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Efficient XVA computation under local Lévy models

Anastasia Borovykh*, Andrea Pascuccif, and Cornelis W. Qosterleef

Abstract. Various valuation adjustments, or XVAs, can be written in terms of non-linear PIDEs equivalent to FB-
SDEs. In this paper we develop a Fourier-based method for solving FBSDEs in order to efficiently and
accurately price Bermudan derivatives, including options and swaptions, with XVA under the flexible
dynamics of a local Lévy model: this framework includes a local volatility function and a local jump
measure. Due to the unavailability of the characteristic function for such processes, we use an asymptotic

approximation based on the adjoint formulation of the problem.
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1. Introduction. After the financial crisis in 2007, it was recognized that Counterparty Credit
Risk (CCR) poses a substantial risk for financial institutions. In 2010 in the Basel III framework an
additional capital charge requirement, called Credit Valuation Adjustment (CVA), was introduced
to cover the risk of losses on a counterparty default event for over-the-counter (OTC) uncollateral-
ized derivatives. The CVA is the expected loss arising from a default by the counterparty and can
be defined as the difference between the risky value and the current risk-free value of a derivatives
contract. CVA is calculated and hedged in the same way as derivatives by many banks, therefore
having efficient ways of calculating the value and the Greeks of these adjustments is important.

One common way of pricing CVA is to use the concept of expected exposure, defined as the
mean of the exposure distribution at a future date. Calculating these exposures typically involve
computationally time-consuming Monte Carlo procedures, like nested Monte Carlo schemes or
the more efficient least squares Monte Carlo method (LSM)([19]). Recently the Stochastic Grid
Bundling method (SGBM) was introduced as an improvement of the standard LSM ([15]). This
method was extended to pricing CVA for Bermudan options in [10]. Another recently introduced
alternative is the so-called finite-differences Monte Carlo method (FDMC), see [7]. The FDMC
method uses the scenario generation from the Monte Carlo method combined with finite-difference
option valuation.

Besides CVA, many other valuation adjustments, collectively called XVA, have been introduced
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in option pricing in the recent years, causing a change in the way derivatives contracts are priced.
For instance, a companies own credit risk is taken into account with a debt value adjustment (DVA).
The DVA is the expected gain that will be experienced by the bank in the event that the bank
defaults on its portfolio of derivatives with a counterparty. To reduce the credit risk in a derivatives
contract, the parties can include a credit support annex (CSA), requiring one or both of the parties
to post collateral. Valuation of derivatives under CSA was first done in [23]. A margin valuation
adjustment (MVA) arises when the parties are required to post an initial margin. In this case the
cost of posting the initial margin to the counterparty over the length of the contract is known as
MVA. Funding value adjustments (FVA) can be interpreted as a funding cost or benefit associated
to the hedge of market risk of an uncollateralized transaction through a collateralized market.
While there is still a debate going on about whether to include or exclude this adjustment, see [14],
[13] and [5] for an in-depth overview of the arguments, most dealers now seem to indeed take into
account the FVA. The capital value adjustment (KVA) refers to the cost of funding the additional
capital that is required for derivative trades. This capital acts as a buffer against unexpected losses
and thus, as argued in [12], has to be included in derivative pricing.

For pricing in the presence of XVA, one needs to redefine the pricing partial differential equation
(PDE) by constructing a hedging portfolio with cashflows that are consistent with the additional
funding requirements. This has been done for unilateral CCR in [23], bilateral CCR and XVA in
[2] and extended to stochastic rates in [17]. This results in a non-linear PDE.

Non-linear PDEs can be solved with e.g. finite-difference methods or the LSM for solving
the corresponsing backward stochastic differential equation (BSDE). In [24] an efficient forward
simulation algorithm that gives the solution of the non-linear PDE as an optimum over solutions of
related but linear PDEs is introduced, with the computational cost being of the same order as one
forward Monte Carlo simulation. The downside of these numerical methods is the computational
time that is required to reach an accurate solution. An efficient alternative might be to use Fourier
methods for solving the (non-)linear PDE or related BSDE, such as the COS method, as was
introduced in [8], extended to Bermudan options in [9] and to BSDEs in [25]. In certain cases the
efficiency of these methods is further increased due the ability to the use the fast Fourier transform
(FFT).

