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Abstract

We prove existence, uniqueness and gradient estimates of stochastic differential

utility as a solution of the Cauchy problem for the following equation in R3:

@xxu þ u@yu � @tu ¼ f ð�; uÞ;

where f is Lipschitz continuous. We also characterize the solution in the vanishing

viscosity sense.

r 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this paper we consider the following Cauchy problem:

uxxðzÞ þ uðzÞuyðzÞ � utðzÞ ¼ f ðz; uðzÞÞ; z � ðt;x; yÞA�0;T � 	 R2; ð1Þ

uð0; �Þ ¼ g in R2; ð2Þ

where, as usual, ux ¼ @xu and we assume f : �0;T � 	 R3-R and g :R2-R

globally Lipschitz continuous. This problem has been recently considered in
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mathematical finance. Antonelli et al. [2] introduced a new model for agents’
decision under risk, in which the utility function is the solution to (1)–(2).
We mention that (1) also arises when studying nonlinear physical
phenomena such as the combined effects of diffusion and convection of
matter (cf. [13]).
Here we prove the existence of a viscosity solution u of (1)–(2) in the sense

of the User’s guide [11], and we characterize it in the vanishing viscosity
sense. In other words, we show that u is the limit, uniform on compacts of

½0;T � 	 R2 as e-0þ; of the family ðueÞ of solutions to the regularized
Cauchy problem

vxx þ e2vyy þ vvy � vt ¼ f ð�; vÞ in �0;T � 	 R2; ð3Þ

vð0; �Þ ¼ g in R2: ð4Þ

This result allows to study the properties of u in the framework of Sobolev
spaces and it has been used in the recent papers by Citti et al. [8,9] to
investigate the regularity of u: In particular, in [9], conditions are given for u

to be smooth.
Before stating our main theorem, we introduce some notations. We set

%T ¼ 2ð4k1 þmaxf1; 2k2gÞ
�1; ð5Þ

where k1 is the Lipschitz constant of f ¼ f ðt;x; y; vÞ w.r.t. the variables y; v
and k2 is the Lipschitz constant of g ¼ gðx; yÞ w.r.t. y: We aim to prove the
following.

Theorem 1.1. Let 0oTo %T: There exists a unique viscosity solution u of

problem (1)–(2) such that

juðt1;x1; y1Þ � uðt1;x2; y2ÞjpC0ðjx1 � x2j þ jy1 � y2jÞ;

juðt1;x1; y1Þ � uðt2;x1; y1ÞjpC0ð1þ jðx1; y1ÞjÞjt1 � t2j
1
2 ð6Þ

for every ðx1; y1Þ; ðx2; y2ÞAR2; t1; t2A½0;T �; where C0 is a positive constant

which depends on k1 and k2: For every eA�0; 1½; the regularized problem (3)–(4)
has a unique classical solution ue for which (6) holds with C0 independent of e:
Moreover, ðueÞ converges to u as e goes to zero, uniformly on compacts of

½0;T � 	 R2:

In spite of the similar terminology, the concepts of viscosity and vanishing
viscosity solution are not, in general, equivalent. For first-order problems, a
connection between these two notions has been shown by Crandall et al. [10]
and Lions [22]. In the case of linear degenerate elliptic PDEs, the
relationship with the notion of distributional solutions has been studied
by Lions [22] and Ishii [18]. We also refer to Bardi and Capuzzo Dolcetta [3].
Due to the global estimate (6), the uniqueness part of Theorem 1.1 is not

unexpected. The uniqueness of viscosity solutions to fully nonlinear second-
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order PDEs has been investigated by several authors including Crandall,
Ishii, Jensen, Lions, Nunziante, Souganidis, Trudinger (see, e.g.,
[11,17,20,22,25,29]). These results require some structural conditions on
the equation which do not fit for (1).
One of the main characteristics of Eq. (1) is the mixed parabolic–

hyperbolic feature due to the lack of diffusion in the y-direction. We remark
explicitly that (1) includes the Burgers’ equation in the case g ¼ gðyÞ and
f ¼ 0: It is classical to prove the existence of solutions of this kind of
problems, by adding a vanishing diffusion term as in (3), trying to obtain e-
uniform estimates of ue: This can be usually achieved by the Bernstein’s
method [5], differentiating the equation and by using the maximum principle
to estimate the gradient of ue: Yet this method or more sophisticated
versions of it (cf. Barles [4]) do not seem to work in our setting since the
nonlinearity in (1) is not monotone and we allow growths at infinity. From a
PDE viewpoint, these features seem to be non-standard. Moreover, since (1)
is a degenerate second-order equation, regularity results proved by
Caffarelli and Cabre [7], Trudinger [28], Ishii and Lions [19], Bian and
Dong [6], Wang [31,32] do not apply.
Here we present a probabilistic technique which appears to be natural for

the problem. We construct an appropriate system of stochastic differential
equations that are related to our PDE. By proving the existence and
uniqueness for the stochastic system, we deduce the existence of the solution
u and the estimate on the gradient. More precisely, we consider a complete
probability space ðO;F;PÞ; on which two independent one-dimensional
standard Brownian motions B;W are defined. We endow this space with the
family of s-algebras fFtgtA½0;T �DF generated in the following manner:

