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Abstract

We introduce an asymptotic expansion for forward start options in a multi-factor local-stochastic

volatility model. We derive explicit approximation formulas for the so-called forward implied volatility

which can be useful to price complex path-dependent options, as cliquets. The expansion involves

only polynomials and can be computed without the need for numerical procedures or special functions.

Recent results on the exploding behaviour of the forward smile in the Heston model are confirmed and

generalized to a wider class of local-stochastic volatility models. We illustrate the effectiveness of the

technique through some numerical tests.

Keywords: forward implied volatility, cliquet option, local volatility, stochastic volatility, analytical ap-

proximation, asymptotic expansion

1 Introduction

In an arbitrage-free market, we consider the risk-neutral dynamics described by the d-dimensional Markov

diffusion

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (1.1)

where W is a m-dimensional Brownian motion. The first component X1 represents the log-price of an

asset, while the other components of X represent a number of things, e.g., stochastic volatilities, economic

indicators or functions of these quantities. We are interested in the forward start payoff

(

eX
1
t+τ−X1

t − ek
)+

(1.2)

where t and τ are positive numbers representing the forward (or reset) date and the forward maturity

respectively, and k is the log-strike.

Payoffs of the form (1.2) constitute the building block for the class of cliquet and ratchet options. A

cliquet option is a path-dependent contract that is very sensitive to model risk, and specifically to forward

skew assumptions. In a local volatility (LV) model, forward skews are typically flat: therefore the value of
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certain payoffs, as a digital cliquet, given by a LV model may be substantially lower than the price given by

a stochastic volatility (SV) model (cf. [28]). Notwithstanding, it is well-known (cf. [11]) that SV models are

generally unable to reproduce the term structure of the volatility skew and for this reason, practitioners still

show interest in LV models: indeed a basic requirement for a model to be useful in practice is the ability to

fit, at least approximately, the current implied volatility surface. What is more, [4] and [16] point out that

also the Heston [12] and exponential Lévy models may expose to a large model risk when pricing cliquet

options. Problems in pricing standard cliquet options are well documented in the literature (cf. [14]) and

culminated in losses at a number of financial institutions.

These considerations favor models which combine local and stochastic volatility. It is nevertheless manda-

tory to have also a fast and accurate method for computing the prices and implied volatilities as a function

of the model parameters, as it is required for model calibration. Indeed, this is the main drawback of LV

models and, broadly speaking, of any more sophisticated model, possibly with variable coefficients, that do

not have explicit solution (see, for instance, [5]). This requirement also explains the popularity of the Heston

and other affine or jump models that admit quasi-closed form solution via Fourier inversion.

In this paper we derive an asymptotic expansion for forward start options in a multi-factor local-stochastic

volatility model. Our main result are explicit approximation formulas for the forward implied volatility in

the large class of models described by (1.1): we emphasize that our analysis does not require the knowledge

of the density nor the characteristic function of the underlying process. Moreover, although we consider a

diffusive setting, our methodology can be extended to models with jumps and in that case it yields explicit

approximations of the forward characteristic function.

In order to introduce the definition of forward implied volatility, we first recall that in the Black-Scholes

(BS) model, the dynamics of the logarithm of the asset price are given by

dZt = −σ2

2
dt+ σdWt, Z0 = z,

where W is a real Brownian motion, σ is a positive parameter that represents the instantaneous volatility

and we assume that the interest rates are zero. Then the no-arbitrage price at time zero of a European Call

option with payoff
(

eZτ − ek
)+

is given by the famous BS formula

CallBS (z, τ, k;σ) = ezN (d+)− ekN (d−) , d± =
z − k

σ
√
τ

± σ
√
τ

2
, (1.3)

where N is the cumulative distribution function of the standard normal distribution. By the stationary of

increments, the no-arbitrage price at time zero of a forward-start Call option with payoff
(

eZt+τ−Zt − ek
)+

,

is equal to

E
[

(

eZt+τ−Zt − ek
)+
]

= CallBS (0, τ, k;σ) .

For a given market price Callobs (t, τ, k) of the forward-start Call option, the forward implied volatility σt,τ (k)

is then defined as the unique solution to

Callobs (t, τ, k) = CallBS (0, τ, k;σt,τ(k))

or, equivalently, as

σt,τ (k) := CallBS (0, τ, k; ·)−1
(

Callobs (t, τ, k)
)

,

2



whenever Callobs (t, τ, k) belongs to the no-arbitrage interval
] (

1− ek
)+

, 1
[

. It is clear that the forward

implied volatility σt,τ (k) is a generalization of the usual spot implied volatility and the two coincide when

t = 0.

The literature on forward-start-based payoffs is sparse. Most of the authors (cf. [21], [17], [22], [6], [1],

[26] and [29]) consider models for which the forward characteristic function of the underlying process is

known. In that case, owing to the tower property of conditional expectation, it is possible to derive semi-

explicit solutions for Call options. An interesting exception is [8] where an analytical approximation of the

forward smile in a generic one-dimensional LV model is proposed: the results of [8] are similar in spirit to

our approach, even if of limited practical use due to the inability of LV models to reproduce forward skews.

Recently, [13] investigated the asymptotics of the forward implied volatility in the Heston model using

large deviations techniques. One of the main findings of [13] is that, for out-of-the-money options (i.e. for

k 6= 0) and for any positive reset date t, the Heston forward smile σt,τ (k) explodes as the forward maturity

τ approaches zero. Here we confirm the results of [13] for the Heston model (see Section 4). Furthermore,

our analytical approximations indicate that the singularity of the forward smile is a rather general feature

of local-stochastic volatility models. In particular we show, also through numerical tests, that the forward

smile for out-of-the-money options explodes in any local-stochastic volatility model, under rather general

assumptions.

The starting point of our analysis is the perturbation technique recently introduced in [18] and [19]. In

Section 2 we extend the results of [18] to forward contracts by means of a conditioning expectation argument.

The first main result, Theorem 2.5, gives an expansion of forward-start option prices: the computational

complexity of the expansion is comparable to the Black-Scholes formula. In Section 3 we derive a general

expansion of the forward implied volatility: the expansion involves only polynomials and can be computed

without the need for numerical procedures or special functions. In the last part of the paper, Section 4,

we focus on two-dimensional models (i.e. d = 2 in (1.1)): in that case we get more compact expressions

for the formulas of Theorem 2.5 and provide the first order expansion (4.6) of the forward volatility smile

in a general local-stochastic volatility model. Eventually, we illustrate the flexibility and accuracy of our

methodology by showing numerical tests under the CEV local volatility and the Heston stochastic volatility

models.

