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We prove asymptotic convergence results for some analytical expansions of solutions to 
degenerate PDEs with applications to financial mathematics. In particular, we combine 
short-time and global-in-space error estimates, previously obtained in the uniformly 
parabolic case, with some a priori bounds on “short cylinders”, and we achieve short-time 
asymptotic convergence of the approximate solution in the degenerate parabolic case.
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r é s u m é

On démontre des résultats de convergence asymptotique pour certaines expansions 
analytiques de solutions d’équations aux dérivés partielles dégénérées avec des applications 
aux mathématiques financières. En particulier, on combine des estimations d’erreur à 
temps petit, globales dans l’espace, obtenues précédemment dans le cas uniformément 
parabolique, avec quelques bornes a priori sur de « courts cylindres », et on attend la 
convergence asymptotique à temps petit de la solution approchée dans le cas parabolique 
dégénéré.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Asymptotic expansions and perturbation methods for PDEs are widely used in the area of mathematical finance in order 
to restore the analytical tractability of sophisticated, today more than ever, financial models. Since the pioneering papers [9]
and [10], several different approaches have been proposed in the literature (see, for instance, [8,11,1,15,16]). Only recently 
however, rigorous error bounds have been proved under the restrictive assumption of non-degeneracy of the generator of 
the underlying stochastic process. From the analytical point of view, this assumption is equivalent to a uniform parabolicity 
for the pricing PDE. In this regard, we refer to the results in [18,19,3], based on Malliavin calculus techniques, and [6,13]
based on purely analytic arguments. Unfortunately, these assumptions are hardly ever satisfied by the financial models used 
in practice. To this extent, we register the result by Gobet et al. in [4] on asymptotic error estimates for the time-dependent 
Heston model, under the assumption of strictly positiveness (Feller-type condition) for the variance process.
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The aim of this paper is to provide asymptotic convergence results for a quite general class of degenerate (i.e. non-
uniformly parabolic) PDEs. This class includes well-known models such as the constant elasticity of variance (CEV) local 
volatility model, the Heston, and the SABR stochastic volatility models, and some hybrid credit-equity models such as the 
JDCEV model [5]. Indeed, our results provide, as a particular case, rigorous error estimates for the celebrated approximations 
of the CEV and SABR models in [9] and [10], where only heuristic arguments are presented. Our main result stems from the 
asymptotic estimates proved in [13] for uniformly parabolic PDEs, combined with some a priori bounds on “short cylinders” 
inspired by the work of Safonov [17].

We consider the backward Cauchy problem:{
(∂t +A)u(t, x) = 0, t ∈ [0, T [, x ∈ D,

u(T , x) = ϕ(x), x ∈ D,
(1)

with A being the second-order differential operator, defined on a domain D of Rd ,

A = 1

2

d∑
i, j=1

aij(t, x)∂xi x j +
d∑

i=1

ai(t, x)∂xi + a(t, x), t ∈ [0, T ], x ∈ D, (2)

and with (aij(t, x))1≤i, j≤d being a symmetric matrix, positive semi-definite for any (t, x) ∈ [0, T ] × D .
In financial applications, typically the solution to (1) (if it exists and is unique within a certain class of functions) admits 

the stochastic representation

u(t, x) = E
[
e
∫ T

t a(s,Xs) dsϕ(XT ) | Xt = x
]

(3)

where X is the diffusion process with generator A − a. In financial terms, (3) is usually interpreted as a risk-neutral pricing 
formula.

Example 1. In the classical CEV model, we have d = 1 and

A = (σ x)2γ

2
∂xx, x ∈ D = R+

is the generator of the diffusion

dXt = σ Xγ
t dWt,

where σ is a positive constant (the so-called volatility parameter), γ ∈]0, 1] and W is a standard Brownian motion.

