent with the leverage effect (i.e., a decrease
in the value of the underlying is often accompanied by an increase in volatil-
ity/jump intensity). This characterization will yield a negative skew in the induced
implied volatility surface. As the class of models described by (32) is of the form
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(19) with f (x) = e2(β−1)x , this class naturally lends itself to the two-point Taylor
series approximation of Example 2. Thus, for certain numerical examples in this
section, we use basis functions Bn given by (20). In this case, we choose expan-
sion points x̄1 and x̄2 in a symmetric interval around X0 and in (17) we choose
M = f (X0) = e2(β−1)X0 . For other numerical examples, we use the (usual) one-
point Taylor series expansion Bn(x) = (x − x̄)n. In this cases, we choose x̄ = X0.

We will consider two different characterizations of N(dz):

Gaussian: N(dz) = λ
1√

2πη2
exp

(−(z − m)2

2η2

)
dz,(33)

Variance-Gamma: N(dz) =
(

e−λ−|z|

κ|z| I{z<0} + e−λ+z

κz
I{z>0}

)
dz,(34)

λ± =
(√

θ2κ2

4
+ ρ2κ

2
± θκ

2

)−1

.

Note that the Gaussian measure is an example of a finite-activity Lévy measure
[i.e., N(R) < ∞], whereas the Variance-Gamma measure, due to Madan, Carr and
Chang (1998), is an infinite-activity Lévy measure [i.e., N(R) = ∞]. As far as
the authors of this paper are aware, there is no closed-form expression for option
prices (or the transition density) in the setting of (32), regardless of the choice of
N(dz). As such, we will compare our pricing approximation to prices of options
computed via standard Monte Carlo methods.

REMARK 10.6 Note the CEV model typically includes an absorbing boundary
condition at S = 0. A more rigorous way to deal with degenerate dynamics, as
in the CEV model, would be to approximate the solution of the Cauchy problem
related to the process St (as apposed to Xt = logSt ). One would then equip the
Cauchy problem with suitable Dirichlet conditions on the boundary s = 0, and
work directly in the variable s ∈ R+ as opposed to the log-price on x ∈R. Indeed,
this is the approach followed by Hagan and Woodward (1999) who approximate
the true density p by a Gaussian density p0 through a heat kernel expansion: note
that the supports of p and p0 are R+ and R, respectively. In order to take into
account of the boundary behavior of the true density p, an improved approximation
could be achieved by using the Green function of the heat operator for R+ instead
of the Gaussian kernel: this will be object of further research in a forthcoming
paper.

6We would like to thank an anonymous referee for bringing the issue of boundary conditions to
our attention.
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We would also like to remark explicitly that our methodology is very general
and works with different choices for the leading operator of the expansion, such
as the constant-coefficient PIDEs we consider in the case of jumps. Nevertheless,
in the present paper, when purely diffusive models are considered, we always take
the heat operator as the leading term of our expansion. The main reasons are that
(i) the heat kernel is convenient for its computational simplicity and (ii) the heat
kernel allows for the possibility of passing directly from a Black–Scholes-type
price expansion to an implied vol expansion.

6.1.1. Gaussian Lévy measure. In our first numerical experiment, we consider
the case of Gaussian jumps. That is, N(dz) is given by (33). We fix the following
parameters:

δ = 0.20, β = 0.25, λ = 0.3, m = −0.1,
(35)

η = 0.4, S0 = ex = 1.

Using Corollary 1, we compute the approximate prices u(0)(t, x;K) and u(3)(t, x;
K) of a series of European puts over a range of strikes K and with times to maturity
t = {0.25,1.00,3.00,5.00} (we add the parameter K to the arguments of u(n) to
emphasize the dependence of u(n) on the strike price K). To compute u(i)(t, x;K),
i = {0,3} we use the we the usual one-point Taylor series expansion (Example 1).
We also compute the price u(t, x;K) of each put by Monte Carlo simulation. For
the Monte Carlo simulation, we use a standard Euler scheme with a time-step of
10−3 years, and we simulate 106 sample paths. We denote by u(MC)(t, x;K) the
price of a put obtained by Monte Carlo simulation. As prices are often quoted
in implied volatilities, we convert prices to implied volatilities by inverting the
Black–Scholes formula numerically. That is, for a given put price u(t, x;K), we
find σ(t,K) such that

u(t, x;K) = uBS(
t, x;K,σ(t,K)

)
,

where uBS(t, x;K,σ) is the Black–Scholes price of the put as computed assuming
a Black–Scholes volatility of σ . For convenience, we introduce the notation

IV
[
u(t, x;K)

] := σ(t,K)

to indicate the implied volatility induced by option price u(t, x;K). The re-
sults of our numerical experiments are plotted in Figure 1. We observe that
IV[u(3)(t, x;K)] agrees almost exactly with IV[u(MC)(t, x;K)]. The computed
prices u(3)(t, x;K) and their induced implied volatilities IV[u(3)(t, x;K)], as well
as 95% confidence intervals resulting from the Monte Carlo simulations can be
found in Table 1.