N ¼ fP-null sets of Fg; Gt ¼ sðWs;Bs; sptÞ;

Fþ
t ¼

\
s>t

Gs; Ft ¼ sðFþ
t ,NÞ:

In this way fFtgtA½0;T � is a filtration (FsDFt for spt) that satisfies the

‘‘usual hypotheses’’ (cf. [27]). Chosen a constant eA½0; 1½; we consider the
following forward–backward system:

Y e
t ¼ y0 þ

Z t

0

V e
s ds þ eWt; ð7Þ

V e
t ¼ EðgðBT ;Y

e
T Þ �

Z T

t

f ðs;Bs;Y
e
s ;V

e
s Þ ds7FtÞ: ð8Þ

We say that (7)–(8) is solvable if there exists a pair of adapted and integrable
processes ðY e;V eÞ that verify the equations P—a.s. We stress that even
under global Lipschitz assumptions, the solution of (7)–(8) may not exist
globally in time. Various authors [14,16,23,26] studied conditions to have
existence and uniqueness in an arbitrary time interval. Those methods do
not apply in our case. Indeed, the first two results are based on monotonicity
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conditions of the coefficients that are not verified here, while the
monotonicity conditions introduced by Pardoux and Tang [26] impose an
analogous restriction of the time interval. The method adopted by Ma et al.
[23], based on the PDE correspondence, instead is applicable only within the
framework of Ladyzhenskaya et al. [21] for semilinear and quasilinear
parabolic PDEs.
Correspondingly, it is well-known that, even for smooth initial datum g;

the solution of (1)–(2) may develop discontinuities in finite time. In the
framework of scalar conservation laws, this problem is usually overcome by
interpreting the equation in the distributional sense. For instance, we refer
to Escobedo et al. [13] for a non-local existence and uniqueness theory for
(1)–(2) with bounded and integrable data. In a more general setting,
existence and uniqueness results go back to Vol’pert and Hudjaev [30].
On the other hand, we stress that the assumption on the linear growth of g

is a real obstruction for the global existence of the solution, as the following
example shows.

Example 1.1. In (7)–(8), let us take f ¼ 0; gðx; yÞ ¼ x þ y and assume that
there exists an integrable solution ðY ;V Þ (by integrable we mean at least
EðjYtj þ jVtjÞoþN for each tA½0;T �). By construction, Vt ¼ EðBT þ
YT jFtÞ ¼ Bt þ EðYT jFtÞ is a martingale, hence it has constant expectation
EðVtÞ ¼ C for all tA½0;T �: Consequently, the following holds:

C ¼ EðVtÞ ¼ EðYT Þ ¼ y þ
Z T

0

EðVsÞ ds ) C ¼
y

1� T
;

which is defined only if Ta1 (actually only for To1).
Analogously, problem (3)–(4), for eX0; becomes

uxx þ e2uyy þ uuy � ut ¼ 0 in �0;T � 	 R2;

uð0; x; yÞ ¼ x þ y in R2

with solution uðt;x; yÞ ¼ xþy
1�t

which blows up as t- %T ¼ 1�: Roughly

speaking, through the classical Hopf transformation [15], the linear growth

of the initial datum for Eq. (1) corresponds to the rate of growth of ey2 for
the heat equation.

On the other hand, if gðx; yÞ ¼ �x � y; we still have %T ¼ 1 in (5), so that

Theorem 1.1 misses the global existence of the solution uðt;x; yÞ ¼ �xþy
1þt

:

The paper is organized as follows. In Section 2, we prove the existence of
a solution ðY e;V eÞ of (7)–(8). In Section 3, we show that the flows of
solutions associated to ðY e;V eÞ define a deterministic function ue satisfying
(6). In Section 4, we prove that ue is a viscosity solution of a backward
Cauchy problem related to (3)–(4). In Section 5, a comparison principle for
viscosity solutions is established and the proof of Theorem 1.1 is concluded.
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2. Existence

In this section we prove the existence and uniqueness of the solution to
the stochastic differential system (7)–(8) associated to (1)–(2). From now on,
we shall denote by x3y ¼ maxðx; yÞ; x4y ¼ minðx; yÞ and by

L2 ¼

(
X adapted; progressively measurable processes :

E

Z T

0

jXsj
2 ds

� �� �1
2

oN

)
;

%%
S2 ¼ X semimartingales : E sup

0ptpT

jXtj2
� �� �1

2
oþNÞ

8<
:

9=
;:

We refer the reader to [27] for details about the theory of semimartingales
and to [1,24,26] for more information about forward–backward stochastic
differential equations.
We recall that k1 denotes the Lipschitz constant of f ¼ f ðt;x; y; vÞ w.r.t.

the variables y; v and k2 the Lipschitz constant of g ¼ gðx; yÞ w.r.t. y:

Proposition 2.1. Let the foregoing hypotheses hold and let ðk131þ k2ÞTo1

and eA½0; 1½: Then there exists a unique solution to (7)–(8) in L2 	L2:

Proof. Let us consider the following operator:

LðY ;V Þt �
F ðY ;V Þt
GðY ;V Þt

 !

