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Abstract

We prove existence, uniqueness and gradient estimates of stochastic differential
utility as a solution of the Cauchy problem for the following equation in R>:

Oxxtt + udyu — Ot = f (-, u),

where f is Lipschitz continuous. We also characterize the solution in the vanishing
viscosity sense.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this paper we consider the following Cauchy problem:

Ue(2) + u(2uy(z) — u(2) = f(z,u(z)), z=(tx,»)€l0,T]x [R?Z, (1)

u(0,) =g in R? )

where, as usual, u, = 0,u and we assume f: ]0, 7] x R’>R and g: R>>R
globally Lipschitz continuous. This problem has been recently considered in

*Corresponding author. Tel.: +39-051-2094428; fax: +39-051-2094490.
E-mail addresses: antonf(@univagq.it (F. Antonelli), pascucci@dm.unibo.it (A. Pascucci).
"Current address: Dipartimento di Matematica Pura ed Applicata, Universita dell’Aquila,
Via Vetoio loc. Coppitol, 67100 L’Aquila, Italy.

0022-0396/02/$ - see front matter © 2002 Elsevier Science (USA). All rights reserved.
PII: S0022-0396(02)00026-8



70 F. Antonelli, A. Pascucci | J. Differential Equations 186 (2002) 69-87

mathematical finance. Antonelli et al. [2] introduced a new model for agents’
decision under risk, in which the utility function is the solution to (1)—(2).
We mention that (1) also arises when studying nonlinear physical
phenomena such as the combined effects of diffusion and convection of
matter (cf. [13]).

Here we prove the existence of a viscosity solution u of (1)—(2) in the sense
of the User’s guide [11], and we characterize it in the vanishing viscosity
sense. In other words, we show that u is the limit, uniform on compacts of
[0, T] x R?> as ¢>0", of the family (#°) of solutions to the regularized
Cauchy problem

Ux + 820, + 00, — 0, = f(,0) in 10, T] x R?, (3)

v(0,) =g in R 4)

This result allows to study the properties of u in the framework of Sobolev
spaces and it has been used in the recent papers by Citti et al. [8,9] to
investigate the regularity of «. In particular, in [9], conditions are given for u
to be smooth.

Before stating our main theorem, we introduce some notations. We set

T = 2(4k; + max{1,2k>})"!, (5)

where k) is the Lipschitz constant of f = f(¢, x, y, v) w.r.t. the variables y, v
and k, is the Lipschitz constant of g = g(x, y) w.r.t. y. We aim to prove the
following.

Theorem 1.1. Let 0<T <T. There exists a unique viscosity solution u of
problem (1)—(2) such that

lu(tr, x1, y1) — u(ty, X2, y2)| < Co(Ix1 — x2| + [y1 — 20),
1
u(t1, x1, y1) — u(t2, x1, YOI < Co(1 + |(x1, y1)DItr — 122 (6)

for every (x1,y1), (xz,yz)eRz,tl,tze[O, T), where Cy is a positive constant
which depends on k| and k,. For every ¢€]0, 1], the regularized problem (3)—(4)
has a unique classical solution u® for which (6) holds with Cy independent of ¢.
Moreover, (U°) converges to u as ¢ goes to zero, uniformly on compacts of

[0, T] x R

In spite of the similar terminology, the concepts of viscosity and vanishing
viscosity solution are not, in general, equivalent. For first-order problems, a
connection between these two notions has been shown by Crandall et al. [10]
and Lions [22]. In the case of linear degenerate elliptic PDEs, the
relationship with the notion of distributional solutions has been studied
by Lions [22] and Ishii [18]. We also refer to Bardi and Capuzzo Dolcetta [3].

Due to the global estimate (6), the uniqueness part of Theorem 1.1 is not
unexpected. The uniqueness of viscosity solutions to fully nonlinear second-
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order PDEs has been investigated by several authors including Crandall,
Ishii, Jensen, Lions, Nunziante, Souganidis, Trudinger (see, e.g.,
[11,17,20,22,25,29]). These results require some structural conditions on
the equation which do not fit for (1).