2 Price expansions

2.1 Spot price expansion

In this section we briefly recall the polynomial approximation proposed in [18]. Under mild assumptions on

the market dynamics (1.1) (see, for instance, [25]) and assuming that the interest rates are zero, the price of

an option with payoff function ϕ is given by

E [ϕ(XT )|Xt = x] = u(t, x), t < T, x ∈ R
d, (2.1)
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where u solves the backward Cauchy problem






(∂t +A)u(t, x) = 0, t < T, x ∈ R
d,

u(T, x) = ϕ(x), x ∈ R
d.

(2.2)

In (2.2), A is the Kolmogorov operator of (1.1)

A =
1

2

d
∑

i,j=1

Cij(t, x)∂xixj
+

d
∑

i=1

µi(t, x)∂xi
, C := σσ∗, (2.3)

which we rewrite also in compact form as follows:

A =
∑

|α|≤2

aα(t, x)D
α
x . (2.4)

In (2.4) we use the standard notations

α = (α1, . . . , αd) ∈ N
d
0, |α| =

d
∑

i=1

αi, Dα
x = ∂α1

x1
. . . ∂αd

xd
.

Now we briefly summarize the method proposed by [18] to construct an approximation of u in (2.1).

Assume that aα(t, ·) ∈ CN (Rd) for some N ∈ N: then, for a fixed x̄ ∈ R
d and n ≤ N , let

aα,n(·, x) :=
∑

|β|=n

Dβ
xaα(·, x̄)
β!

(x− x̄)β ,

be the n-th order term of the Taylor expansion of aα in the spatial variables around x̄. Eventually, define

Ax̄,n =
∑

|α|≤2

aα,n(t, x)D
α
x .

More generally we may assume that x̄ = x̄(t) is a function of time: we shall see that in some cases the choice

x̄(t) ≈ E [Xt] results in a highly accurate approximation for option prices and implied volatilities also for

long maturities; for instance, we illustrate this for the Heston model in Section 4.2.

Coming back to the approximation of option prices, we have the following asymptotic expansion for u in

(2.2):

u ≈ ux̄,N :=

N
∑

n=0

un

where the functions (un)n=0,...,N are defined recursively as solutions of the Cauchy problems







(∂t +Ax̄,0)u0(t, x) = 0, t < T, x ∈ R
d,

u0(T, x) = ϕ(x), x ∈ R
d,

(2.5)

and, for n ≥ 1,










(∂t +Ax̄,0)un(t, x) =
n
∑

k=1

Ax̄,kun−k(t, x), t < T, x ∈ R
d,

u0(T, x) = 0, x ∈ R
d.

(2.6)
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It is proved by [18] that the approximation ux̄,N can be computed explicitly and is asymptotically convergent

to u as the time to maturity tends to zero. In fact, notice that the coefficients of Ax̄,0 in (2.5)-(2.6) depend

only on the time variable and more precisely we have

Ax̄,0 =
1

2

d
∑

i,j=1

C̄ij(t)∂xixj
+

d
∑

i=1

µ̄i(t)∂xi
,

with C̄ = (σσ∗)(·, x̄(·)) and µ̄ = µ(·, x̄(·)). Let

C(t, T ) =

∫ T

t

C̄(s)ds, m(t, T ) =

∫ T

t

µ̄(s)ds. (2.7)

If C(t, T ) in (2.7) is positive definite then the d-dimensional Gaussian function

Γx̄(t, x, T, y) =
1

√

(2π)d detC(t, T )
exp

(

−1

2
〈C−1(t, T )(y − x−m(t, T )), y − x−m(t, T )〉

)

(2.8)

is the fundamental solution of Ax̄,0 and u0 in (2.5) is equal to

u0(t, x) =

∫

Rd

Γx̄(t, x, T, y)ϕ(y)dy. (2.9)

The explicit expression of un, for n ≥ 1, is given by [18]: we have

un(t, x) = Lx̄,n(t, x, T )u0(t, x), t < T, x ∈ R
d, n ∈ N0, (2.10)

where Lx̄,0(t, x, T ) ≡ 1 and, for any n ∈ N, Lx̄,n(t, x, T ) is the differential operator defined as follows:

Lx̄,n(t, x, T ) :=

n
∑

h=1

∫ T

t

ds1

∫ T

s1

ds2 . . .

∫ T

sh−1

dsh
∑

i∈In,h

Gi1(t, x, s1) . . .Gih(t, x, sh) (2.11)

where

In,h = {i = (i1, . . . , ih) ∈ N
h|i1 + · · ·+ ih = n}, 1 ≤ h ≤ n,

and Gn(t, x, s) is the differential operator

Gn(t, x, s) =
∑

|α|≤2

aα,n(s,Mx̄(t, x, s))D
α
x , Mx̄(t, x, s) = x+m(t, s) +C(t, s)∇x. (2.12)

The proof of (2.10) is based on the following useful symmetry property of Γx̄,0, which will be used also for

later computations:

yΓx̄(t, x, T, y) = Mx̄(t, x, T )Γx̄(t, x, T, y), t < T, x, y ∈ R
d. (2.13)

Remark 2.1. Operators Mx̄(t, x, s) commute when applied to Γx̄(t, x, T, y) and, more generally, to any

function u0 as in (2.9). Therefore, since x 7→ aα,n(s, x) is a polynomial function, operator aα,n(s,Mx̄(t, x, s))

in (2.12) is defined unambiguously, as a composition of operators, when acting on u0.

Remark 2.2. From (2.11) it is not difficult to recognize that Lx̄,n is an operator of the form

Lx̄,n(t, x, T ) =
∑

|α|≤n

|β|≤3n

(x− x̄(t))αfx̄,n,α,β(t, T )D
β
x , (2.14)

where the coefficients fx̄,n,α,β(t, T ) are independent of x. For n = 0 we simply have fx̄,0,0,0(t, T ) ≡ 1 since

Lx̄,0(t, x, T ) ≡ 1 by definition.
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Using a computer algebra program such as Wolfram’s Mathematica it is straightforward to derive the

explicit expression of Lx̄,n(t, x, T ) for specific models. Mathematica codes for several popular models are

freely available on the authors’ websites. We also recall that the third order approximation of the spot

implied volatility in the Heston model has been recently included in the QuantLib library.

We close this section by stating the following result proved in [18].

Theorem 2.3. Assume that σσ∗ is uniformly positive definite and ϕ ∈ Ch(Rd) with bounded derivatives.

Then we have

|u(t, x)− ux,N(t, x)| ≤ CN (T − t)
N+1+h

2 , (t, x) ∈ [0, T ]× R
d, (2.15)

where CN is a positive constant that depends only on N, h, T, ‖ϕ‖Ch , ‖aα‖CN and the smallest eigenvalue of

σσ∗.