�
y þ

R t

0 Vs ds þ eWt

E gðBT ;F ðY ;V ÞT Þ �
R T

t
f ðs;Bs;Ys;VsÞ ds7Ft

� �
0
@

1
A:

Then L :L2 	L2-L2 	L2; as the following shows:

E

Z T

0

ðjFtj þ jGtjÞ
2 dt

� �
pE

Z T

0

 
ðk2 þ 1Þjyj þ ejWtj þ ek2jWT

 
j

þ jgðBT ; 0Þj þ
Z T

0

jf ðs;Bs; 0; 0Þj ds

þ ðk1 þ k2 þ 1Þ
Z T

0

ðjYsj þ jVsjÞ ds

!2

dt

!
oN

because of the Lipschitz hypotheses and Jensen inequality.

The space L2 	L2 is a Banach space and under our conditions,
the operator L is a contraction. Indeed for any choice of
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ðY 2;V2Þ; ðY 1;V1ÞAL2 	L2; using the global Lipschitz conditions, we have

jF ðY 2;V 2Þt � F ðY 1;V 1Þtjp
Z t

0

jV 2
s � V1

s j ds;

jGðY 2;V2Þt � GðY 1;V 1Þtj

pE

 
jgðBT ;F ðY 2;V2ÞT Þ � gðBT ;F ðY 1;V 1ÞT Þj
�

þ
Z T

t

jf ðs;Bs;Y
2
s ;V

2
s Þ � f ðs;Bs;Y

1
s ;V

1
s Þj dsjFt

!
:

Using the first inequality in the second and summing the two together, we
obtain

jF ðY 2;V 2Þt � F ðY 1;V1Þtj þ jGðY 2;V2Þt � GðY 1;V 1Þtj

pðk131þ k2ÞE
Z T

0

ðjY 2
s � Y 1

s j þ jV2
s � V 1

s jÞ dsjFt

� �
:

Therefore, integrating on O and from 0 to T ; applying Jensen inequality, we
may conclude

jjLðY 2;V 2Þ � LðY 1;V1ÞjjL2	L2

pðk131þ k2ÞT jjðY 2;V2Þ � ðY 1;V 1ÞjjL2	L2 ;

that is to say L is a contraction, by virtue of our assumption. &

We denote by ðY e;V eÞ the adapted solution of (7)–(8). The bound on the

norm of ðY e;V eÞ inL2 	L2 can be made independent of e: As a matter of fact

jY e
t jpjyj þ

Z t

0

jV ej ds þ ejWtj;

jV e
t jpE jgðBT ; 0Þj þ k2 jyj þ

Z T

0

jV ej ds þ ejWT j
� ��

þ
Z T

t

fjf ðs;Bs; 0; 0Þj þ k1ðjY e
s j þ jV e

s jÞg dsjFt

�
:

Since eo1; the above inequalities imply

jY e
t j þ jV e

t jpE ðk131þ k2Þ
Z T

0

ðjY e
s j þ jV e

s jÞ ds

�
þ ðk2 þ 1Þjyj þ jWtj þ k2jWT j

þ jgðBT ; 0Þj þ
Z T

0

jf ðs;Bs; 0; 0Þj dsjFt

�
; ð9Þ

squaring both sides, employing Schwartz inequality in the form ðaþ

bÞ2pð1þ 1
a
Þa2 þ ð1þ aÞb2 for a suitably large a > 0 and integrating from 0
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to T ; we get

E

Z T

0

ðjY e
t j þ jV e

t jÞ
2 dt

� �

p
ð1þ aÞ

1� ð1þ 1
a
Þðk131þ k2Þ

2T2
E ðk2 þ 1Þ2jyj2 þ

1

2
þ k2

� ��

	 T2 þ T jgðBT ; 0Þj2 þ T2

Z T

0

jf ðs;Bs; 0; 0Þj2 ds

�
: ð10Þ

Plugging this inequality back into (9) and using Doob’s inequality for
submartingales, we also obtain

E sup
0ptpT

ðjY e
t j þ jV e

t jÞ
2

� �

pC k1; k2;T ; a; y; g; f ;B;W ;
1

1� ð1þ 1
a
Þðk131þ k2Þ

2T2

 !
;

which is independent of e:

3. Continuity

Let ðY e;V eÞ be the adapted solution of (7)–(8) whose existence has been
proved in the previous section. It is to be remarked that, by the martingale
representation theorem, the backward component of our system may be
rewritten as

V e
t ¼ gðBT ;YT Þ �

Z T

t

f ðs;Bs;Y
e
s ;V

e
s Þ ds

�
Z T

t

He
s dBs �

Z T

t

Ze
s dWs ð11Þ

with predictable processes He and Ze such that

E

Z T

0

½ðHe
s Þ
2 þ ðZe

sÞ
2� ds

� �
oþN:

With this representation, the continuity in t of the process V e follows
directly, since for any t1pt2; we have