One of the main characteristics of Eq. (1) is the mixed parabolic—
hyperbolic feature due to the lack of diffusion in the y-direction. We remark
explicitly that (1) includes the Burgers’ equation in the case g = g(y) and
f =0. It is classical to prove the existence of solutions of this kind of
problems, by adding a vanishing diffusion term as in (3), trying to obtain &-
uniform estimates of u°. This can be usually achieved by the Bernstein’s
method [5], differentiating the equation and by using the maximum principle
to estimate the gradient of u®. Yet this method or more sophisticated
versions of it (cf. Barles [4]) do not seem to work in our setting since the
nonlinearity in (1) is not monotone and we allow growths at infinity. From a
PDE viewpoint, these features seem to be non-standard. Moreover, since (1)
is a degenerate second-order equation, regularity results proved by
Caffarelli and Cabre [7], Trudinger [28], Ishii and Lions [19], Bian and
Dong [6], Wang [31,32] do not apply.

Here we present a probabilistic technique which appears to be natural for
the problem. We construct an appropriate system of stochastic differential
equations that are related to our PDE. By proving the existence and
uniqueness for the stochastic system, we deduce the existence of the solution
u and the estimate on the gradient. More precisely, we consider a complete
probability space (2,7, P), on which two independent one-dimensional
standard Brownian motions B, W are defined. We endow this space with the
family of g-algebras {7 },.(o =7 generated in the following manner:

N = {P-null sets of F}, ¥, =a(W,B,s<1),
Fr=()%. Fi=oF o).
s>t
In this way {7 },co. 1) is a filtration (# =7, for s<1) that satisfies the
“usual hypotheses™ (cf. [27]). Chosen a constant ¢€[0, 1[, we consider the
following forward—backward system:

t
Y,”:yo+/ Veds +eW,, (7)
0

T
Ve = E(g(Br. Y5) — / (s, By, Y2, V?) ds| 7). ®)
t

We say that (7)—(8) is solvable if there exists a pair of adapted and integrable
processes (Y%, V¥) that verify the equations P—a.s. We stress that even
under global Lipschitz assumptions, the solution of (7)—(8) may not exist
globally in time. Various authors [14,16,23,26] studied conditions to have
existence and uniqueness in an arbitrary time interval. Those methods do
not apply in our case. Indeed, the first two results are based on monotonicity
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conditions of the coefficients that are not verified here, while the
monotonicity conditions introduced by Pardoux and Tang [26] impose an
analogous restriction of the time interval. The method adopted by Ma et al.
[23], based on the PDE correspondence, instead is applicable only within the
framework of Ladyzhenskaya et al. [21] for semilinear and quasilinear
parabolic PDE:s.

Correspondingly, it is well-known that, even for smooth initial datum g,
the solution of (1)—-(2) may develop discontinuities in finite time. In the
framework of scalar conservation laws, this problem is usually overcome by
interpreting the equation in the distributional sense. For instance, we refer
to Escobedo et al. [13] for a non-local existence and uniqueness theory for
(1)~(2) with bounded and integrable data. In a more general setting,
existence and uniqueness results go back to Vol’pert and Hudjaev [30].

On the other hand, we stress that the assumption on the linear growth of g
is a real obstruction for the global existence of the solution, as the following
example shows.

Example 1.1. In (7)-(8), let us take f = 0, g(x,y) = x + y and assume that
there exists an integrable solution (Y, V) (by integrable we mean at least
E(Y|+|Vi)< + oo for each ¢€[0,T]). By construction, V, = E(Br +
Yr|F,) = B, + E(Yr|#,) is a martingale, hence it has constant expectation
E(V,) = C for all €0, T]. Consequently, the following holds:

T

C=EWV,)=E(Y7) :y+/ E(Vy)ds = C= ﬁ,
0 _
which is defined only if T#1 (actually only for T'<1).
Analogously, problem (3)—(4), for ¢=0, becomes

Uyx + 82uyy +uu, —u, =0 in 10,77 x R,
u0,x,y) =x+y in R?

with solution u(z,x,y) = fl_{ which blows up as t— T = 1". Roughly

speaking, through the classical Hopf transformation [15], the linear growth
of the initial datum for Eq. (1) corresponds to the rate of growth of e for
the heat equation.