We remark explicitly that Theorem 2.3 is an asymptotic convergence result for small times and in general,

the approximation does not converge as N goes to infinity. It is well known that divergent asymptotic series

often yield good approximations if the first few terms are taken: we shall confirm this fact in Section 4

through several numerical tests. In [23] a local version of estimate (2.15) is proved under the more general

assumption of local non-degeneracy of σσ∗: this allows to include popular models such as the CEV and Heston

models; similar results were obtained in [3] using Malliavin calculus techniques. Also the assumptions on ϕ

can be relaxed to consider standard payoff functions and to get an approximation of the transition density

Γ of X in the form

Γ(t, x, T, y) ≈
N
∑

n=0

Lx̄,n(t, x, T )Γx̄(t, x, T, y), (2.16)

with Γx̄ as in (2.8). Eventually, in [24] and [20] the technique has been generalized to models with jumps:

in that case it yields an explicit approximation of the characteristic function of the underlying process that

can be combined with standard Fourier methods to compute option prices.

2.2 Forward price expansion

In this section we prove our main result about the asymptotic expansion of prices of forward-start options.

Let X1 denote the first component of the multi-dimensional process X in (1.1): we assume that eX
1

is a

positive martingale representing an asset price process. Then the price at time s of a forward-start Call

option with forward-start date t ≥ s, maturity T ≥ t and log-strike k is given by

u(s, x) = E

[

(

eX
1
T−X1

t − ek
)+

| Xs = x

]

. (2.17)

A natural way to construct an approximation of the forward-start price u, is to combine the asymptotic

expansion (2.16) of Γ with the tower property for conditional expectation:

u(s, x) = E

[

E

[

(

eX
1
T−X1

t − ek
)+

| Xt

]

| Xs = x

]

=

∫

Rd

Γ(s, x, t, y)

∫

Rd

Γ(t, y, T, z)
(

ez1−y1 − ek
)+

dzdy ≈
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(by expanding Γ(s, x, t, y) and Γ(t, y, T, z) as in (2.16), at orders N and M around ¯̄x and x̄ respectively)

≈
N
∑

n=0

M
∑

m=0

∫

Rd

L¯̄x,n(s, x, t)Γ¯̄x(s, x, t, y)

∫

Rd

Lx̄,m(t, y, T )Γx̄(t, y, T, z)
(

ez1−y1 − ek
)+

dzdy

where y1, z1 denote the first components of the vectors y, z respectively. Thus we obtain

u(s, x) ≈
N
∑

n=0

M
∑

m=0

L¯̄x,n(s, x, t)um(s, x), (2.18)

where

um(s, x) =

∫

Rd

Γ¯̄x(s, x, t, y)

∫

Rd

Lx̄,m(t, y, T )Γx̄(t, y, T, z)
(

ez1−y1 − ek
)+

dzdy. (2.19)

In Theorem 2.5 below, we show that the function um admits an explicit representation. Moreover, in the

particular case of two-dimensional models, an even more compact expression for um is derived in Section 4.

We now introduce some specific notations for the time-dependent BS model: the dynamics of the log-price

are given by

dZt = −σ(t)2

2
dt+ σ(t)dWt,

where t 7→ σ(t) is a positive, square integrable function representing the instantaneous volatility. The no-

arbitrage price at time t of a Call option with log-strike k and maturity T , as a function of z = Zt is given

by the BS formula

CallBS (z, t, T, k;σ) = ezN (d+)− ekN (d−) , (2.20)

where

d± =
z − k

Σ(t, T )
± Σ(t, T )

2
, Σ2(t, T ) =

∫ T

t

σ2(s)ds. (2.21)

The first and second derivatives of CallBS with respect to the underlying price are denoted by

DeltaBS (z, t, T, k;σ) = N (d+) and GammaBS (z, t, T, k;σ) =
exp

(

−z − d2
+

2

)

√
2πΣ(t, T )

. (2.22)

In the following technical lemma, we put

σ̄(t) =
√

C11(t, x̄(t)) (2.23)

where C = C(t, x) is the diffusion matrix in (2.3).

Lemma 2.4. Let Γx̄ be the Gaussian function in (2.8). We have

∫

Rd

Γx̄(t, 0, T, y)
(

ey1 − ek
)+

dy = CallBS (0, t, T, k; σ̄) . (2.24)

Moreover, for any j ∈ N, we have

∂j
zCall

BS (0, t, T, k; σ̄) = DeltaBS (0, t, T, k; σ̄) + GammaBS (0, t, T, k; σ̄) gj (t, T, k; σ̄) (2.25)
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where

gj (t, T, k; σ̄) =

j−2
∑

i=0

(√
2Σ̄(t, T )

)−i

Hi

(

k + 1
2 Σ̄

2(t, T )√
2Σ̄(t, T )

)

, Σ̄2(t, T ) =

∫ T

t

σ̄2(s)ds, (2.26)

and Hi(x) = (−1)i
∂i
xe

−x2

e−x2 is the i-th Hermite polynomial. In (2.26) we adopt the convention
−1
∑

i=0

= 0.

Proof. It suffices to note that by the martingale condition on eX
1

we have µ1 = − 1
2C11 in (2.3) and therefore,

recalling the notations (2.7), (2.21) and (2.23), we also have m1 = − 1
2 Σ̄

2. Then formulas (2.24) and (2.25)

follow by straightforward computations.

Theorem 2.5. Consider the expansion (2.18)-(2.19) of u in (2.17) at orders N,M , around the points x̄, ¯̄x.

For any m ≥ 0, the function um in (2.19) is equal to

um(s, x) =

3m
∑

j=0

Fβj ,m(s, x, t, T )∂j
zCall

BS (0, t, T, k; σ̄) (2.27)

where σ̄ is as in (2.23) and

Fβ,m(s, x, t, T ) =
∑

|α|≤m

fx̄,m,α,β(t, T ) (M¯̄x(s, x, t) − x̄(t))
α
, (2.28)

with fx̄,m,α,β as in (2.14) and βj = (j, 0, . . . , 0).