V e
t2
� V e

t1
¼
Z t2

t1

f ðs;Bs;Y
e
s ;V

e
s Þ ds þ

Z t2

t1

He
s dBs þ

Z t2

t1

Ze
s dWs: ð12Þ

The processes He;Ze are in general unknown, but if the coefficients f ; g are
differentiable in the spatial variables, by using Malliavin Calculus
techniques, one may have an explicit representation of H;Z:
Since we are in a Brownian environment and the functions g and f are

deterministic, the solution processes Y e;V e are Markovian, hence by

F. Antonelli, A. Pascucci / J. Differential Equations 186 (2002) 69–87 75



exploiting the Blumenthal’s 0–1 law, one can show that the associated flows
of solutions (cf. [24])

Bt;x
s ¼ x þ Bs � Bt;

Y e;t;x;y
s ¼ y þ

Z s

t

V e;t;x;y
r dr þ eðWs � WtÞ;

V e;t;x;y
s ¼ E gðBt;x

T ;Y e;t;x;y
T Þ �

Z T

s

f ðr;Bt;x
r ;Y e;t;x;y

r ;V e;t;x;y
r Þ drjFs

� �
ð13Þ

define a deterministic function

ueðt;x; yÞ ¼ V
e;t;x;y
t ; ðt;x; yÞA½0;T � 	 R2: ð14Þ

In the following proposition, we prove a uniform Hölder estimate of ue:

Proposition 3.1. Under the above hypotheses, ue verifies estimate (6), i.e. ue is

globally Lipschitz in x; y and Hölder of order 1
2

in t with constant C0

independent of eA½0; 1½:

Proof. Let us consider t1; t2A½0;T � and x1;x2; y1; y2AR and consider the
associated flows. Without loss of generality, we may assume that t1pt2 and
we extend naturally the flows to the whole interval, that means

ðBti ;xi
s ;Y e;ti ;xi ;yi

s ;V e;ti ;xi ;yi
s Þ ¼ ðBti ;xi

ti
;Y e;ti ;xi ;yi

ti
;V e;ti ;xi ;yi

ti
Þ

for any spti; i ¼ 1; 2: We want to estimate jV e;t2;x2;y2
t2 � V

e;t1;x1;y1
t1 j: We adopt

the notation X i ¼ X ti ;xi ;yi for any indexed process that appears in the
expressions and we denote by k0 the Lipschitz constant of f and g w.r.t. the
first spatial variable. For any tA½0;T �; we have

jB2
t � B1

t jpjx2 � x1j þ jBt23t � Bt2 � Bt13t þ Bt1 j;

jY 2
t � Y 1

t jp jy2 � y1j þ
Z t23t

t2

jV2
s � V 1

s j ds þ
Z t24t

t14t

jV 1
s j ds

þ ejWt23t � Wt2 � Wt13t þ Wt1 j;

jV2
t � V 1

t jpE

 
jgðB2

T ;Y
2
T Þ � gðB1

T ;Y
1
T Þj

þ
Z T

t23t

jf ðs;B2
s ;Y

2
s ;V

2
s Þ � f ðs;B1

s ;Y
1
s ;V

1
s Þj ds

þ
Z t23t

t13t

jf ðs;B1
s ;Y

1
s ;V

1
s Þjds jFt

!
:

Summing the two components Y ;V and squaring both sides we obtain

ðjY 2
t � Y 1

t j þ jV2
t � V 1

t jÞ
2
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p E ððk131Þ þ k2Þ
Z T

0

ðjY 2
s � Y 1

s j þ jV 2
s � V 1

s jÞ ds

��
þ ðk2 þ 1Þjy2 � y1j þ k0jx2 � x1j þ ejWt23t � Wt2 � Wt13t þ Wt1 j

þ k2ejWt2 � Wt1 j þ k0ð1þ TÞjBt2 � Bt1 j þ
Z t23t

t13t

jf ðs;Bs; 0; 0Þj ds

þ k2

Z t2

t1

jV1
s j ds þ

Z t24t

t14t

jV1
s j ds

þk1

Z t23t

t13t

ðjY 1
s j þ jV 1

s jÞ dsjFt

��2

:

Chosen a > 0; using Schwartz inequality as before and integrating on ½0;T �;
we have

E

Z T

0

ðjY 2
t � Y 1

t j þ jV2
t � V 1

t jÞ
2 dt

� �
p

Tð1þ aÞEðA2Þ

1� ð1þ 1
a
Þðk131þ k2Þ

2T2
;

where A is a random variable such that

EðA2ÞpE k2
0ð1þ TÞ2jx2 � x1j

2 þ ðk2 þ 1Þ2jy2 � y1j
2

�
þ k2

0ð1þ TÞ2jBt2 � Bt1 j
2 þ ðk2 þ 1Þ2jWt2 � Wt1 j

2

þ ðt2 � t1Þ
Z t2

t1

jf ðs;Bs; 0; 0Þj
2 ds

þ ðk2 þ ðk131ÞÞ2ðt2 � t1Þ
Z t2

t1

ðjY 1
s j þ jV1

s jÞ
2 ds

�
pC1ðjt2 � t1j þ jx2 � x1j

2 þ jy2 � y1j
2Þ;

where

C1 ¼ C1 x1; y1; k0; k1; k2;T ;
1

1� ð1þ 1
a
Þððk131Þ þ k2Þ

2T2

 !

and we used (10), the fact that eo1 and the properties of Brownian motions.