On the other hand, if g(x,y) = —x — y, we still have T = 1 in (5), so that
Theorem 1.1 misses the global existence of the solution u(z, x,y) = —f—i{.

The paper is organized as follows. In Section 2, we prove the existence of
a solution (Y%, V*) of (7)~(8). In Section 3, we show that the flows of
solutions associated to (Y?, V') define a deterministic function u® satisfying
(6). In Section 4, we prove that u® is a viscosity solution of a backward
Cauchy problem related to (3)—(4). In Section 5, a comparison principle for
viscosity solutions is established and the proof of Theorem 1.1 is concluded.
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2. Existence
In this section we prove the existence and uniqueness of the solution to
the stochastic differential system (7)—(8) associated to (1)—(2). From now on,

we shall denote by xvy = max(x,y), x Ay = min(x, y) and by

P = {X adapted, progressively measurable processes :

STt

2
§? = { X semimartingales : {E( sup |Xt|2>} <+ o)

- 0<I<T

Bo|—

We refer the reader to [27] for details about the theory of semimartingales
and to [1,24,26] for more information about forward-backward stochastic
differential equations.

We recall that k; denotes the Lipschitz constant of f = f(¢, x, y,v) w.r.t.
the variables y, v and k, the Lipschitz constant of g = g(x, y) w.r.t. y.

Proposition 2.1. Let the foregoing hypotheses hold and let (kv 1+ k)T <1
and €0, 1[. Then there exists a unique solution to (7)~(8) in L* x 2.

Proof. Let us consider the following operator:

F(Y, V),
AY, V), = G(Y. V)

v+ Jy Vids+eW,
E(g(Br. F(Y.V)p) =[] f(s. B Y V) ds| 7))

Then A: %2 x £*— #* x £, as the following shows:

T T
E< / (F|+ G, dr><E< / ((k2+1)|y|+s|w,|+gkz|wf|
0 0
T
+ g(BrO) + / (s, B,,0,0)] ds
0

r 2
+ (k1+k2+1)/ (|YS|+|VS|)ds> dt><oo
0

because of the Lipschitz hypotheses and Jensen inequality.
The space ¥ x #? is a Banach space and under our conditions,
the operator A4 is a contraction. Indeed for any choice of
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(Y2, V%), (Y!, Ve #? x #?, using the global Lipschitz conditions, we have

t

F(Y2, V%), — F(Y', VY, |< / V2 Vs,
0

IG(Y2, V%), — G(Y", V"),

<E<(|g(BT, F(Y?, V1) = gBr, F(Y', V)7)|

T
+ / If‘(sa BS: Yf) I/f) _f(S9 BS: }]xla V51)| ds|gl> .
t

Using the first inequality in the second and summing the two together, we
obtain

IF(Y2, V3, — F(Y', VY| +G(YE V), — G(Y', VY,
T
<(kiv1 +k2)E</ (Y2 =Y +1V? - V;Ddsm).
0

Therefore, integrating on Q2 and from 0 to 7, applying Jensen inequality, we
may conclude

IACY2, V) — ACY, V)l o2
<Uav1+ k)TN VY = (Y VY g2y g2

that is to say A is a contraction, by virtue of our assumption. [

We denote by (Y%, V*) the adapted solution of (7)+8). The bound on the
norm of (Y%, V%) in #2 x #? can be made independent of ¢. As a matter of fact

t
|Y;’|<|y|+/ Vel ds + o W,
0

T
Vi< E<|Q(BT,O)|+k2 [|y|+/ |V£|ds+3|WT|:|
0

+ 6 Bu0.0)] + ka( Y+ VD) ds%).
Since ¢< 1, the above inequalities imply
|YE+ V< E((kl vl +k2)/OT (Y + Ve ds
T (ks + Dl + Wil + kol W]
T lg(Br.0)] + /0 ' 1f(5.B.,0,0) dsl%), )

squaring both sides, employing Schwartz inequality in the form (x4
B*<(1+ i)oc2 + (1 + a)p?* for a suitably large a > 0 and integrating from 0
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to T, we get

T & e >
E(/0 (YA + V2D di

< (1+a)
1= (L4 Yk v+ k)’ T?