Proof. We have

um(s, x) =

∫

Rd

Γ¯̄x(s, x, t, y)

∫

Rd

Lx̄,m(t, y, T )Γx̄(t, y, T, ξ)
(

eξ1−y1 − ek
)+

dξdy =

(by (2.14))

=
∑

|α|≤m

|β|≤3m

fx̄,m,α,β(t, T )

∫

Rd

Γ¯̄x(s, x, t, y)(y − x̄(t))α
∫

Rd

Dβ
yΓx̄(t, y, T, ξ)

(

eξ1−y1 − ek
)+

dξdy =

(by the symmetry property (2.13), with Fβ,m(s, x, t, T ) as in (2.28))

=
∑

|β|≤3m

Fβ,m(s, x, t, T )

∫

Rd

Γ¯̄x(s, x, t, y)

∫

Rd

Dβ
yΓx̄(t, y, T, ξ)

(

eξ1−y1 − ek
)+

dξdy =

(by the symmetry property ∇yΓx̄(t, y, T, ξ) = −∇ξΓx̄(t, y, T, ξ))

=
∑

|β|≤3m

Fβ,m(s, x, t, T )

∫

Rd

Γ¯̄x(s, x, t, y)

∫

Rd

(−1)|β|Dβ
ξ Γx̄(t, y, T, ξ)

(

eξ1−y1 − ek
)+

dξdy =

(by the change of variable η = ξ − y)

=
∑

|β|≤3m

Fβ,m(s, x, t, T )

∫

Rd

Γ¯̄x(s, x, t, y)

∫

Rd

(−1)|β|Dβ
ηΓx̄(t, 0, T, η)

(

eη1 − ek
)+

dηdy =
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(since Γ¯̄x(s, x, t, y) is a density and integrates to one)

=
∑

|β|≤3m

Fβ,m(s, x, t, T )

∫

Rd

(−1)|β|Dβ
ηΓx̄(t, 0, T, η)

(

eη1 − ek
)+

dη.

Now we set

Iβ(t, T ) =

∫

Rd

(−1)|β|Dβ
ηΓx̄(t, 0, T, η)

(

eη1 − ek
)+

dη.

By (2.24), we have I0(t, T ) = CallBS (0, t, T, k; σ̄). Next we use again the identity

∂η1
Γx̄(t, 0, T, η) = −∂x1

Γx̄(t, x, T, η)|x=0.

Then, for β = βj = (j, 0, . . . , 0), we find

Iβj (t, T ) = ∂j
zCall

BS (z, t, T, k; σ̄) |z=0.

Eventually, if βj > 0 for some j ∈ {2, . . . , d} then integrating by parts we find Iβ(t, T ) = 0. This concludes

the proof.

Remark 2.6. By (2.27) and Remark 2.2, the approximation of order 0, i.e. the expansion in (2.18) with

M = N = 0, simply reduces to

u(s, x) ≈ L¯̄x,0(s, x, t)u0(s, x) ≡ CallBS (0, t, T, k; σ̄) . (2.29)

Thus the leading term of the approximation is the price of a forward-start Call option in a time-dependent

BS model with σ̄ as in (2.23): as such, it is independent of the initial value x and time s. Formula (2.29)

shows that it is also independent of ¯̄x.

3 Forward implied volatility

In this section we derive an expansion of the forward implied volatility under the multi-dimensional dynamics

(1.1). For the rest of the section, we consider as fixed a log-strike k, a forward start date t and a forward

maturity τ ; moreover, for simplicity we set the initial time s equal to zero and denote by

Call (x, t, τ, k) := E

[

(

eX
1
t+τ−X1

t − ek
)+

| X0 = x

]

(3.1)

the no-arbitrage price of the forward-start Call option.

First we prove a general result which allows to get an implied volatility expansion from a price expansion:

we recall that the forward implied volatility σt,τ (k) is defined by the equation

Call (x, t, τ, k) = CallBS (0, τ, k;σt,τ (k)) ,

where CallBS is the Black-Scholes price in (1.3). In the next statement ρu denotes the radius of convergence

of the Taylor series of CallBS (0, τ, k; ·)−1
about u in the interval

] (

1− ek
)+

, 1
[

.
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Theorem 3.1. Assume that for some positive σ0 and some sequence (vn)n≥1 of real numbers, the forward-

start Call price in (3.1) admits the expansion

Call (x, t, τ, k) = CallBS (0, τ, k;σ0) +

∞
∑

n=1

vn,

and
∣

∣Call (x, t, τ, k)− CallBS (0, τ, k;σ0)
∣

∣ < ρCallBS(0,τ,k;σ0). Then the forward implied volatility is given by

σt,τ (k) = σ0 +

∞
∑

n=1

σn,

where the sequence (σn)n≥1 is defined recursively by

σn =
vn

∂σCall
BS (0, τ, k;σ0)

− 1

n!

n
∑

h=2

Ah(σ0)Bn,h (1!σ1, 2!σ2, . . . , (n− h+ 1)!σn−h+1)

with

Ah(σ0) =
∂h
σCall

BS (0, τ, k;σ0)

∂σCall
BS (0, τ, k;σ0)

(3.2)

and Bn,h denotes the (n, h)-th partial Bell polynomial1.

Proof. We consider the analytic function

u(ε) := CallBS (0, τ, k;σ0) +

∞
∑

n=1

εnvn, ε ∈ [0, 1]. (3.3)

Note that σ(ε) := CallBS (0, τ, k; ·)−1
(u(ε)) is the composition of two analytic functions: it is therefore an

analytic function of ε and admits an expansion about ε = 0 of the form

σ(ε) = σ0 +

∞
∑

n=1

εnσn, σn =
1

n!
∂n
ε σ(ε)|ε=0, (3.4)

which is convergent for any ε ∈ [0, 1]. By (3.3) we also have

vn =
1

n!
∂n
ε Call

BS (0, τ, k;σ(ε)) |ε=0. (3.5)

We compute the n-th derivative of the composition of the two functions in (3.5) by applying the Bell

polynomial version of the Faa di Bruno’s formula, which can be found in [27] and [15]. We get

vn =
1

n!

n
∑

h=1

∂h
σCall

BS (0, τ, k;σ0)Bn,h

(

∂εσ(ε), ∂
2
εσ(ε), . . . , ∂

n−h+1
ε σ(ε)

)

|ε=0. (3.6)

Then the thesis follows by inserting (3.4) into (3.6) and solving for σn.

The following lemma provides an iterative algorithm to compute the coefficients An in (3.2) in a simple

and explicit way: in particular, it shows that each An(σ) is a rational function of σ and no special functions

appear in its expression.

1Partial Bell polynomials are implemented in Mathematica as BellY[n,h, {x1, . . . , xn−h+1}].
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Proposition 3.2. We have

An(σ) =
Pn(Iz)Call

BS (0, τ, k;σ)

∂σCall
BS (0, τ, k;σ)

, (3.7)

where Iz is the differential operator

Iz = τ(∂zz − ∂z),

and Pn is the polynomial function of order n defined recursively by P0(y) = 1, P1(y) = σy and

Pn(y) = σyPn−1(y) + (n− 1)yPn−2(y), n ≥ 2.

Consequently, An(σ) is a rational function of σ and linear combination of Hermite polynomials.

Proof. First, we recall the classical relation among the Delta, Gamma and Vega of European options in the

BS setting:

∂σCall
BS (z, τ, k;σ) = σIzCall

BS (z, τ, k;σ) . (3.8)

In order to prove (3.7), we show by induction on n that

∂n
σCall

BS (z, τ, k;σ) = Pn(Iz)Call
BS (z, τ, k;σ) .