In this paper we consider an exponential Lévy-type model with a state-dependent jump mea-
sure and propose an efficient Fourier-based method to solve for Bermudan derivatives, including
options and swaptions, with XVA. We derive, in the presence of jumps, a non-linear partial integro-
differential equation (PIDE) and its corresponding BSDE for an OTC derivative between the bank
B and its counterparty C' in the presence of CCR, bilateral collateralization, MVA, FVA and KVA.
We extend the Fourier-based method known as the BCOS method, developed in [25], to solve the
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BSDE under Lévy models with non-constant coefficients. As this method requires the knowledge
of the characteristic function of the forward process, which, in the case of the Lévy process with
variable coefficients, is not known, we will use an approximation of the characteristic function ob-
tained by the adjoint expansion method developed in [21], [20] and extended to the defaultable
Lévy process with a state-dependent jump measure in [1]. Compared to other state-of-the-art
methods for calculating XVAs, like Monte Carlo methods and PDE solvers, our method is both
more efficient and multipurpose. Furthermore we propose an alternative Fourier-based method for
explicitly pricing the CVA term in case of unilateral CCR for Bermudan derivatives under the local
Lévy model. The advantage of this method is that is allows us to use the FFT, resulting in a
fast and efficient calculation. The Greeks, used for hedging CVA, can be computed at almost no
additional cost.

The rest of the paper is structured as follows. In Section 2 we introduce the Lévy models with
non-constant coefficients. In Section 3 we derive the non-linear PIDE and corresponding BSDE for
pricing contracts under XVA. In Section 4 we propose the Fourier-based method for solving this
BSDE and in Section 5.1 this method is extended to pricing Bermudan contracts. In Section 5.2
an alternative FFT-based method for pricing and hedging the CVA term is proposed and Section

6 presents numerical examples validating the accuracy and efficiency of the proposed methods.

2. The model. We consider a defaultable asset Sy whose risk-neutral dynamics are given by
Si=1pcge™,
dX; = p(t, X;)dt + o(t, X;)dW; + /quNt(t,Xt_, dq),
(1) ANy(t, Xy, dq) = dNy(t, X, dq) — a(t, X;_)v(t, dq)dt,
(=inf{t>0: /Ot (s, Xs)ds > €},
where dNt(t, Xi—,dq) is a compensated random measure with state-dependent Lévy measure
v(t, Xi—,dq) = a(t, Xi—)v(dg).

The default time ¢ of S; is defined in a canonical way as the first arrival time of a doubly stochastic
Poisson process with local intensity function ~(¢,x) > 0, and € ~ Exp(1) and is independent of
X;. This way of modeling default is also considered in a diffusive setting in [4] and for exponential
Lévy models in [3]. Thus our model includes a local volatility function, a local jump measure, and
a default probability which is dependent on the underlying. We define the filtration of the market
observer to be G = FXVFP where FX is the filtration generated by X and 7 := o({¢ < u},u <
t), for t > 0, is the filtration of the default. Using this definition of default, the probability of
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default is
(2) PD(t) :=P(C <t) =1 — e~ Jov(s)ds,

We assume furthermore

/ eldla(t, 2)v(dg) < .
R

If we were to impose that the discounted asset price S; := e~ "S; is a G-martingale, we get the

following restriction on the drift coefficient:

o(t, )

w(t,x) =~(t,x) +r— —a(t,z) /R v(dg)(e? —1—q),

with r being the risk-free (collateralized) rate. In the whole of the paper we assume deterministic,
constant interest rates, while the derivations can easily be extended to time-dependent rates. The

integro-differential operator of the process is given by (see e.g. [22])