1
E((kz + D) + <§+ k2>
T
x T* + Tlg(Br,0)]* + T* / If (s, By, 0,0)|* ds). (10)
0

Plugging this inequality back into (9) and using Doob’s inequality for
submartingales, we also obtain

E( sup (Y] + IVfl)z)

0<1<T

!
<C\| ki,k2,T,a,y,9.f,B, W, )
(1 »T.0.3.0. 1—(1+§)(k1v1+k2)2T2>

which is independent of e.

3. Continuity

Let (Y%, V*) be the adapted solution of (7)~(8) whose existence has been
proved in the previous section. It is to be remarked that, by the martingale
representation theorem, the backward component of our system may be
rewritten as

T
Ve = g(Br, Yr) — / (s, By, Y°, V) ds
t

T T
- / H; dB, —/ Z; dW; (11)
t t
with predictable processes H¢ and Z¢ such that
T
p( [ty + @) < + o
0

With this representation, the continuity in ¢ of the process V¢ follows
directly, since for any #; <t,, we have

th t th
Vi —=Vi :/ S(s, B, YE, V7)) ds+/ H? dBS—i—/ Z:dW;. (12)
1 41 h
The processes H®, Z¢ are in general unknown, but if the coefficients f, g are
differentiable in the spatial variables, by using Malliavin Calculus
techniques, one may have an explicit representation of H, Z.
Since we are in a Brownian environment and the functions g and f are
deterministic, the solution processes Y* V¢ are Markovian, hence by



76 F. Antonelli, A. Pascucci | J. Differential Equations 186 (2002) 69-87

exploiting the Blumenthal’s 0—1 law, one can show that the associated flows
of solutions (cf. [24])

B =x+ B~ B,

s
K““w+/’?”m+dm—wn
t
T
Vo = E(Q(B”“‘, Y — / VAGY: S S 0 drlﬁ) (13)
s

define a deterministic function

ui(t,x,y) = ViU, (4,x,)€l0, T] x R (14)
In the following proposition, we prove a uniform Hdlder estimate of .

Proposition 3.1. Under the above hypotheses, u® verifies estimate (6), i.e. u® is
globally Lipschitz in x,y and Holder of order % in t with constant Cj
independent of ¢€]0, 1].

Proof. Let us consider ¢1,t,€[0,7] and xj,x3,y1,2€R and consider the
associated flows. Without loss of generality, we may assume that #; <t, and
we extend naturally the flows to the whole interval, that means

v v TR X &,1,Xi,)i E,17,X1,)i
(Bé”xl, Yf’tlrxhy!’ Vf,f,,Xz,yz) — (B;;,xl7 Y[,-” 1;)1, V[‘-, i l}l)

for any s<t;, i = 1,2. We want to estimate |V;*"*"* — V""""V1| We adopt
the notation X’ = X’%*Y for any indexed process that appears in the
expressions and we denote by k¢ the Lipschitz constant of f and g w.r.t. the

first spatial variable. For any z€[0, T'], we have
|B? — B;|<|x2 —xi1|+ [Byvi — By, = Byvi + By,
At

vt
|Y,2—Y,1|<|yz—y1|+/ |V3fV;|ds+/ V) ds

15} At

+ 8|W1‘2VI - I/I/Iz - I/I/ll\/[_|_ Wf||n
IV —V/I< E<|g(32, Y2) — g(BY, Y}

T
+ [ V6B YL V)~ f(s B Y, V) ds

LVt
Hhvt

- / If(s,BL, Y}, VDds |7, |.
Hnvt

Summing the two components Y, V' and squaring both sides we obtain
(Y7 = Y|+ V2=V
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T
<{E<«k1v1)+k2>/ (Y2 = Y+ 72— V) ds
0

+ (kz + 1)|yz —y1| +k0|x2 — x| +8|thvt — sz - thvt + Wt1|
hvt

+ koe| Wy, — Wi |+ ko(1 + T)|By, — By | + [/ (s, By, 0,0)| ds

vt
15 h At ]
+ k2/ |V;|ds+/ |V} ds

f At
hvt 2

+k1/ (¥ + |V;|)ds|9a)} |
fvt

Chosen a > 0, using Schwartz inequality as before and integrating on [0, 77,
we have