Proceeding as before, we can obtain a similar estimate in the
%%
S2 	

%%
S2 norm

E sup
0ptpT

ðjY 2
t � Y 1

t j þ jV 2
t � V 1

t jÞ
2

� �
pC2ðjt2 � t1j þ jx2 � x1j

2 þ jy2 � y1j
2Þ

for some

C2 ¼ C2 x1; y1; k0; k1; k2;T ;
1

1� ð1þ 1
a
Þððk131Þ þ k2Þ

2T2

 !
:

Since the last estimate holds uniformly in t; it is true also for t1; hence we
obtain estimates (6). &
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4. Existence of a viscosity solution

In this section we show, by using Itô’s formula on the test functions, that
ue; defined in (14), is a viscosity solution of the backward Cauchy problem

1

2
vxx þ

e2

2
vyy þ vvy þ vt ¼ f ð�; vÞ in �0;T � 	 R2; ð15Þ

vðT ; �Þ ¼ g in R2: ð16Þ

It is then clear that, by a straightforward transformation, we also prove the
existence part and estimate (6) in Theorem 1.1. Indeed, it suffices to solve the

forward backward SDE related to *g; f̃; T̃ satisfying the above assumptions
and then impose

*gðx; yÞ ¼ gð2x; 2yÞ; f̃ðt;x; y; vÞ ¼ 2f ð2ðT � tÞ; 2x; 2y; vÞ;

ũeðt; x; yÞ ¼ ueð2ðT � tÞ; 2x; 2yÞ; T̃ ¼
T

2
:

Proposition 4.1. Let eA½0; 1½: The function ue in (14) is a viscosity solution of

problem (15)–(16).

Proof. Since in the previous section we already proved the continuity of the
function ue; it now remains only to prove that it is both a viscosity
subsolution and supersolution. Since the technique is truly the same, we
only show the subsolution case.
By the Markov property and the pathwise uniqueness of the solution, it is

possible to show that a.s. V e;t;x;y
s ¼ ueðs;Bt;x

s ;Y e;t;x;y
s Þ; for any sA½t;T �:

Let us consider a point ðt; x; yÞA½0;T � 	 R2 and a function jAC1;2; with
bounded derivatives, such that

0 ¼ ueðt; x; yÞ � jðt;x; yÞ

is a global maximum for ue � j (without loss of generality we can assume
this maximum to be zero). This means that for any Ft-stopping time t;
necessarily

ueðt;Bt;x
t ;Y e;t;x;y

t Þ � jðt;Bt;x
t ;Y e;t;x;y

t Þp0: ð17Þ

For ease of writing, in the following we omit the superscripts of u;B;Y and
V : Since j is regular we may apply Itô’s formula in the interval ½t; t�; with t
stopping time. By the independence of B and W we obtain

jðt;Bt;YtÞ ¼jðt; x; yÞ þ
Z t

t

jtðr;Br;YrÞ dr þ
Z t

t

jxðr;Br;YrÞ dBr

þ
1

2

Z t

t

jxxðr;Br;YrÞ dr þ
Z t

t

jyðr;Br;YrÞuðr;Br;YrÞ dr

þ
Z t

t

ejyðr;Br;YrÞ dWr þ
e2

2

Z t

t

jyyðr;Br;YrÞ dr:
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On the other hand, by the martingale representation (11), keeping in mind
that by the uniqueness of paths Vr ¼ uðr;Br;YrÞ; we have

uðt;x; yÞ ¼ Vt ¼Vt �
Z t

t

f ðr;Br;Yr;VrÞ dr �
Z t

t

Hr dBr �
Z t

t

Zr dWr

¼ uðt;Bt;YtÞ �
Z t

t

f ðr;Br;Yr;VrÞ dr

�
Z t

t

Hr dBr �
Z t

t

Zr dWr:

Substituting the last two equalities in (17), we conclude

0X uðt;Bt;YtÞ � jðt;Bt;YtÞ

¼ uðt; x; yÞ � jðt; x; yÞ

�
Z t

t

jt þ
1

2
jxx þ

e2

2
jyy þ jyu � f ð�; uÞ

� �
ðr;Br;YrÞ dr

þ
Z t

t

Hr �
1

2
jxðr;Br;YrÞ

� �
dBr

þ
Z t

t

Zr �
e2

2
jyðr;Br;YrÞ

� �
dWr:

By assumption uðt;x; yÞ � jðt;x; yÞ ¼ 0 and taking expectations in the
previous inequality the martingale parts give no contribution, so we can
summarize the inequality by writing

E

Z t

t

Fðr;Br;YrÞ dr

� �
X0; ð18Þ

where

F ¼
1

2
jxx þ

e2

2
jyy þ jyu þ jt � f ð�; uÞ:

To say that u is a subsolution of (15)–(16) means that we must verify that
Fðt;x; yÞX0; since the equality at T is automatically verified, because of the
definition of V :
By contradiction we assume there exists an d0o0 such that Fðt; x; yÞod0

and we define the stopping time

t1 ¼ inf r > t: Fðr;Br;YrÞX
d0
2

� �
4T :

By construction t1 > t a.s. Inequality (18) holds for any stopping time,
therefore also for t1 and we have

0 >
d0
2

Eðt1 � tÞXE

Z t1

t

Fðr;Br;YrÞ dr

� �
X0;

which is a clear contradiction. Hence we proved that u is a subsolution of
(15)–(16).
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Analogously, we can prove that u is a viscosity supersolution of (15)–(16)
and complete the proof. &

5. Uniqueness of the viscosity solution

In this section we prove a comparison principle for viscosity solutions and
Theorem 1.1. We introduce some notations that will be used in the sequel.

We denote h ¼ ðx; yÞ; Dh ¼ ð@x; @yÞ and by D2
h the Hessian matrix w.r.t. the

spatial variables. Moreover, P denotes the parabolic semijet (see [11,
Section 8]). We first state a preliminary lemma whose proof will be omitted.

Lemma 5.1. Let O be an open subset of R3 and z0 ¼ ðt0; h0ÞAO:

If w : O-R and HAC2ðO; �0;þN½Þ; then ða; p;X ÞA %P
2;þ
O wðz0Þ if and only if

ðaH þ wHt; pH þ wDhH ;HX þ 2p#DhH þ wD2
hHÞ

	 ðz0ÞA %P
2;þ
O wHðz0Þ; ð19Þ

where ðp1; p2Þ#ðq1; q2Þ denotes the matrix

p1q1
p1q2þp2q1

2
p1q2þp2q1

2
p2q2

 !
:

An analogous statement holds if %P
2;þ

is replaced by %P
2;�

:

We next prove a comparison result.

Proposition 5.1. Let eA½0; 1½: If u is a subsolution and v is a supersolution of

problem (3)–(4) such that they both verify the Hölder estimate (6), then upv:

Proof. We set SR ¼�0; R½	R2 and we consider the function

Hðt; hÞ ¼ exp
jhj2

1� ð2RÞ�1t
þ st

� �
; ðt; hÞASR: ð20Þ

Since

Hxx þ e2Hyy þ ðu þ vÞHy � Ht

H

¼
4ðx2 þ e2y2Þ

ð1� ð2RÞ�1tÞ2
þ

2

1� ð2RÞ�1t

þ
2yðu þ vÞ

1� ð2RÞ�1t
�

x2 þ y2

2Rð1� ð2RÞ�1tÞ2
� s

and u; v verify estimate (6), it is possible to choose sufficiently large positive

constants R�1;s such that, for every eA½0; 1½;
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sup
SR

Hxx þ e2Hyy þ ðu þ vÞHy � Ht

H
þ k1o0; ð21Þ

where k1 is the Lipschitz constant of f ¼ f ðt;x; y; vÞ w.r.t. the variables y; v:
We prove that upv in SR: By contradiction, we suppose that there exists

%zASR such that uð%zÞ � vð%zÞ > 0:

We consider the following functions defined on ½0; R½	R2:

w ¼
u

H
�

d
R� t

; o ¼
v

H
þ

d
R� t

and we choose d > 0 suitably small so that wð%zÞ � oð%zÞ > 0: We have

lim
jhj-N

ðw � oÞðt; hÞ ¼ �
2d

R� t
o0 ð22Þ

and

lim
t-R�

ðw � oÞðt; hÞ ¼ �N uniformly in hAR2: ð23Þ

By a standard argument, we double the number of spatial variables and we
consider the function

Faðt; h; h0Þ ¼ wðt; hÞ � oðt; h0Þ �
a
2
jh � h0j2; a > 0:

Let ðta; ha; h0
aÞ be a maximum point of Fa in ½0; R½	R2: Such a maximum

exists in view of (22)–(23). Moreover, we have

0owð%zÞ � oð%zÞpFaðta; ha; h
0
aÞp sup

SR

ðw � oÞoþN: ð24Þ

By Lemma 3.1 in [11], we have

lim
a-N

ajha � h0
aj
2 ¼ 0; ð25Þ

so that, by (22) and (24), there exists a compact subset M of R2 such that
ha; h0

aAM for every a > 0: Hence we may suppose that there exists the limit

lim
a-N

ðta; ha; h
0
aÞ ¼ ðt0; h0; h0ÞA½0; R� 	 R2 	 R2:

If t0 ¼ 0; then Faðta; ha; h0
aÞ-� 2dR�1 and this contradicts (24). Hence ta > 0

if a is large. Analogously, by (23) and (24), t0oR: Then Lemma 3.1 in [11]
yields

lim
a-N

Faðta; ha; h
0
aÞ ¼ wðt0; h0Þ � oðt0; h0Þ ¼ sup

½0;R½	R2

ðw � oÞ: ð26Þ

Thus, we may apply Theorem 8.3 in [11] to infer that there exist aAR and
some matrices X w; Yo such that

ða; aðha � h0
aÞ;X

wÞA %P
2;þ
SR

wðta; haÞ;