The result is trivially true for n = 0, and by the definition of P1 and (3.8) is valid also for n = 1. Let us

suppose the result is valid for k ≤ n. Using the product rule for derivatives and omitting the arguments for

simplicity, we have

∂n+1
σ CallBS = ∂n

σ

(

∂σCall
BS
)

= ∂n
σ

(

σIzCall
BS
)

=
n
∑

h=0

(

n

h

)

(∂h
σσ)

(

Iz∂
n−h
σ CallBS

)

=
(

σIz∂
n
σ + nIz∂

n−1
σ

)

CallBS

= (σIzPn(I) + nIPn−1(Iz)) Call
BS = Pn+1(Iz)Call

BS.

This proves (3.7). Next we show that An(σ) is a sum of Hermite polynomials. We use the identities

∂n
z exp

(

−
(

z−a
b

)2
)

exp
(

−
(

z−a
b

)2
) =

(−1)n

bn
Hn

(

z − a

b

)

, n ∈ N, z, a ∈ R, b ∈ R \ {0}, (3.9)

and

IzCall
BS (z, τ, k;σ) =

ek
√
τ

σ
√
2π

exp

(

−
(

z − k − σ2τ/2

σ
√
2τ

)2
)

. (3.10)

Thus, by (3.8) and (3.10), we obtain

In+1
z CallBS (z, τ, k;σ)

∂σCall
BS (z, τ, k;σ)

=
Inz IzCall

BS (z, τ, k;σ)

σIzCall
BS (z, τ, k;σ)

=

Inz exp

(

−
(

z−k−σ2τ/2

σ
√
2τ

)2
)

σ exp

(

−
(

z−k−σ2τ/2

σ
√
2t

)2
) =

11



(by the binomial expansion of (∂zz − ∂z)
n)

=
τn

σ

n
∑

h=0

(

n

h

)

(−1)h
∂2n−h
z exp

(

−
(

z−k−σ2τ/2

σ
√
2τ

)2
)

σ exp

(

−
(

z−k−σ2τ/2

σ
√
2τ

)2
) =

(by (3.9) with a = k + σ2τ
2 and b = σ

√
2τ)

=
n
∑

h=0

(

n

h

)

τ
h
2

σ(σ
√
2)2n−h

H2n−h

(

z − k − σ2τ/2

σ
√
2τ

)

.

Combining this last expression for I
n+1uBS

∂σuBS with (3.7), we conclude that An(σ) can be expressed as a sum of

Hermite polynomials. In particular, computing An(σ) does not involve any special function nor integration.

Now let us consider the forward-start Call option in (3.1) under the dynamics (1.1), with related Kol-

mogorov operator given by (2.3). We combine the forward price expansion (2.18)-(2.27) with Theorem 3.1.

To this end, we choose an enumeration (vn)n≥0 of the terms of the expansion (2.18): for example, we might

set

vn(s, x) =
∑

h+k=n

L¯̄x,h(s, x, t)uk(s, x), n ∈ N0.

Then, by Remark 2.6, we identify

σ0 = σt,τ,0(k) :=

√

1

τ

∫ t+τ

t

C11(s, x̄(s))ds, (3.11)

σn = σt,τ,n(k) :=
vn

∂σCall
BS (0, τ, k;σ0)

− 1

n!

n
∑

h=2

Ah(σ0)Bn,h (σ1, 2!σ2, . . . , (n− h+ 1)!σn−h+1) , (3.12)

where An is as in (3.7). This motivates the following definition.

Definition 3.3. Let N ∈ N0 and (σt,τ,n(k))n≤N as in (3.11)-(3.12). We say that

σ̄t,τ,N (k) :=

N
∑

n=0

σt,τ,n(k), (3.13)

is an N -th order asymptotic forward smile expansion.

In Section 4 we examine in detail the two-dimensional case, i.e. d = 2 in (1.1), and compute explicitly

the terms
vn

∂σCall
BS (0, τ, k;σ0)

(3.14)

appearing in expansion (3.12).

Concerning the error estimates of the implied volatility expansion, recently [19] proved an asymptotic

convergence result for short maturities in the spot case. Rigorous bounds for the forward volatility are only

available in the one-dimensional case and up to the second order, for the expansion proposed by [8] that is
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very similar to (3.13) (actually, in the spot case they turn out to be equivalent). The analysis of the general

multi-dimensional case is not a straightforward extension of the previous results and is object of ongoing

research: as in the spot case, the derivation of explicit formulas for the asymptotic forward smile expansion

is the first crucial step towards a formal proof of the asymptotic convergence of the expansion.

4 Local-stochastic volatility models

In this section we focus on two-dimensional models. Before presenting the numerical tests, we show that

the formulas of Theorem 2.5 can be further simplified, leading to simple and effective approximations: in

particular we give the first two terms of the forward volatility expansion in a general local-stochastic volatility

model (see (4.6)). In the last part, we illustrate the flexibility and accuracy of our methodology by applying

it to the CEV local volatility model and the Heston stochastic volatility model.

We consider the local-stochastic volatility model

dXt = −1

2
σ(t,Xt, Yt)

2dt+ σ(t,Xt, Yt)dWt,

dYt = ν(t,Xt, Yt)dt+ η(t,Xt, Yt)dBt,

d〈W,B〉t = ρ(t,Xt, Yt)dt,

(4.1)

where as usualX represents the underlying’s log-price under a risk-neutral measure. The related Kolmogorov

operator A is given by

A = a2,0(t, x, y)∂xx + a1,0(t, x, y)∂x + a0,2(t, x, y)∂yy + a0,1(t, x, y)∂y + a1,1(t, x, y)∂x,y + a0,0(t, x, y)

where

a2,0 =
σ2

2
, a0,2 =

η2

2
, a1,1 = ρση, a1,0 = −σ2

2
, a0,1 = ν, a0,0 = 0.

According to the notations of Section 2.1, for a fixed (x̄, ȳ), we set

C̄(t) =

(

2a2,0(t, x̄(t), ȳ(t)) a1,1(t, x̄(t), ȳ(t))

a1,1(t, x̄(t), ȳ(t)) 2a0,2(t, x̄(t), ȳ(t))

)

and

µ̄(t) = (a1,0(t, x̄(t), ȳ(t)), a0,1(t, x̄(t), ȳ(t))) .