T 2
E(/ (|Y,2—Y:|+|V3—V:|)2dr)< rA+abA)
0 1—(1—&-%)(]{1\/1—"-](2) T2

where A4 is a random variable such that
E(A)< E(R( + T)1x2 — x1P + (ka + 1?|yr — 31

+ K1+ TY By, — By + (ko + 1| W, — W,
153

+ (1) / (s, By, 0, 0) ds
151

s + Gy v D)6 — 1) / CAr+ a's)

<Gl — 0+ xa — x1 P+ 2 — 1P,

where

1
Ci=C 5 9k9k’k’T’
| 1(’” e 1—(1+},)((k1v1)+kz)2T2>

and we used (10), the fact that ¢ <1 and the properties of Brownian motions.
Proceeding as before, we can obtain a similar estimate in the $ x $% norm

E( sup (Y2 — Y|+ V> — V,‘|)2>
0<1<T

<Co(ta — ti] + [x2 — 1> + [y2 — 1)

for some

1
C :C X1, ;k7k7k7T’ .
5 2( 1, V1, Ko, K1, K2 1_(1+%)((k1\/1)+k2)2T2>

Since the last estimate holds uniformly in ¢, it is true also for ¢, hence we
obtain estimates (6). [
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4. Existence of a viscosity solution

In this section we show, by using It6’s formula on the test functions, that
u®, defined in (14), is a viscosity solution of the backward Cauchy problem

1 ;2 : .
SO S0y 00y + 0 =f(0) in 10,71 x R, (15)
W(T,)=g in R% (16)

It is then clear that, by a straightforward transformation, we also prove the
existence part and estimate (6) in Theorem 1.1. Indeed, it suffices to solve the
forward backward SDE related to §,f, T satisfying the above assumptions
and then impose

g(x’ J’) = g(2x7 2y)7 /;(t’ X, Y, D) = 2f(2(T - t)a 2x7 2}’; U)a

, X . T
a(t,x,y) = u (AT — 1),2x,2y), T= 7

Proposition 4.1. Let ¢€[0, 1[. The function u* in (14) is a viscosity solution of
problem (15)—(16).

Proof. Since in the previous section we already proved the continuity of the
function u*, it now remains only to prove that it is both a viscosity
subsolution and supersolution. Since the technique is truly the same, we
only show the subsolution case.

By the Markov property and the pathwise uniqueness of the solution, it is
possible to show that a.s. V"% = u?(s, BL*, Y#=*7), for any se[t, T.

Let us consider a point (z,x, ) [0, T] x R? and a function @ e C'2, with
bounded derivatives, such that

0= us(t9x7y) - (p(ta xay)

is a global maximum for u* — ¢ (without loss of generality we can assume
this maximum to be zero). This means that for any % ,-stopping time 7,
necessarily

u'(t, B, Yo — o(x, BYY, Yo <0. (17)
For ease of writing, in the following we omit the superscripts of u, B, Y and

V. Since ¢ is regular we may apply It6’s formula in the interval [z, 7], with ©
stopping time. By the independence of B and W we obtain

(p(fs B‘L’a Y‘E) - (p(ta X,)/) + / (P;(r, B}‘) )/7) dr + / (/)x(ra Bra Yr) dBI
t t

1 T T
+ 5/ (pxx(ra Bra Yr) dr + / (py(ra Bra Yr)u(ra Br’ YV) d}"
t t

T 82 T
+ / 20,(r. By, V) dW, 5 / 9y(r. B, Y,) d.
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On the other hand, by the martingale representation (11), keeping in mind
that by the uniqueness of paths V, = u(r, B,, Y,), we have

ut,x,y)=V, =V, — / f(r,B, Y., V,)dr — / H, dB, — / Z,dW,
t t t

- H(T, B‘Ea Y‘[) - / f(r? B)‘: Yr’ I/)) dr
t

—/ H,.dBr—/ Z,dW,.
t t

Substituting the last two equalities in (17), we conclude
0> u(z, B, Yo) — ¢(t, B;, Y7)
= u([’ X,y) - (,D(t, X,y)