ða; aðha � h0
aÞ;Y

oÞA %P
2;�
SR

oðta; h0
aÞ
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and

X wpYo: ð27Þ

Since

u ¼ w þ
d

R� t

� �
H; v ¼ o�

d
R� t

� �
H;

by Lemma 5.1, we deduce that

ðdu
t ; ðd

u
x ; d

u
y Þ;X

uÞA %P
2;þ
SR

uðta; haÞ;

ðdv
t ; ðd

v
x; d

v
yÞ;Y

vÞA %P
2;�
SR

vðta; h0
aÞ;

where

du
t ¼ a þ

d

ðR� tÞ2

� �
H þ

u

H
Ht

� �
ðta; haÞ;

ðdu
x ; d

u
y Þ ¼ aðha � h0

aÞH þ
u

H
DhH

� �
ðta; haÞ;

X u ¼ X wH þ 2aðha � h0
aÞ#DhH þ

u

H
D2

hH
� �

ðta; haÞ

and

dv
t ¼ a �

d

ðR� tÞ2

� �
H þ

v

H
Ht

� �
ðta; h0

aÞ;

dv
x; d

v
y

� �
¼ a ha � h0

a

� �
H þ

v

H
DhH

� �
ðta; h0

aÞ;

Y v ¼ YoH þ 2aðha � h0
aÞ#DhH þ

v

H
D2

hH
� �

ðta; h0
aÞ:

Next, since u is a subsolution of (1)–(2), we get

f ð�; �; uÞðta; haÞ � ðX u
11 þ e2X u

22 þ uðta; haÞdu
y � du

t Þ

þ uðta; haÞdv
ypuðta; haÞdv

y ð28Þ

or, by using the expressions above,

f ð�; �; uÞ
H

ðta; haÞ � X w
11 þ e2X w

22 þ 2a xa � x0
a

� �Hx

H
ðta; haÞ

�

þ a ya � y0
a

� �
2e2

Hy

H
ðta; haÞ þ uðta; haÞ

� �
� a �

d

ðR� taÞ
2

�

�
u

H2
ðta; haÞ Hxxðta; haÞ þ e2Hyyðta; haÞ þ uHyðta; haÞ

�

þ Hðta; haÞ
vHy

H
ðta; h0

aÞ � Htðta; haÞ þ aðya � y0
aÞHðta; haÞHðta; h0

aÞ
�

puðta; haÞdv
y : ð29Þ

On the other hand, since v is a supersolution of (1)–(2), we have
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f ð�; �; vÞðta; h0
aÞ � ðY v

11 þ e2Y v
22 þ vðta; h0

aÞd
v
y � dv

t Þ þ uðta; haÞdv
y

Xuðta; haÞdv
y ; ð30Þ

that is,

f ð�; �; vÞ
H

ðta; h0
aÞ � Yo

11 þ e2Yo
22 þ 2aðxa � x0

aÞ
Hx

H
ðta; h0

aÞ
�

þ aðya � y0
aÞ 2e2

Hy

H
ðta; h0

aÞ þ uðta; haÞ þ vðta; h0
aÞ

� �
� a þ

d

ðR� taÞ
2

�

�
v

H2
ðta; h0

aÞ½Hxxðta; h0
aÞ þ e2Hyyðta; h0

aÞ þ ðuðta; haÞ

þ vðta; h0
aÞÞHyðta; h0

aÞ � Htðta; h0
aÞ�Xuðta; haÞdv

y : ð31Þ

Finally, we deduce from (29), (31) and (27) that, for a > 0;

Ia þ JaX
2d

ðR� taÞ
2
> 0; ð32Þ

where

Ia ¼
f ð�; �; vÞ

H
ðta; h0

aÞ �
f ð�; �; uÞ

H
ðta; haÞ þ 2a ha � h0

a;
Hx

H
ðta; haÞ

��

�
Hx

H
ðta; h0

aÞ; e
2 Hy

H
ðta; haÞ � e2

Hy

H
þ

v

2

� �
ðta; h0

aÞ
��

and

Ja ¼
u

H2
ðta; haÞ

"
Hxxðta; haÞ þ e2Hyyðta; haÞ þ uHyðta; haÞ:

þ Hðta; haÞ
vHy

H
ðta; h0

aÞ � Htðta; haÞ

þ aðya � y0
aÞHðta; haÞHðta; h0

aÞ

#

�
v

H2
ðta; h0

aÞ½Hxxðta; h0
aÞ þ e2Hyyðta; h0

aÞ

þ ðuðta; haÞ þ vðta; h0
aÞÞHyðta; h0

aÞ � Htðta; h0
aÞ�:

As a goes to infinity, by the Lipschitz continuity of f ; we have

Ia-
f ð�; �; vÞ

H
ðt0; h0Þ �

f ð�; �; uÞ
H

ðt0; h0Þpk1
u � v

H
ðt0; h0Þ

and

Ja-
u � v

H
ðt0; h0Þ

Hxx þ e2Hyy þ ðu þ vÞHy � Ht

H
ðt0; h0Þ:

Since u�v
H

ðt0; h0Þ > 0; by (21), we have a contradiction. Thus we have proved
that upv in SR: Repeating this procedure finitely many times, we conclude

the proof. &
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We end up with the proof of Theorem 1.1.