Moreover we define

C(t, T ) =

∫ T

t

C̄(s)ds, m(t, T ) =

∫ T

t

µ̄(s)ds,

and we denote by Lx̄,ȳ,n(t, x, y, T ) the operator formally defined by Lx̄,ȳ,0(t, x, y, T ) ≡ 1 for n = 0 and as in

(2.11) for n ∈ N, where now Mx̄,ȳ(t, x, y, T ) has two components:

M1,x̄,ȳ(t, x, y, T ) = x+m1(t, T ) +C11(t, T )∂x +C12(t, T )∂y,

M2,x̄,ȳ(t, x, y, T ) = y +m2(t, T ) +C21(t, T )∂x +C22(t, T )∂y.
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By Remark 2.2, Lx̄,ȳ,n(t, x, y, T ) can be written in the form

Lx̄,ȳ,n(t, x, y, T ) =
∑

α1+α2≤n

β1+β2≤3n

(x− x̄(t))α1 (y − ȳ(t))α2fx̄,ȳ,n,α1,α2,β1,β2
(t, T )∂β1

x ∂β2

y . (4.2)

Now let

u(s, x, y) := E
[

(

eXT−Xt − ek
)+ | Xs = x, Ys = y

]

be the forward-start Call price at time s: by the results of Section 2.2, we have

u(s, x, y) ≈
N
∑

n=0

M
∑

m=0

L¯̄x, ¯̄y,n(s, x, y, t)um(s, x, y), (4.3)

with um defined by (2.19). A more explicit expression for um is given by the following

Corollary 4.1. For any m ∈ N the function um in (4.3) is equal to

um(s, x, y) = GammaBS (0, t, T, k; σ̄)
3m
∑

j=2

gj (t, T, k; σ̄)Fj,m(s, x, y, t, T ) (4.4)

where GammaBS is as in (2.22), σ̄(t) =
√

2a2,0(t, x̄(t), ȳ(t)) and

Fj,m(s, x, y, t, T ) =
∑

α1+α2≤m

fx̄,ȳ,m,α1,α2,j,0(t, T ) (M1,¯̄x, ¯̄y(s, x, y, t)− x̄(t))
α1 (M2,¯̄x, ¯̄y(s, x, y, t)− ȳ(t))

α2 ,

with fx̄,ȳ,m,α1,α2,j,0(t, T ) as in (4.2) and gj (t, T, k; σ̄) as in (2.26).

Proof. The thesis is a direct consequence of Lemma 2.4, Theorem 2.5 and the identities

fx̄,ȳ,m,α1,α2,0,0(t, T ) = 0 and

3m
∑

j=1

fx̄,ȳ,m,α1,α2,j,0(t, T ) = 0. (4.5)

The proof of (4.5) is based on a tedious but straightforward computation: the main ingredient is the identity

∂i
x∂

j
ya1,0 = −∂i

x∂
j
ya2,0 which follows from the martingale condition.

Remark 4.2. Formula (4.4) leads to an extremely significant simplification in the computation of the

forward implied volatility expansion (3.11)-(3.12). Indeed, (3.14) is a sum of terms of the form2

L¯̄x, ¯̄y,h(s, x, y, t)um(s, x, y)

∂σCall
BS (0, τ, k;σ0)

(with σ0 = σt,τ,0(k) as in (3.11))

or equivalently, by (4.4),

GammaBS (0, t, t+ τ, k; σ̄)

∂σCall
BS (0, τ, k;σ0)

3m
∑

j=2

gj (t, T, k; σ̄)L¯̄x, ¯̄y,h(s, x, y, t)Fj,m(s, x, y, t, T ),

where:

2Recall that we denote by τ = T − t the forward maturity and therefore CallBS (z, τ, k;σ) = CallBS (z, t, T, k;σ) according

to notations (1.3) and (2.20) for the constant and time-dependent BS models respectively.

14



i) gj (t, T, k; σ̄) is the rational function defined explicitly in (2.26);

ii) L¯̄x, ¯̄y,h(s, x, y, t)Fj,m(s, x, y, t, T ) is a polynomial function;

iii) by identity (3.8), we simply have

GammaBS (0, t, t+ τ, k; σ̄)

∂σCall
BS (0, τ, k;σ0)

=
1

τσ0
.

Next we report the first two terms of the expansion of the forward implied volatility σt,τ (k), evaluated a

time s = 0, for the forward-start Call option with payoff
(

eXt+τ−Xt − ek
)+

in the local-stochastic volatility

model (4.1) with time-homogeneous coefficients. By setting x̄ = ¯̄x = X0 = x and ȳ = ¯̄y = Y0 = y, we get

σt,τ,0(k) =
√

2a2,0(x, y), (4.6)

σt,τ,1(k) =
(ka1,1(x, y) + τa2,0(x, y) (2a0,1(x, y) + a1,1(x, y))) ∂ya2,0(x, y) + (k − 2ta2,0(x, y)) ∂x (a2,0(x, y))

2

4
√
2(a2,0(x, y))

3
2

·

The general expression for σt,τ,2(k) is too long to be reported here: we only give the limit

lim
τ→0+

τσt,τ,2(k) =
t (k∂xa2,0(x, y))

2

4
√
2(a2,0(x, y))

3
2

, (4.7)

which shows that σt,τ,2(k) = O
(

τ−1
)

as τ tends to zero, whenever t, k and ∂xa2,0 are not null. The

exploding behaviour of the forward smile for out-of-the-money options was proved by [13] in the case of the

Heston stochastic volatility model. Formula (4.7) indicates that the singularity of the forward smile is a

rather general feature of local-stochastic volatility models. This is also well documented by the numerical

experiments of the following sections.

4.1 Tests in the CEV model

In the Constant Elasticity of Variance (CEV) local volatility model [9], the risk-neutral dynamics of the

underlying S are given by

dSt = δSβ−1
t StdWt,

where δ is the positive volatility parameter and β ∈ [0, 1]. Notice that it is not restrictive to assume that

S0 = 1, since we can always rescale the CEV equation by setting Yt =
St

S0
to get

dYt = δ̃Y β
t dWt

where δ̃ = δSβ−1
0 .

In log notation X := logS, we have the dynamics

dXt = −1

2
δ2e2(β−1)Xtdt+ δe(β−1)XtdWt,
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and the Kolmogorov operator of X is given by

A =
1

2
δ2e2(β−1)x(∂xx − ∂x).

Using Corollary 4.1 we compute the expansion of the forward implied volatility σt,τ (k), evaluated a time

zero, for the forward-start Call option with payoff
(

eXt+τ−Xt − ek
)+

. By setting x̄ = ¯̄x = X0 = 0, we get

σt,τ,0(k) = δ at order zero and

σt,τ,1(k) =
1

2
(β − 1)δ(k − tδ2)

at order one. Thus the first two terms of the expansion do not depend on the forward maturity τ . At orders

two and three, we find

σt,τ,n(k) =

2
∑

j=−1

An,j(t)τ
j , n = 2, 3,

where

A2,−1(t) =
1

2
k2t(β − 1)2δ,

A2,0(t) =
1

24
(β − 1)2(2k2δ − 6t(k − 2)δ3 + 9t2δ5)

A2,2(t) =
1

24
(β − 1)2δ3(1 − 3tδ2),

A2,3(t) = − 1

96
(β − 1)2δ5,

and

A3,−1(t) =
1

4
k2(1 − β)3

(

ktδ + 2t2δ3
)

,

A3,0(t) =
1

48
(β − 1)3

(

2kt(6− k)δ3 + 9t2(k − 8)δ5 − 15t3δ7
)

,

A3,1(t) =
1

16
(β − 1)3

(

kδ3 − t(1 + 3k)δ5 + 6t2δ7
)

,

A3,2(t) =
5

192
(1 − β)3(k − tδ2)δ5.