K 1 &
- / <qot + E Dex =+ 5 (pyy =+ (Pyu 7f(’ M)> (V, Br, Yr) dr
t

t 1
+ / (Hl - E QDx(l’, Br» Yl)) dBr
t

T 82
+ / (Z; - E (py(rs Bra K)) dWr
t

By assumption u(t,x,y) — ¢(t,x,y) =0 and taking expectations in the
previous inequality the martingale parts give no contribution, so we can
summarize the inequality by writing

E ( / o(r, B,, Y,) dr) >0, (18)
t
where
1 &
P = 5 Pxx + E (pyy + (pyu + @, _f(» Ll)

To say that u is a subsolution of (15)—(16) means that we must verify that
&(t,x,y)=0, since the equality at T is automatically verified, because of the
definition of V.

By contradiction we assume there exists an dy <0 such that &(z, x, y) <Jy
and we define the stopping time

b}
7 = inf{r >t &(r, B,, 1/,,)230} AT.

By construction 7| >t a.s. Inequality (18) holds for any stopping time,
therefore also for 7; and we have

0> e, - r)>E( / o, B, V) dr> >0,
t

which is a clear contradiction. Hence we proved that u is a subsolution of

(15)(16).
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Analogously, we can prove that u is a viscosity supersolution of (15)—(16)
and complete the proof. [

5. Uniqueness of the viscosity solution

In this section we prove a comparison principle for viscosity solutions and
Theorem 1.1. We introduce some notations that will be used in the sequel.
We denote h = (x,y), D = (0x,0y) and by D% the Hessian matrix w.r.t. the
spatial variables. Moreover, & denotes the parabolic semijet (see [I1,
Section 8]). We first state a preliminary lemma whose proof will be omitted.

Lemma 5.1. Let O be an open subset of R® and zy = (1o, ho) € O.
If w: 0->R and He C*(0,]0, + o), then (a, p, X)e@?fw(zo) if and only if
(aH + wH,,pH + wD,H, HX + 2p® D;H + wD}H)
x (z0)€ 24 wH(z), (19)
where (p1,p2) ®(q1,q2) denotes the matrix

2+p2g
P1q1 Piq 2P7 q1
P1g2+p2q1 :
2 P2q2

An analogous statement holds if 77" s replaced by 2
We next prove a comparison result.

Proposition 5.1. Let ¢€[0, 1[. If u is a subsolution and v is a supersolution of
problem (3)—(4) such that they both verify the Holder estimate (6), then u<v.

Proof. We set S, =0, o[xR? and we consider the function
Il

H(l, /’l) = €Xp <W

+ az>, (t,h)€eS,. (20)

Since
H, + SzHyy +(u+ U)Hy - H,

H
AP 4D 2
S (1-Qo 1-Qo
29(u + v) X2 4 y?

1= 't 200 -0 "
and u, v verify estimate (6), it is possible to choose sufficiently large positive
constants o~ !, ¢ such that, for every ¢€[0, 1],
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up Hxx + 82Hyy + (u+ U)Hy - H)‘

su - + ky <0, Q1)

where k; is the Lipschitz constant of f = f(¢, x, y, v) w.r.t. the variables y, v.
We prove that u<v in S,. By contradiction, we suppose that there exists
Ze S, such that u(z) — v(z) > 0.
We consider the following functions defined on [0, o[ x R*:
u 0 v 0

H o-7¢ C=H o—t

and we choose 6 > 0 suitably small so that w(Z) — w(Z) > 0. We have

lim (w— w)(t,h) = — 20 <0 (22)
|h|— oo o—t
and
tlim(‘v — w)(t,h) = —oo uniformly in heR>. (23)

By a standard argument, we double the number of spatial variables and we
consider the function

®,(1, 0, ') = w(t, h) — a1, ) — % h— K], a>0.

Let (ty,hy, /1) be a maximum point of @, in [O,Q[sz. Such a maximum
exists in view of (22)—(23). Moreover, we have

0<w(2) — 0(2) < Py(ty, My, ) < sup(w — w)< + 0. (24)

By Lemma 3.1 in [11], we have
lim alh, — H)* =0, (25)
o — 00
so that, by (22) and (24), there exists a compact subset M of R? such that
hy, hl, € M for every o > 0. Hence we may suppose that there exists the limit
lim (£, hy, ) = (t0, ho, ho) €[0, 0] x R* x R
o — 00
If 1o = 0, then D,(t,, hy, h)—> — 250~ and this contradicts (24). Hence t, > 0

if o is large. Analogously, by (23) and (24), to<e. Then Lemma 3.1 in [11]
yields

lim @,(t,, hy, i) = w(to, ho) — (o, ho) = sup (w — w). (26)
e [0,0[xR?