A FAMILY OF DENSITY EXPANSIONS FOR LÉVY-TYPE PROCESSES 255

FIG. 1. Implied volatility (IV) is plotted as a function of log-strike k := logK for the CEV-like
model with Gaussian-type jumps of Section 6.1.1. The solid lines corresponds to the IV induced by
u(3)(t, x), which is computed using the one-point Taylor expansion (see Example 1). The dashed
lines corresponds to the IV induced by u(0)(t, x) (again, using the usual one-point Taylor series
expansion). The crosses correspond to the IV induced by u(MC)(t, x), which is the price obtained
from the Monte Carlo simulation.

Comparing one-point Taylor and Hermite expansions. As choosing different ba-
sis functions results in distinct option-pricing approximations, one might wonder:
which choice of basis functions provides the most accurate approximation of op-
tion prices and implied volatilities? We investigate this question in Figure 2. In
the left column, using the parameters in (35), we plot IV[u(n)(t, x;K)], t = 0.5,
n = {0,1,2,3,4} where u(n)(t, x;K) is computed using both the one-point Tay-
lor series basis functions (Example 1) and the Hermite polynomial basis functions
(Example 3). We also plot IV[u(MC)(t, x;K)], the implied volatility obtained by
Monte Carlo simulation. For comparison, in the right column, we plot the function
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TABLE 1
Prices (u) and Implied volatility (IV[u]) as a function of time to maturity t and log-strike k := logK

for the CEV-like model with Gaussian-type jumps of Section 6.1.1. The approximate price u(3) is
computed using the (usual) one-point Taylor expansion (see Example 1). For comparison, we

provide the 95% confidence intervals for prices and implied volatilities, which we obtain from the
Monte Carlo simulation

t k u(3) u MC-95% c.i. IV[u(3)] IV MC-95% c.i.

0.2500 −0.6931 0.0006 0.0006–0.0007 0.5864 0.5856–0.5901
−0.4185 0.0024 0.0024–0.0025 0.4563 0.4553–0.4583
−0.1438 0.0111 0.0110–0.0112 0.2875 0.2865–0.2883

0.1308 0.1511 0.1508–0.1513 0.2595 0.2573–0.2608
0.4055 0.5028 0.5024–0.5030 0.4238 0.4152–0.4288

1.0000 −1.2040 0.0009 0.0009–0.0010 0.5115 0.5176–0.5210
−0.7297 0.0046 0.0047–0.0048 0.4174 0.4178–0.4199
−0.2554 0.0314 0.0313–0.0316 0.3109 0.3102–0.3117

0.2189 0.2781 0.2775–0.2784 0.2638 0.2620–0.2649
0.6931 1.0034 1.0030–1.0041 0.3358 0.3296–0.3459

3.0000 −1.3863 0.0074 0.0081–0.0083 0.4758 0.4851–0.4870
−0.8664 0.0224 0.0224–0.0227 0.4031 0.4029–0.4045
−0.3466 0.0776 0.0773–0.0779 0.3280 0.3274–0.3288

0.1733 0.3097 0.3094–0.3107 0.2690 0.2685–0.2703
0.6931 1.0155 1.0150–1.0169 0.2558 0.2540–0.2604

5.0000 −1.6094 0.0160 0.0164–0.0166 0.5082 0.5111–0.5128
−0.9324 0.0439 0.0436–0.0440 0.4118 0.4107–0.4121
−0.2554 0.1504 0.1497–0.1507 0.3203 0.3194–0.3208

0.4216 0.6139 0.6123–0.6142 0.2521 0.2500–0.2524
1.0986 2.0050 2.0032–2.0057 0.2297 0.2163–0.2342

f as well as f
(n)
Taylor and f

(n)
Hermite where

f (x) = e2(β−1)x, f
(n)
Taylor(x) :=

n∑
m=0

1

m!∂
mf (x̄)(x − x̄)m,

(36)

f
(n)
Hermite(x) :=

n∑
m=0

1

m! 〈Hm,f 〉Hm(x).