Example 2. In the classical Heston model, we have d = 2 and

A = yx2

2
∂xx + δ2 y

2
∂yy + ρδyx∂xy + κ(θ − y)∂y, (x, y) ∈ D = R+ ×R+

is the generator of the diffusion

dXt = √
Yt Xt dWt , dYt = κ(θ − Yt)dt + δ

√
Yt dBt, (4)

where δ is a positive constant (the so-called vol-of-vol parameter), κ, θ > 0 are the drift-mean and the mean-reverting term 
of the variance process, respectively, and where (W , B) is a two-dimensional Brownian motion with correlation ρ ∈] −1, 1[. 
The asymptotic formulas given in Definition 2.1 below provide an accurate approximation of option prices and implied 
volatilities, even for long maturities. As an example, Fig. 1 shows the implied volatilities in the Heston model for the 
realistic set of parameters given in [7] and for maturities from one month to ten years. The exact implied volatility is 
obtained by inverting the Fourier representation in [12]; the dashed line represents the implied volatility corresponding to 
our third approximation; the dotted line corresponds to the recent implied volatility expansion proposed in [7].

In Section 2, we briefly review the construction of asymptotic expansions of solutions to parabolic PDEs and we also 
recall an asymptotic convergence result for short times. The main result of the paper is Theorem 3.1 in Section 3.

2. Previous results: asymptotic convergence for uniformly parabolic equations

For our analysis, we will make use of the following notations. For any N ∈N0, we denote by:

– C N
b (D): the class of the functions f ∈ C N(D) with bounded derivatives up to order N;

– C0,N
b ([0, T ] × D): the class of the functions f = f (t, x) such that ∂β

x f ∈ Cb([0, T ] × D) for any β ∈ N
d
0 with β1 +· · ·+βd =:

|β| ≤ N .
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Fig. 1. The implied volatility for the Heston model in (4) is plotted as a function of log-moneyness (k − x) for four different maturities t . The solid line 
corresponds to the implied volatility obtained by inverting the Fourier representation in [12] of the exact price. The dashed line represents the implied 
volatility corresponding to our third approximation. The dotted line (which only appears for the shortest two maturities) corresponds to the implied 
volatility expansion of [7]. We use the parameters given in [7]: κ = 1.15, θ = 0.04, δ = 0.2, ρ = −0.40, x = 0.0, y = log θ .

For simplicity, throughout the paper we shall assume the following hypothesis.

H.1 The final datum ϕ ∈ Ck
b(D) for some 0 ≤ k ≤ 2.

Remark 1. Assumption H.1 can be considerably relaxed to include unbounded or discontinuous payoff functions typically 
encountered in financial applications: for more details, we refer to [13].

Next we recall the construction of the N-th-order asymptotic expansion of the solution to (1) proposed in [13] under 
the condition that D = R

d and A is uniformly elliptic with coefficients aij, ai, a ∈ C0,N
b ([0, T ] ×R

d).

Definition 2.1. For any x̄ ∈R
d and n ≤ N , let
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Ax̄
n = 1

2

d∑
i, j=1

ax̄,n
i j (t, x)∂xi x j +

d∑
i=1

ax̄,n
i (t, x)∂xi + ax̄,n(t, x), t ∈R, x ∈ R

d, (5)

where

f x̄,n(x) =
∑
|β|=n

∂
β
x f (t, x̄)

β! (x − x̄)β,

is the n-th-order term of the Taylor expansion of the function f . We denote by (ux̄
n)0≤n≤N the solutions to the Cauchy 

problems defined recursively as follows:{
(∂t +Ax̄

0)ux̄
0(t, x) = 0, t ∈ [0, T [, x ∈R

d,

ux̄
0(T , x) = ϕ(x), x ∈R

d,
(6)

for n = 0, and⎧⎪⎨
⎪⎩

(∂t +Ax̄
0)ux̄

n(t, x) = −
n∑

h=1

Ax̄
hux̄

n−h(t, x), t ∈ [0, T [, x ∈R
d,

ux̄
n(T , x) = 0, x ∈R

d,

(7)

for 1 ≤ n ≤ N . Finally, we call

ūN(t, x) :=
N∑

n=0

ux
n(t, x) (8)

an N-th-order asymptotic approximation of the solution u to (1).

For practical purposes, it is remarkable that the approximation ūN can be computed explicitly for any N . The numerical 
results in [14] show that the approximation is very accurate for several models; recently, the codes of the third-order 
approximation of the Heston model have been included in the QuantLib library. Moreover, the following global-in-space 
error estimates are proved in [13].