Proof of Theorem 1.1. Existence, estimate (6) and uniqueness of the solution
follow from Propositions 4.1, 3.1 and 5.1, respectively.
If e > 0; then ue is a solution of (1)–(2) in the classical sense. Indeed, let us

fix R > 0 and denote

S ¼ fðx; y; tÞ j x2 þ y2oR2; tA�0;T ½g;
*@S ¼ @S-ftoTg:

By the Hölder continuity of ue and since e > 0; it is well-known (cf., e.g., [21])

that there exists a function vAC1þa
2
;2þaðSÞ-CðS,*@SÞ classical solution of

the linear Cauchy–Dirichlet problem

1

2
vxx þ

e2

2
vyy þ uevy � vt ¼ f ð�; ueÞ in S;

vj*@S ¼ uej*@S:

By the comparison principle for viscosity solutions [11, Theorem 8.2], we
have ue ¼ v in S: The thesis follows since R is arbitrary.
We also remark that, if f is a smooth function and e > 0; then a bootstrap

argument shows that ueACN:
Finally, we prove that u is a vanishing viscosity solution in the sense that u

is the limit of ue; uniform on compacts as e-0þ: We first remark that a
weaker result can be directly obtained from the Hölder estimate (6) for ue:
Indeed, Ascoli–Arzela’s Theorem and Cantor’s diagonal argument yield the
existence of a sequence of solutions ðuenÞ convergent uniformly on compacts

of ½0;T � 	 R2 to a function v: Since the convergence is uniform, it is quite
standard (cf., e.g., [22]) to prove that v is a viscosity solution of (1)–(2)
satisfying (6). Therefore, by uniqueness, v coincides with u:
With a bit more effort, we prove the first, stronger assertion. Since the

technique is the same of Proposition 5.1, we only sketch the proof. We fix
R > 0 suitably small so that the function H in (20) is such that

k̂ � sup
eA�0;1½

sup
SR

Hxx þ ðue þ uÞHy � Ht

H
þ k1o0: ð33Þ

We have to show the following:

8R; g > 0; (e0 > 0 s:t: jueðzÞ � uðzÞjpg; 8zA½0; R½	Bð0;RÞ;

eA�0; e0½;

where Bð0;RÞ denotes the Euclidean ball in R2: By contradiction, we assume
that for some R; g > 0 and every e > 0 there exists zeA½0; R½	Bð0;RÞ such that
ðue � uÞðzeÞ > g: We consider the following functions defined on ½0; R½	R2:

we ¼
ue

H
�

d
R� t

; o ¼
u

H
þ

d
R� t
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and we choose d > 0 suitably small and independent of e; so that

weðzeÞ � oðzeÞ > 0: ð34Þ

Proceeding as in the proof of Proposition 5.1, we may prove the existence of
a global maximum ðte0; h

e
0Þ of we � o (see (26)). By (34), since

lim
jhj-N

ðwe � oÞðt; hÞ ¼ �
2d

R� t
o0;

uniformly in e > 0 and d is independent of e; we infer that

sup
eA�0;1½

jhe
0joN: ð35Þ

Then, as in (32), we obtain the following inequality:

I ea þ Je
aX

2d

ðR� taÞ
2
> 0; ð36Þ

where

I ea ¼
f ð�; �; uÞ

H
ðta; h0

aÞ �
f ð�; �; ueÞ

H
ðta; haÞ

þ 2a ha � h0
a;

Hx

H
ðta; haÞ �

Hx

H
ðta; h0

aÞ; e
2 Hy

H
ðta; haÞ

��

�
1

2
ue ðta; h0

aÞ
��

;

and

Je
a ¼

ue

H2
ðta; haÞ

"
Hxxðta; haÞ þ e2Hyyðta; haÞ þ ueHyðta; haÞ

þ Hðta; haÞ
uHy

H
ðta; h0

aÞ � Htðta; haÞ

þ aðya � y0
aÞHðta; haÞHðta; h0

aÞ

#
�

u

H2
ðta; h0

aÞ½Hxxðta; h0
aÞ

þ ueðta; haÞ þ uðta; h0
aÞHyðta; h0

aÞ � Htðta; h0
aÞ�:

We remark explicitly that ðta; ha; h0
aÞ depends on e: By the Lipschitz

continuity of f ; we have

lim
a-þN

Iapk1
ue � u

H
ðte0; h

e
0Þ

and

lim
a-þN

Ja ¼
ue � u

H

Hxx þ ðue þ uÞHy � Ht

H
þ e2

ueHyy

H2

� �
ðte0; h

e
0Þ:

Therefore, by (33) and setting
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ǩ ¼ sup
SR

ueHyy

H2

    
    oN;

we get, as a-þN in (36),

0pk̂
ue � u

H

� �
ðte0; h

e
0Þ þ e2ǩo

k̂g
Hðte0; h

e
0Þ
þ e2ǩ:

By (35), this obviously contradicts the fact that e > 0 is arbitrarily small. &
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