From Figure 2, we observe that, for every n, the Taylor series expansion f
(n)
Taylor

provides a better approximation of the function f (at least locally) than does the
Hermite polynomial expansion f

(n)
Hermite. In turn, the implied volatilities resulting

from the Taylor series basis functions IV[u(n)(t, x;K)] more accurately approx-
imate IV[u(MC)(t, x;K)] than do the implied volatilities resulting from the Her-
mite basis functions. The implied volatilities resulting from the two-point Taylor
series price approximation (not shown in the figure for clarity), are nearly indistin-
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FIG. 2. Left: for the model considered in Section 6.1.1 and for a fixed maturity t = 0.5, implied
volatility is plotted as a function of log-strike. The dashed line corresponds to IV[u(n)] where u(n)

is computed using Taylor series basis functions (Example 1). The dot-dashed line corresponds to
IV[u(n)] where u(n) is computed using Hermite polynomial basis functions (Example 3). The solid
line corresponds to IV[u(MC)]. Right: f (x) = e2(β−1)x (solid) and its nth order Taylor series and

Hermite polynomial approximations f
(n)
Taylor(x) (dotted) and f

(n)
Hermite(x) (dot-dashed); see equa-

tion (36).
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guishable implied volatilities induced by the (usual) one-point Taylor series price
approximation.

Computational speed, accuracy and robustness. In order for a method of obtain-
ing approximate option prices to be useful to practitioners, the method must be
fast, accurate and work over a wide range of model parameters. In order to test
the speed, accuracy and robustness of our method, we select model parameters at
random from uniform distributions within the following ranges:

δ ∈ [0.0,0.6], β ∈ [0.0,1.0], λ ∈ [0.0,1.0], m ∈ [−1.0,0.0],
η ∈ [0.0,1.0].

Using the obtained parameters, we then compute approximate option prices u(3)

and record computation times over a fixed range of strikes using our third-order
one-point Taylor expansion (Example 1). As the exact price of a call option is not
available, we also compute option prices by Monte Carlo simulation. The results
are displayed in Tables 2 and 3. The tables show that our third order price approxi-
mation u(3) consistently falls within the 95% confidence interval obtained from the
Monte Carlo simulation. Moreover, using a 2.4 GHz laptop computer, an approx-
imate call price u(3) can be computed in only ≈0.05 seconds. This is only four to
five times larger than the amount of time it takes to compute a similar option price
using standard Fourier methods in an exponential Lévy setting.

6.1.2. Variance-Gamma Lévy measure. In our second numerical experiment,
we consider the case of Variance-Gamma jumps. That is, N(dz) given by (34). We
fix the following parameters:

δ = 0.0, β = 0.25, θ = −0.3, ρ = 0.3, κ = 0.15,

S0 = ex = 1.

Note that, by letting δ = 0, we have set the diffusion component of X to zero:
a(x) = 0. Thus, X is a pure-jump Lévy-type process. Using Corollary 1, we com-
pute the approximate prices u(0)(t, x;K) and u(2)(t, x;K) of a series of European
puts over a range of strikes and with maturities t ∈ {0.5,1.0}. To compute u(i),
i ∈ {0,2}, we use the two-point Taylor series expansion (Example 2). We also
compute the put prices by Monte Carlo simulation. For the Monte Carlo simula-
tion, we use a time-step of 10−3 years and we simulate 106 sample paths. At each
time-step, we update X using the following algorithm:

Xt+�t = Xt + b(Xt)�t + γ +(Xt) − γ −(Xt), I (x) = e2(β−1)x,

b(x) = −I (x)