Theorem 2.1. Assume H.1 and that for some N ∈ N0 and M > 0 we have:

i) A is uniformly elliptic on Rd, that is

M−1|ξ |2 ≤
d∑

i, j=1

aij(t, x)ξiξ j ≤ M|ξ |2, t ∈ [0, T ], x, ξ ∈R
d; (9)

ii) the coefficients aij, ai, a ∈ C0,N
b ([0, T ] ×R

d) with ‖aij, ai, a‖C0,N
b ([0,T ]×Rd)

≤ M.

Let u be the bounded classical solution to problem (1). Then we have:∣∣u(t, x) − ūN(t, x)
∣∣ ≤ C(T − t)

N+k+1
2 , 0 ≤ t ≤ T , x ∈R

d, (10)

where C is a positive constant that depends only on M, N, T and ‖ϕ‖Ck
b(Rd)

.

3. Asymptotic convergence for locally elliptic equations

In this section, we assume that the operator A in (2) is elliptic on a compact subset of its domain D . More precisely, for 
t < T , x0 ∈R

d and r > 0, let us consider the cylinder

H(t, T , x0, r) =]t, T [×D(x0, r), D(x0, r) = {
x ∈ R

d
∣∣ |x − x0| < r

}
,

and denote by

Σ(t, T , x0, r) := [t, T ] × ∂ D(x0, r)

the lateral boundary of H(t, T , x0, r). Throughout this section we assume the following hypothesis.

H.2 A is uniformly elliptic on some cylinder H(t, T , x0, r), compactly contained in [0, T ] × D . Precisely, A ≡ Ã in 
H(t, T , x0, r), where Ã is a uniformly elliptic operator on [0, T ] × R

d , satisfying assumptions i) and ii) of Theorem 2.1, 
for some N ∈N0 and M > 0.
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Now let us consider the classical bounded solution ̃u to the Cauchy problem:{
(∂t + Ã)̃u(t, x) = 0, t ∈ [0, T [, x ∈R

d,

ũ(T , x) = ϕ̃(x), x ∈ R
d,

(11)

where ϕ̃ ∈ Ck
b(R

d) is such that ϕ̃ = ϕ in D(x0, r) and ‖ϕ̃‖Ck
b(Rd)

≤ ‖ϕ‖Ck
b(D)

. In the next theorem, ūN denotes the N-th-order 
approximation of ̃u, as in Definition 2.1.

Theorem 3.1. Assume H.1, H.2 and that problem (1) admits a classical solution u. Then for any δ ∈]0, 1[, we have∣∣u(t, x) − ūN(t, x)
∣∣ ≤ C(T − t)

N+1+k
2 , (t, x) ∈ H(0, T , x0, δr), (12)

where the constant C depends only on δ, d, M, N, T and on the norms ‖ϕ‖Ck
b(D)

and ‖u‖L∞(Σ(0,T ,x0,r)) . If u admits the Feynman–Kac 
representation (3), then C in (12) depends only on δ, d, M, N, T and ‖ϕ‖Ck

b(D)
.

Proof. First we note that it is not restrictive to assume x0 = 0 because w(t, x) := u(t, x + x0) is a solution to (∂t +A)w = 0
on H(0, T , 0, r), where the coefficients of A are computed in (t, x + x0) instead of (t, x). Moreover it suffices to prove the 
estimate (12) for T − t small, say T − t < εr2 for some positive ε.

By assumption there exists an operator Ã satisfying the hypotheses of Theorem 2.1 and such that A = Ã on H(0, T , 0, r). 
We denote by Γ̃ (t, x; T , y) the fundamental solution to the uniformly parabolic operator ∂t + Ã and recall the following 
classical Gaussian upper and lower bounds for Γ̃ proved in [2]: let Γ ± be the fundamental solutions to the heat operators

K − = ∂t + 1

2M
�

Rd , K + = ∂t + M

2
�

Rd ,

respectively. Then there exist two positive constants c− and c+ , dependent only on M and T , such that

c−Γ −(t, x; T , y) ≤ Γ̃ (t, x; T , y) ≤ c+Γ +(t, x; T , y), t ∈ [0, T [ , x, y ∈R
d. (13)