Notice that for β 6= 1 (i.e. except for the BS model), t > 0 (i.e. for a strictly positive forward start date)

and k 6= 0 (i.e. for out-of-the-money options), we have

σt,τ,n(k) = O
(

τ−1
)

as τ → 0+, n = 2, 3.

To illustrate the accuracy of the expansion formulas, we compare our 3rd order forward implied volatility

approximation with the high-precision numerical values obtained in [7] by Monte Carlo simulations. In the

tests under consideration, the confidence interval widths are reduced to less than 1 basis point (i.e. ±0.01%)

for all the strikes and maturities.

The CEV parameters are set to δ = 0.2 and β = 0.5. The forward start dates and maturities are the

same as in [7]: specifically, we consider the forward start dates t = 0 (this corresponds to the spot implied

volatility), 1M (one month), 3M (three months), 6M (six months) and 1Y (one year) and the forward

maturities τ = 3M, 1Y, 5Y and 10Y . The strikes K = ek are chosen with respect to the set maturities as
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in Table 1: in particular, the strikes approximately behave as eqδ
√
τ where q denotes the value of various

quantiles of the standard normal law (from 1% to 99%) to cover around the money (i.e. K ≈ 1) as well as

far from the money options.

τ \K 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%

3M 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.25 1.30 1.35

1Y 0.55 0.65 0.75 0.80 0.90 0.95 1.00 1.05 1.15 1.25 1.40 1.50 1.80

5Y 0.25 0.40 0.50 0.60 0.75 0.85 1.00 1.15 1.35 1.60 2.05 2.50 3.60

10Y 0.15 0.25 0.35 0.50 0.65 0.80 1.00 1.20 1.50 1.95 2.75 3.65 6.30

Table 1: Set of maturities and strikes for the tests in the CEV model

From Table 2 we see that the 3rd order formula gives an excellent approximation of the forward implied

volatility. We would like to emphasize again that our approximation involves only polynomials and can be

computed without the need for numerical procedures or special functions.

4.2 Tests in the Heston model

In the Heston model [12], the dynamics of the asset price S are given by

dSt =
√

ZtStdWt,

dZt = κ(θ − Zt)dt+ δ
√

ZtBt,

d〈W,B〉t = ρdt,

with ρ < 0 to prevent a moment explosion (cf. [2]). To improve the approximation, we perform the change

of variables

Xt = logSt, Vt = eκtZt,

so that we have

dXt = −1

2
e−κtVtdt+

√

e−κtVtdWt,

dVt = θκeκtdt+ δ
√

eκtVtdBt,

with X0 = logS0 and V0 = Z0. The Kolmogorov operator of (X,V ) is given by

A =
1

2
e−κtv(∂xx − ∂x) + θκeκt∂v +

1

2
δ2eκtv∂vv + δρv∂xv.

Using Corollary 4.1, we compute the expansion of the forward implied volatility σt,τ (k), evaluated at time

zero, with X0 = 0 and V0 = v > 0, for the forward-start Call option with payoff
(

eXt+τ−Xt − ek
)+

. By

expanding around the points x̄ = ¯̄x = X0 = 0 and

v̄(t) = ¯̄v(t) = E [Vt] = v + θκ

∫ t

0

eκsds,
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τ t \K 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%

3M 0 MC 21.84 21.48 21.14 20.83 20.53 20.26 20.00 19.76 19.53 19.31 18.91 18.72 18.54

approx 21.84 21.48 21.14 20.83 20.53 20.26 20.00 19.76 19.53 19.31 18.91 18.72 18.54

1M MC 21.96 21.56 21.2 20.87 20.57 20.29 20.03 19.78 19.56 19.35 18.97 18.80 18.64

approx 21.96 21.57 21.2 20.87 20.57 20.29 20.03 19.79 19.56 19.35 18.97 18.80 18.64

3M MC 22.21 21.75 21.34 20.97 20.64 20.34 20.08 19.84 19.63 19.44 19.11 18.97 18.85

approx 22.21 21.75 21.34 20.97 20.64 20.34 20.08 19.84 19.63 19.43 19.11 18.97 18.85

6M MC 22.59 22.03 21.54 21.12 20.75 20.43 20.16 19.92 19.73 19.56 19.32 19.23 19.17

approx 22.59 22.03 21.54 21.11 20.74 20.43 20.15 19.92 19.72 19.56 19.32 19.23 19.17

1Y MC 23.35 22.59 21.95 21.41 20.96 20.60 20.31 20.09 19.93 19.82 19.74 19.75 19.80

approx 23.36 22.59 21.94 21.41 20.96 20.60 20.31 20.09 19.93 19.82 19.73 19.76 19.81

1Y 0 MC 23.15 22.24 21.48 21.15 20.54 20.27 20.01 19.77 19.32 18.91 18.37 18.05 17.21

approx 23.15 22.24 21.48 21.15 20.54 20.27 20.01 19.77 19.32 18.91 18.37 18.05 17.21

1M MC 23.24 22.30 21.52 21.18 20.57 20.29 20.03 19.79 19.34 18.95 18.42 18.11 17.31

approx 23.24 22.30 21.53 21.18 20.57 20.29 20.03 19.79 19.35 18.95 18.42 18.11 17.31

3M MC 23.43 22.43 21.61 21.26 20.63 20.34 20.08 19.84 19.40 19.02 18.52 18.23 17.53

approx 23.43 22.43 21.61 21.26 20.62 20.34 20.08 19.84 19.40 19.02 18.52 18.23 17.52

6M MC 23.72 22.63 21.75 21.37 20.71 20.43 20.16 19.92 19.49 19.12 18.67 18.42 17.85

approx 23.71 22.62 21.74 21.37 20.71 20.42 20.16 19.92 19.49 19.12 18.67 18.41 17.84

1Y MC 24.29 23.01 22.01 21.59 20.88 20.58 20.32 20.08 19.67 19.34 18.97 18.79 18.49

approx 24.28 23.01 22.01 21.59 20.88 20.58 20.32 20.08 19.67 19.34 18.97 18.79 18.48

5Y 0 MC 27.83 25.01 23.73 22.72 21.52 20.87 20.04 19.35 18.57 17.77 16.65 15.79 14.29

approx 27.81 25.00 23.73 22.72 21.52 20.87 20.04 19.34 18.57 17.77 16.64 15.78 14.28