κ

(
log

(
λ−

1 + λ−

)
+ log

(
λ+

λ+ − 1

))
,

γ ±(x) ∼ 
(
I (x) · �t/κ,1/λ±

)
,
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TABLE 2
After selecting model parameters randomly, we compute call prices (u) for the CEV-like model with
Gaussian-type jumps discussed in Section 6.1.1. For each strike, the approximate call price u(3) is
computed using the (usual) one-point Taylor expansion (see Example 1) as well as by Monte Carlo
simulation. The obtained prices, as well as the associated implied volatilities (IV[u]) are displayed

above. Note that, the approximate price u(3) (and corresponding implied volatility) consistently
falls within the 95% confidence interval obtained from the Monte Carlo simulation. We denote by
τ (n) the total time it takes to compute the nth order approximation of option prices u(n) at the five
strikes displayed in the table. Because total computation time depends on processor speed, in the

last column, we give the ratio τ (3)/τ (0). Note that τ (0) is a useful benchmark, as it corresponds to
the total time it takes to compute the five call in an exponential Lévy setting (i.e., option prices with

no local dependence) using standard Fourier techniques

Parameters k = logK u(3) u MC-95% c.i. IV[u(3)] IV MC-95% c.i. τ (3)/τ (0)

t = 0.25 years
δ = 0.5432 −0.6000 0.4552 0.4552–0.4553 0.6849 0.6836–0.6869 4.9787
β = 0.3756 −0.3500 0.3123 0.3122–0.3124 0.6230 0.6217–0.6242
λ = 0.0518 −0.1000 0.1621 0.1618–0.1623 0.5704 0.5687–0.5714
m = −0.5013 0.1500 0.0496 0.0492–0.0500 0.5240 0.5222–0.5266
η = 0.3839 0.4000 0.0059 0.0057–0.0067 0.4821 0.4787–0.4950

δ = 0.1182 −0.6000 0.4566 0.4566–0.4567 0.7257 0.7239–0.7271 4.77419
β = 0.9960 −0.3500 0.3137 0.3136–0.3139 0.6391 0.6378–0.6405
λ = 0.8938 −0.1000 0.1431 0.1429–0.1434 0.4615 0.4602–0.4630
m = −0.4486 0.1500 0.0032 0.0030–0.0037 0.2013 0.1970–0.2073
η = 0.2619 0.4000 0.0000 0.0000–0.0000 0.2510 0.2567–0.2616

δ = 0.3376 −0.6000 0.4621 0.4619–0.4621 0.8462 0.8439–0.8478 4.31915
β = 0.4805 −0.3500 0.3190 0.3189–0.3192 0.6949 0.6933–0.6968
λ = 0.9610 −0.1000 0.1578 0.1575–0.1581 0.5457 0.5444–0.5476
m = −0.2420 0.1500 0.0451 0.0448–0.0456 0.4990 0.4974–0.5021
η = 0.5391 0.4000 0.0155 0.0152–0.0162 0.6006 0.5981–0.6080

δ = 0.2469 −0.6000 0.4592 0.4591–0.4593 0.7871 0.7857–0.7900 4.46032
β = 0.1875 −0.3500 0.3100 0.3099–0.3102 0.5965 0.5950–0.5986
λ = 0.4229 −0.1000 0.1341 0.1338–0.1343 0.4083 0.4069–0.4096
m = −0.2823 0.1500 0.0306 0.0302–0.0309 0.4149 0.4126–0.4168
η = 0.7564 0.4000 0.0176 0.0171–0.0179 0.6213 0.6171–0.6244

where (a, b) is a Gamma-distributed random variable with shape parameter a and
scale parameter b. Note that this is equivalent to considering a VG-type process
with state-dependent parameters

κ ′(x) := κ/I (x), θ ′(x) := θI (x), ρ ′(x) := ρ
√

I (x).

These state-dependent parameters result in state-independent λ± (i.e., λ± remain
constant). Once again, since implied volatilities rather than prices are the quan-
tity of primary interest, we convert prices to implied volatilities by inverting the
Black–Scholes formula numerically. The results are plotted in Figure 3. We ob-
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TABLE 3
After selecting model parameters randomly, we compute call prices (u) for the CEV-like model with
Gaussian-type jumps discussed in Section 6.1.1. For each strike, the approximate call price u(3) is
computed using the (usual) one-point Taylor expansion (see Example 1) as well as by Monte Carlo
simulation. The obtained prices, as well as the associated implied volatilities (IV[u]) are displayed
above. Note that the approximate price u(3) (and corresponding implied volatility) consistently falls

within the 95% confidence interval obtained from the Monte Carlo simulation. We denote by τ (n)

the total time it takes to compute the nth order approximation of option prices u(n) at the five strikes
displayed in the table. Because total computation time depends on processor speed, in the last

column, we give the ratio τ (3)/τ (0). Note that τ (0) is a useful benchmark, as it corresponds to the
total time it takes to compute the five call in an exponential Lévy setting (i.e., option prices with no