Thus, we may apply Theorem 8.3 in [11] to infer that there exist aeR and
some matrices X", Y® such that

(a,ohy — W), X") e P25 W(ty, 1),
(a, oy — ), Y*)e 25 oty 1)
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and
X'"<Y®. 27

Since

U= (w—|—L>H, V= (w—L>H,
o—t e—1

by Lemma 5.1, we deduce that
(' (Y, d), XY e 75, ults, o),
(d/,(dy,d)), Y”)e“fs V(s h,),

where
) u
d;l == <<G+W)H +EHI) (txsha),
(dy,dy) = (o&(ha — H)H + %DhH) (1, ha),

X — ( X"H + 20(h, — i) ® DyH + %DgH)(za, hy)

v ((a-— % \g4 b /
(e
(i) = (a(ha = B H + 5 Do ) (1 1)),
v* = (YOH + 20(h, — B) @ DyH + 1 DYH ) (1, 1),

and

Next, since u is a subsolution of (1)—(2), we get
SComs)ty hy) = (X1 + & X5y + ulty, hy)dy — dy)
s, ) <u(t, h,)d; (28)
or, by using the expressions above,

f(’ ’u)

(ty hy) — [X;‘l + &2 X505 + 20 (x, — x;)#(t“,ha)

! 0
) (20 e k) a2

H2 (s zx)[ ex(tas o) + 62Hyy(lcxs hy) + uH, (2, hy)

+ Htyhy) y(la, o) — Hilty hy) + oy _y;)H(laahoc)H(lscah;)}
Sul(ty, hy)d,. (29)

On the other hand, since v is a supersolution of (1)—(2), we have
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S0t ) — (YD + &2 Y3 + v(ty, B)dE — dY) + u(ty, hy)d]

2 u(toca hC{)dL:’ (30)
that is,
H,
f(’ ’ )(t“,h;) — [Yﬁ + ¢ Yfﬁ + 20(x, — X)) ?(la,h;)
0
+ Of(yoc - y;) (282_y (lls h;) + u(tota ha) + U(tm h;)) —da + 7:|
H (Q - ta)z
%(tob h;)[[—lxx(taa a) + & H, y(ttY: a) + (u(ty, hy)
+ vty M))H (1o, 1) — Hi(ty, )] = ulty, h)d). (31
Finally, we deduce from (29), (31) and (27) that, for o >0,
2
L2 s, (32)
(Q - tsc)
where
7f(',',l)) 7f(ss ) / &
L =" (0 ) (tas ) + 22 By = o (2 (1 )
H, H H,
_? (toc, h;)i 82#(%{3}1&) - <82F) + )([m )) >
and

Dt (Za, Ot) [ \”\”(t(xa h ) + 8 ’y(tocs hot) + tu(louhac)-
+ H(tyhy) y (ta, 1) — Hi(ta, 1)
+ vy — V) H(ty, hy) H (ta,h;)]

v
- ﬁ (tcu h;)[Hxx(tou h;) + SzHyy([ou h;)

+ Wty hy) + 0(to, 1)) H (10, 1) — Hity, I1)].
As o goes to infinity, by the Lipschitz continuity of f, we have

f'('n'av) f(‘,',l/l) u—v
EVASKLY) <
I,— 7, (to, ho) I (to, ho) <k 7 (to, ho)
and
_ - 2H. o
Tty oy e F o W O 0

H

Since “Z* (1o, ho) > (), by (21), we have a contradiction. Thus we have proved
that u<v in S,. Repeating this procedure finitely many times, we conclude
the proof. [



84 F. Antonelli, A. Pascucci | J. Differential Equations 186 (2002) 69-87
We end up with the proof of Theorem 1.1.

Proof of Theorem 1.1. Existence, estimate (6) and uniqueness of the solution
follow from Propositions 4.1, 3.1 and 5.1, respectively.