Next we split the proof in two main steps.
Step 1. We prove the following preliminary result: let ψr,δ ∈ C∞(Rd; [0, 1]) be a function such that ψr,δ(x) = 0 for |x| <

(1+δ)r
2 and ψr,δ(x) = 1 for |x| > (2+δ)r

3 . There exist positive constants C0 and ε, only dependent on δ, M, T , d and c± in (13), 
such that the function

v(t, x) := 2

c−

∫
Rd

Γ̃ (t, x; T , y)ψr,δ(y)dy, t < T , x ∈ R
d, (14)

satisfies

v(t, x) ≥ 1, (t, x) ∈ Σ
(
T − εr2, T ,0, r

)
, (15)

v(t, x) ≤ C0 e
− r2

C0
√

T −t , (t, x) ∈ H(0, T ,0, δr). (16)

Indeed, let x ∈ ∂ D(0, r): by (13) we have:

v(t, x) ≥ 2
∫
Rd

Γ −(t, x; T , y)ψr,δ(y)dy ≥ 2
∫

|y|> (2+δ)r
3

(
M

2π(T − t)

) d
2

e− M|x−y|2
2(T −t) dy

(setting z =
√

M(x−y)√
2(T −t)

and x = rη with |η| = 1)

= 2π− d
2

∫
|η−z

√
2M(T −t)

r |> 2+δ
3

e−|z|2 dz =: w(t, η).

Now by the dominated convergence theorem w(t, η) tends to 2 as t → T − , uniformly in η ∈ ∂ D(0, 1), and therefore 
w(t, η) ≥ 1 if T −t

r2 < ε for a suitably small ε that depends only on M and δ: this proves (15).

Next we prove (16). We first note that, if |x| < δr and |y| ≥ (1+δ)r
2 then we have:

|x − y| ≥ |y| − |x| ≥ (1 − δ)r

2
. (17)

Thus, for any (t, x) ∈ H(0, T , 0, δr), by the second inequality in (13) we have:
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v(t, x) ≤ 2c+

c−

∫
Rd

Γ +(t, x; T , y)ψr,δ(y)dy ≤ 2c+

c−

∫
|y|≥ (1+δ)r

2

Γ +(t, x; T , y)dy

(by (17))

≤ 2c+

c−

∫
|x−y|≥ (1−δ)r

2

Γ +(t, x; T , y)dy = 2c+

c−

∫
|x−y|≥ (1−δ)r

2

(
1

2π M(T − t)

) d
2

e− |x−y|2
2M(T −t) dy

(setting z = x−y√
2M(T −t)

)

= 2c+

c−π
d
2

∫
|z|≥ (1−δ)r

2
√

2M(T −t)

e−|z|2 dz ≤ 2c+

c−π
d
2

∫
Rd

e− |z|2
2 dz max

|z|≥ (1−δ)r
2
√

2M(T −t)

e− |z|2
2 ,

from which (16) follows.
Step 2. Recall that ũ is the classical bounded solution to (11). Notice that both u − ũ and v in (14) solve equation 

(∂t + Ã)w = 0 in H(T − εr2, T , 0, r) and also (u − ũ)(T , x) = 0 for x ∈ D(0, r). Thus, if we set

C1 = max
Σ(T −εr2,T ,0,r)

|u − ũ|

then by (15) and the maximum principle, we have:

|u − ũ| ≤ C1 v, in H
(
T − εr2, T ,0, r

)
and also

|u − ūN | ≤ |u − ũ| + |̃u − ūN | ≤ C1 v + |̃u − ūN |, in H
(
T − εr2, T ,0, δr

)
.

Therefore the thesis follows from (16) and the asymptotic estimate of Theorem 2.1 applied to ∂t + Ã. Finally, if u admits 
the Feynman–Kac representation (3), then

‖u‖L∞([0,T ]×D) ≤ eT ‖a‖L∞([0,T ]×D)‖ϕ‖L∞(D),

and a similar estimate holds for ũ. Therefore it is clear that the constant C in (12) depends only on δ, d, M, N, T and 
‖ϕ‖Ck

b(D)
. �
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