local dependence) using standard Fourier techniques

Parameters k = logK u(3) u MC-95% c.i. IV[u(3)] IV MC-95% c.i. τ (3)/τ (0)

t = 1.00 years
δ = 0.5806 −1.0000 0.6487 0.6486–0.6488 0.7306 0.7294–0.7319 4.97872
β = 0.5829 −0.6000 0.5001 0.5000–0.5004 0.6719 0.6711–0.6734
λ = 0.0367 −0.2000 0.3220 0.3216–0.3224 0.6167 0.6157–0.6182
m = −0.6622 0.2000 0.1512 0.1507–0.1520 0.5649 0.5636–0.5671
η = 0.2984 0.6000 0.0413 0.0408–0.0428 0.5166 0.5145–0.5219

δ = 0.3921 −1.0000 0.6556 0.6555–0.6561 0.8022 0.8014–0.8075 4.54839
β = 0.1271 −0.6000 0.5012 0.5011–0.5018 0.6779 0.6772–0.6809
λ = 0.4176 −0.2000 0.3052 0.3051–0.3060 0.5655 0.5651–0.5678
m = −0.1661 0.2000 0.1188 0.1184–0.1198 0.4832 0.4822–0.4858
η = 0.5823 0.6000 0.0299 0.0296–0.0315 0.4708 0.4694–0.4772

δ = 0.5803 −1.0000 0.6679 0.6677–0.6681 0.9122 0.9108–0.9140 4.3125
β = 0.2426 −0.6000 0.5237 0.5236–0.5243 0.7916 0.7913–0.7943
λ = 0.5926 −0.2000 0.3436 0.3431–0.3441 0.6830 0.6814–0.6845
m = −0.0877 0.2000 0.1592 0.1581–0.1596 0.5851 0.5823–0.5862
η = 0.3236 0.6000 0.0373 0.0358–0.0379 0.5009 0.4949–0.5033

δ = 0.3096 −1.0000 0.6323 0.6323–0.6324 0.36740 0.3680–0.3708 4.9257
β = 0.6417 −0.6000 0.4554 0.4553–0.4554 0.34493 0.3442–0.3456
λ = 0.3806 −0.2000 0.2283 0.2281–0.2284 0.32159 0.3208–0.3221
m = −0.02824 0.2000 0.0495 0.0491–0.0500 0.29930 0.2980–0.3006
η = 0.0122 0.6000 0.0021 0.0015–0.0027 0.27807 0.2655–0.2888

serve that IV[u(2)(t, x;K)] agrees almost exactly with IV[u(MC)(t, x;K)]. Values
for u(2)(t, x;K), the associated implied volatilities IV[u(2)(t, x;K)] and the 95%
confidence intervals resulting from the Monte Carlo simulation can be found in
Table 4.

7. Conclusion. In this paper, we consider an asset whose risk-neutral dynam-
ics are described by an exponential Lévy-type martingale subject to default. This
class includes nearly all nonnegative Markov processes. In this very general set-
ting, we provide a family of approximations—one for each choice of the basis
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FIG. 3. Implied volatility (IV) is plotted as a function of log-strike k := logK for the CEV-like
model with Variance-Gamma-type jumps of Section 6.1.2. The solid lines corresponds to the IV in-
duced by u(2)(t, x), which is computed using the two-point Taylor expansion (see Example 2). The
dashed lines corresponds to the IV induced by u(0)(t, x) (again, computed using the two-point Tay-
lor series expansion). The crosses correspond to the IV induced by u(MC)(t, x), which is the price
obtained from the Monte Carlo simulation.

functions (i.e., Taylor, two-point Taylor, L2 basis, etc.)—for (i) the transition den-
sity of the underlying (ii) European-style option prices and their sensitivities and
(iii) defaultable bond prices and their credit spreads. For the transition densities,
and thus for option and bond prices as well, we establish the accuracy of our
asymptotic expansion.

TABLE 4
Prices (u), Implied volatilities (IV[u]) and the corresponding confidence intervals from Figure 3

t k u(2) u MC-95% c.i. IV[u(2)] IV MC-95% c.i.