If ¢ > 0, then u° is a solution of (1)—(2) in the classical sense. Indeed, let us
fix R> 0 and denote

S={(,y, 0|5+ <R, 1€]0, T[},
0S =aSn{t<T}.
By the Hélder continuity of #* and since ¢ > 0, it is well-known (cf., e.g., [21])

that there exists a function ve C'*329(S) A C(SUBS) classical solution of
the linear Cauchy—Dirichlet problem

1 &2 , _
5 Uxx + 5 Uy + v, — v, = f(,u°) in S,
Uas = 'l

By the comparison principle for viscosity solutions [11, Theorem 8.2], we
have u* = v in S. The thesis follows since R is arbitrary.

We also remark that, if / is a smooth function and ¢ > 0, then a bootstrap
argument shows that u®e C*.

Finally, we prove that u is a vanishing viscosity solution in the sense that u
is the limit of #°, uniform on compacts as ¢—0". We first remark that a
weaker result can be directly obtained from the Hdélder estimate (6) for uf.
Indeed, Ascoli—Arzela’s Theorem and Cantor’s diagonal argument yield the
existence of a sequence of solutions (u#*) convergent uniformly on compacts
of [0, T] x R* to a function v. Since the convergence is uniform, it is quite
standard (cf., e.g., [22]) to prove that v is a viscosity solution of (1)—(2)
satisfying (6). Therefore, by uniqueness, v coincides with u.

With a bit more effort, we prove the first, stronger assertion. Since the
technique is the same of Proposition 5.1, we only sketch the proof. We fix
0 > 0 suitably small so that the function H in (20) is such that

A Hxx‘i’(ul;‘i’u)Hy*Hf
k= sup sup
cel0 1S, H

+ ky <0, (33)

We have to show the following:
VR, v>0, J¢ >0 s.t |[u(z) —u(2)|<y, Vzel0,9[xB(0,R),
¢€]0, &,

where B(0, R) denotes the Euclidean ball in R?. By contradiction, we assume
that for some R,y > 0 and every ¢ > 0 there exists z° €[0, g[ x B(0, R) such that

(u® — u)(z%) > y. We consider the following functions defined on [O,Q[XRZZ
w6 w0
H o-7¢ H o—t

wh
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and we choose ¢ > 0 suitably small and independent of &, so that
w'(z%) — w(z%) > 0. (34)
Proceeding as in the proof of Proposition 5.1, we may prove the existence of
a global maximum (¢, i) of w* — w (see (26)). By (34), since
. 20
‘hl‘l_r)noo W — w)(t,h) = — E<O,
uniformly in ¢ > 0 and ¢ is independent of ¢, we infer that

sup || < co. (35)
e€]0,1]

Then, as in (32), we obtain the following inequality:

I +J§>—25 5> 0, (36)
(0 —tw)
where
f(':'?u) / f( L) L)
IS == ’Zah - oy Fhor
s = () (12, )

/ X Hx / 2 Hy
- 7 - 7 > Ty Lo hy
+ 2a<h(x hgp <H(tocah%) H (t%ﬂ ha)as H([ )

_% ug (lou h;)) >9

(txaha)[ ol 1) + & Hyy (1, hy) + 6 Hy (8, hy)

and

+ H(tc{a 1) } (ZOU ) Hl(lc{)hot)

+ Of(yo: y;)H(ta,ha)H(ta,h;)] *%(Za, a)[Hw(toca 1)

+ Uty hy) + ults, W) Hy(to, ) — Hi(ts, )],

We remark explicitly that (#,,%,,/4,) depends on ¢ By the Lipschitz
continuity of f, we have

8
lim L <ky (15, 1)
and
: _ (W —uHo+ W+ uwH, —H S utHy\
al}rpx Jy = ( I T +¢& H2 (25, 1g)-

Therefore, by (33) and setting
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v u‘H,
k= Yy
S?gp 78 < 00,
we get, as o — + oo in (36),
Ry .
0<k &, 2 + k.
(5"t s+

By (35), this obviously contradicts the fact that ¢ > 0 is arbitrarily small. [
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