1M MC 27.92 25.06 23.78 22.76 21.55 20.89 20.06 19.37 18.60 17.80 16.69 15.85 14.40

approx 27.90 25.06 23.77 22.75 21.55 20.89 20.06 19.37 18.60 17.80 16.69 15.84 14.40

3M MC 28.11 25.18 23.87 22.84 21.61 20.95 20.12 19.42 18.65 17.87 16.79 15.98 14.63

approx 28.08 25.17 23.86 22.83 21.61 20.95 20.11 19.42 18.65 17.87 16.78 15.97 14.61

6M MC 28.39 25.37 24.02 22.95 21.71 21.03 20.19 19.50 18.74 17.97 16.93 16.18 14.97

approx 28.33 25.35 24.00 22.94 21.70 21.03 20.19 19.50 18.73 17.96 16.92 16.16 14.94

1Y MC 28.96 25.73 24.30 23.19 21.89 21.20 20.35 19.65 18.90 18.17 17.22 16.57 15.66

approx 28.87 25.70 24.29 23.18 21.89 21.20 20.34 19.65 18.90 18.17 17.21 16.55 15.60

10Y 0 MC 31.20 27.91 25.86 23.79 22.33 21.23 20.08 19.17 18.10 16.89 15.40 14.25 12.21

approx 31.17 27.94 25.84 23.78 22.33 21.22 20.08 19.17 18.10 16.89 15.39 14.24 12.19

1M MC 31.28 27.97 25.91 23.82 22.36 21.25 20.10 19.19 18.12 16.92 15.45 14.31 12.33

approx 31.23 27.94 25.89 23.81 22.36 21.25 20.10 19.19 18.12 16.92 15.44 14.30 12.31

3M MC 31.46 28.10 26.01 23.9 22.43 21.31 20.15 19.24 18.18 16.99 15.54 14.45 12.60

approx 31.39 28.06 25.98 23.89 22.42 21.31 20.15 19.24 18.17 16.98 15.53 14.43 12.54

6M MC 31.72 28.29 26.16 24.02 22.52 21.39 20.23 19.32 18.26 17.09 15.69 14.66 12.99

approx 31.62 28.24 26.13 24.00 22.52 21.38 20.22 19.31 18.25 17.08 15.69 14.62 12.90

1Y MC 32.23 28.67 26.46 24.25 22.71 21.56 20.38 19.47 18.42 17.29 15.98 15.07 13.77

approx 32.10 28.61 26.42 24.23 22.70 21.55 20.38 19.46 18.41 17.28 15.95 15.01 13.63

Table 2: Forward implied volatilities (Monte Carlo and 3rd order approximation) in the CEV model with

parameters β = 0.5, δ = 0.2, with forward start date t, maturity t+ τ and the range of strikes in Table 1
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we find the following approximation of the forward implied volatility σt,τ (k) at orders zero and one:

σt,τ,0(k) =

√

(−e−κ(t+τ) + e−κt)(v − θ)

κτ
+ θ,

σt,τ,1(k) =
e−

1
2
κ(t+τ)ρδ

(

− v + veκτ + θ − eκτθ + eκ(t+τ)κ(2k − 2rτ + θτ)
)

4
√
τ
(

κ(−v + veκτ + θ − eκτθ + eκ(t+τ)θκτ)
)3/2

·

·
(

veκτ + θ + eκtθ − eκτθ + θκτ + eκ(t+τ)θ(−1 + κτ)− v(1 + κτ)
)

.

The expression for σt,τ,2 is too long to be reported, however its explicit formula is provided in the Mathematica

notebook on the authors’ website.

As in the CEV model the approximation explodes as the forward maturity τ tends to zero, in case k 6= 0

and t > 0. In fact, we have the following limit values of the smile expansion:

lim
τ→0+

σt,τ,0(k) =
√

e−tκ(v − θ) + θ,

lim
τ→0+

σt,τ,1(k) =
ke

tκ
2 δρ

4
√
v − θ + etκθ

,

lim
τ→0+

τσt,τ,2(k) =
δ2k2 (eκt − 1) (θ (eκt − 1) + 2v)

16κ (θ (eκt − 1) + v)
2√

e−κt (θ (eκt − 1) + v)
,

lim
τ→0+

τσt,τ,3(k) =
5δ3k3ρeκt (1− eκt) (θeκt − θ + 2v)

64κ
√
θ − θe−κt + ve−κt (θeκt − θ + v)3

.

This is consistent with the result proved by [13] but with a different asymptotic: in [13] it is proved that

the forward implied volatility behaves asymptotically as O
(

τ−1/4
)

as the maturity approaches zero. This

discrepancy is not unexpected since by the results in [19], also in the spot case, the smile expansion is

asymptotically convergent only inside the at-the-money region {|x− k| ≤ λ
√
τ}, for any fixed λ > 0. Even

so, the approximation formulas seem to be generally quite accurate as the following numerical tests indicate.

Next we compare our 3rd order approximation with the forward implied volatilities computed using

standard Fourier methods and then inverting numerically the Black-Scholes formula. To this end, we consider

the set of parameters calibrated to market data, recently proposed by [10]:

κ = 1, θ = 0.08, δ = 0.39, ρ = −0.93, v = 0.2452. (4.8)

This set is obtained by calibrating the Heston model to daily observations of implied volatility surfaces for

the S&P500-index over the period 2005-2009, synchronized with the index itself and with estimated complete

term structures of interest rates and dividend yields. We consider the forward start dates t = 0, 1M, 3M, 6M

and 1Y and maturities from one week (1W ) to ten years (10Y ). The set of strikes is given with respect to

the set of maturities in Table 3.

Globally the results in Table 4 are very good and show that the approximation is accurate also for long

maturities. In this set of tests we included a short forward maturity (1W ) that is particularly significant

because of the exploding behaviour of the forward implied volatility: despite of this, the tests show that the

approximation is accurate in this case as well.

To conclude, we would like to emphasize again that the strength of the approach is that we can incorporate

in a generic stochastic volatility model, also variable coefficients (local volatility) and multi-dimensional risk
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τ \K 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%

1W 0.95 0.958 0.967 0.975 0.983 0.992 1.00 1.007 1.015 1.022 1.029 1.036 1.044

3M 0.85 0.875 0.90 0.925 0.95 0.975 1.00 1.017 1.033 1.05 1.067 1.083 1.10

1Y 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.033 1.067 1.10 1.133 1.167 1.20

10Y 0.20 0.333 0.467 0.60 0.733 0.867 1.00 1.30 1.60 1.90 2.20 2.50 2.80

Table 3: Set of maturities and strikes for the tests in the Heston model

factors without any further complication: indeed we still get approximation formulas that are fully explicit

and involve only polynomials and elementary functions.
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