0.5000 −0.6931 0.0014 0.0014–0.0015 0.4631 0.4624–0.4652
−0.4185 0.0070 0.0070–0.0071 0.4000 0.3995–0.4014
−0.1438 0.0363 0.0362–0.0365 0.3336 0.3331–0.3346

0.1308 0.1702 0.1697–0.1704 0.2727 0.2707–0.2736
0.4055 0.5011 0.5004–0.5012 0.2615 0.2291–0.2646

1.0000 −0.9163 0.0028 0.0027–0.0028 0.4687 0.4678–0.4702
−0.5697 0.0109 0.0109–0.0110 0.4057 0.4050–0.4068
−0.2231 0.0473 0.0472–0.0476 0.3434 0.3428–0.3444

0.1234 0.1970 0.1965–0.1974 0.2836 0.2825–0.2847
0.4700 0.6033 0.6025–0.6037 0.2452 0.2355–0.2506
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APPENDIX A: PROOF OF THEOREM 1

By hypothesis vn ∈ L1(R, dx), and thus, by standard Fourier transform proper-
ties we the following relation holds:

F
(
Akvn(t, ·))(ξ) = φk(t, ξ)v̂n(t, ξ), n, k ≥ 0.(37)

We now Fourier transform equation (24). At the left-hand side, we have

F
(
(∂t +A0)vn(t, ·))(ξ) = (

∂t + φ0(t, ξ)
)
v̂n(t, ξ).

Next, for the right-hand side of (24), we get

−
n∑

k=1

∫
R

dx

(
e−iξx

√
2π

Bk(x)

)
Akvn−k(t, x)

= −
n∑

k=1

∫
R

dx

(
Bk(i∂ξ )

e−iξx

√
2π

)
Akvn−k(t, x)

= −
n∑

k=1

Bk(i∂ξ )F
(
Akvn−k(t, ·))(ξ)

[by (37)]

= −
n∑

k=1

Bk(i∂ξ )
(
φk(t, ξ)v̂n−k(t, ξ)

)
.

Thus, we have the following ODEs (in t) for v̂n(t, ξ):(
∂t + φ0(t, ξ)

)
v̂0(t, ξ) = 0, v̂0(T , ξ) = ĥ(ξ),(38)

(
∂t + φ0(t, ξ)

)
v̂n(t, ξ) = −

n∑
k=1

Bk(i∂ξ )
(
φk(t, ξ)v̂n−k(t, ξ)

)
,

(39)
v̂n(T , ξ) = 0.

One can easily verify (e.g., by substitution) that the solutions of (38) and (39) are
given by (25) and (26), respectively.

APPENDIX B: MATHEMATICA CODE

The following Mathematica code can be used to generate the ûn(t, ξ) automat-
ically for Taylor series basis functions: Bn(x) = (x − x0)

n. We have

B[n_,x_,x0_] = (x− x0)∧n;
Bop[n_, ξ_,x0_,ff_]

:=Module

[
{mat,dim,x},
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mat= CoefficientList
[
B[n,x,x0],x];

dim = Dimensions[mat];
dim[[1]]∑
m=1

mat
[[m]](i)∧(m− 1)D

[
ff, {ξ,m− 1}]];

u[n_,t_, ξ_,x0_,k_]
:=Exp

[
tφ[0, ξ,x0]]

×
n∑

m=1

∫ t

0
Exp

[−sφ[0, ξ,x0]]
× (

Bop
[
m, ξ,x0, φ[m, ξ,x0]u[n− m,s, ξ,x0,k]])ds;

u[0,t_, ξ_x0_,k_] = Exp
[
tφ[0, ξ,x0]]h[ξ,k].

The function ûn(t, ξ) is now computed explicitly by typing u[n_,t_, ξ_,x0_,

k_] and pressing Shift + Enter. Note that the function ûn(t, ξ) can depend on a
parameter k (e.g., log-strike) through the Fourier transform of the payoff function
ĥ(ξ, k). To compute ûn(t, ξ) using other basis functions, one simply has to replace
the first line in the code. For example, for Hermite polynomial basis functions, one
rewrites the top line as

B[n_,x_,x0_] = 1√
(2n)!!

√
π
HermiteH[n,x− x0];

where HermiteH[n,x] is the Mathematica command for the nth Hermite poly-
nomial Hn(x) [note that Mathematica does not normalize the Hermite polynomials
as we do in equation (21)].

APPENDIX C: SKETCH OF THE PROOF OF THEOREM 2

PROOF. For sake of simplicity, we only provide a sketch of the proof for the
case δ(t, x) ≡ δ, μ(t, x) ≡ μ and N = 1. For the complete and detailed proof, we
refer to the companion paper Lorig, Pagliarani and Pascucci (2013).

The main idea of the proof is to use our expansion as a parametrix. That is, our
expansion will be the starting point of the classical iterative method introduced
by Levi (1907) to construct the fundamental solution p(t, x;T ,y). Specifically,
as in Pagliarani, Pascucci and Riga (2013), we take as a parametrix our N th or-
der approximation p(N)(t, x;T ,y) with basis functions Bn = (x − x̄)n and with
x̄ = y. By analogy with the classical approach [see, e.g., Friedman (1964) and Di
Francesco and Pascucci (2005), Pascucci (2011) for the purely diffusive case, or
Garroni and Menaldi (1992) for the integro-differential case], we have

p(t, x;T ,y) = p(1)(t, x;T ,y)+
∫ T

t

∫
R

p(0)(t, x; s, ξ)�(s, ξ ;T ,y) dξ ds,(40)
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where � is determined by imposing the condition

0 = Lp(t, x;T ,y)

= Lp(1)(t, x;T ,y)

+
∫ T

t

∫
R

Lp(0)(t, x; s, ξ)�(s, ξ ;T ,y) dξ ds − �(t, x;T ,y).

Equivalently, we have

�(t, x;T ,y) = Lp(1)(t, x;T ,y) +
∫ T

t

∫
R

Lp(0)(t, x; s, ξ)�(s, ξ ;T ,y) dξ ds,

and, therefore, by iteration

�(t, x;T ,y) =
∞∑

n=0

Zn(t, x;T ,y),(41)

where

Z0(t, x;T ,y) := Lp(1)(t, x;T ,y),

Zn+1(t, x;T ,y) :=
∫ T

t

∫
R

Lp(0)(t, x; s, ξ)Zn(s, ξ ;T ,y) dξ ds.

The proof of Theorem 2 then is based on some pointwise bounds for each term Zn

in (41). These bounds, summarized in the next two propositions, can be combined
with formula (40) to obtain the estimate for |p(t, x;T ,y) − p(1)(t, x;T ,y)|.

PROPOSITION 2. There exists a positive constant C, only dependent on τ,m

and M , such that

p(0)(t, x;T ,y) ≤ C̄(t, x;T ,y), 0 ≤ t < T ≤ τ,

for any x, y ∈ R and t, T ∈R with 0 ≤ t < T ≤ τ .

PROPOSITION 3. There exists a positive constant C, only dependent on
τ,m,M and (‖λi‖∞,‖γi‖∞,‖ai‖∞)i=1,2, such that

∣∣Zn(t, x;T ,y)
∣∣ ≤ Cn+1(T − t)n/2

√
n!

(
1 + ‖λ1‖∞Cn+1)

̄(t, x;T ,y),

for any n ≥ 0, x, y ∈ R and t, T ∈ R with 0 ≤ t < T ≤ τ .

The proofs of Propositions 2 and 3 are rather technical and are based on several
global pointwise estimates for the fundamental solution of a constant coefficient
integro-differential operator of the form (30), along with the semigroup property∫

R
Ck̄(t, x; s, ξ)CN̄(s, ξ ;T ,y) dξ = Ck+N̄(t, x;T ,y), k,N ≥ 0.(42)
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We refer to Lorig, Pagliarani and Pascucci (2013) for detailed proofs.
Now, by equations (40), (41) and Proposition 3, we have∣∣p(t, x;T ,y) − p(1)(t, x;T ,y)

∣∣
≤

∞∑
n=0

Cn+1
√

n!
∫ T

t
(T − s)n/2

∫
R

p(0)(t, x; s, ξ)

× (
1 + ‖λ1‖∞Cn+1)

̄(s, ξ ;T ,y) dξ ds

(by Proposition 2)

≤
∞∑

n=0

Cn+1
√

n!
∫ T

t
(T − s)n/2

∫
R

̄(t, x; s, ξ)
(
1 + ‖λ1‖∞Cn+1)

̄(s, ξ ;T ,y) dξ ds

[by the semigroup property (42)]

= 2(T − t)

( ∞∑
n=0

Cn+1(T − t)n/2
√

n!
(
1 + ‖λ1‖∞Cn+1)

̄(t, x;T ,y)

)
,

for any x, y ∈R and t, T ∈ R with 0 ≤ t < T ≤ τ . Since

∞∑
n=0

Cn+1(T − t)n/2
√

n! Cn+1̄(t, x;T ,y),

can be easily checked to be convergent, this completes the proof. �
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