o2(t, )
Lu(t,x) =0wu(t, x) + p(t, x)0pu(t, z) — vy(t, x)u(t,x) + ——=

Ozzu(t, x)
+alt.a) [ vlda)(utt.o +) = ult,z) — adsut. o),

3. XVA computation. Consider the bank B and its counterparty C, both of whom might
default. Assume the dynamics of the underlying as in (1) with (¢, 2) = 0. Define (¢, ) to be the
value to the bank of the (default risky) portfolio with valuation adjustments referred to as XVA

and u(t,z) to be the risk-free value. Note that the difference between these two values,
TVA = a(t,z) — u(t, x),

is called the total valuation adjustment and in our setting this consists of

(3) TVA = CVA 4+ DVA + KVA 4+ MVA + FVA.

The risk-free value u(t, z) solves a linear PIDE:

(4) Lu(t,x) = ru(t, x),
u(T, x) = ¢(x),

where L is given in (2) with v(¢,2) = 0 . Assuming the dynamics in (1), this linear PIDE can be
solved with the methods presented in [1].
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3.1. Derivative pricing under CCR and bilateral CSA agreements. In [2], the authors derive
an extension to the Black-Scholes PDE in the presence of a bilateral counterparty risk in a jump-to-
default model with the underlying being a diffusion, using replication arguments that include the
funding costs. In [17] this derivation is extended to a multivariate diffusion setting with stochastic
rates in the presence of CCR, assuming that both parties B and C are subject to default. To
mitigate the CCR, both parties exchange collateral consisting of the initial margin and the variation
margin. The parties are obliged to hold regulatory capital, the cost of which is the KVA and face the
costs of funding uncollateralized positions, known as FVA. Both [2] and [17] extend the approach
of [23], in which unilateral collateralization was considered. We extend their approach to derive
the value of @(t,x) when the underlying follows the jump-diffusion defined in (1). We assume
a one-dimensional underlying diffusion and consider all rates to be deterministic and, for ease of
notation, constant. The classical pricing theory assumes that market participants can freely borrow
and lend, without the necessity of exchanging collateral, at a single risk-free interest rate. Here
we take a more realistic approach and specify different rates, defined in 3.1, for different types of

lending.

Rate | Definition

r the risk-free rate

TR the rate received on funding secured by the underlying asset
D the dividend rate in case the stock pays dividends

rE the rate received on unsecured funding

B the yield on a bond of the bank B

re the yield on the bond of the counterparty C
AB ABp:=rp—r

Ao Ao i=rg—r

AR Api=rp—r

Rp the recovery rate of the bank

Ro | the recovery rate of the counterparty
Table 3.1

Definitions of the rates used throughout this chapter.

Assume that the parties B and C' enter into a derivatives contract on the spot asset that pays
the bank B the amount ¢(X;) at maturity 7. The value of this derivative to the bank at time t
is denoted by a(t,z, JB,J ©) and depends on the value of the underlying X and the default states
JB and J¢ of the bank B and counterparty C.

The cashflows are viewed from the perspective of the bank B. At the default time of either
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the counterparty or the bank, the value of the derivative to the bank (¢, x) is determined with
a mark-to-market rule M, which may be equal to either the derivative value (¢, x,0,0) prior to
default or the risk-free derivative value u(¢, x), depending on the specifications in the ISDA master
agreement. Denote by 78 and 7€ the random default times of the bank and the counterparty
respectively. Define I7¢ to be the initial margin posted by the bank to the counterparty, I the
initial margin posted by the counterparty to the bank and I'(t) to be the variation margin on
which a rate r; is paid or received. The initial margin is constant throughout the duration of the
contract and K () is the regulatory capital on which a rate of rx is paid/received. We will use the
notation z* = max(z,0) and 2= = min(z,0). In a situation in which the counterparty defaults,
the bank is already in the possession of IV 4 I7C. If the outstanding value M — (IV + IFC) is
negative, the bank has to pay the full amount (M — IV — I¥¢)~ while if the contract has a positive
value to the bank, it will recover only Ro(M — IV — I¥¢)*. Using a similar argument in case the

bank defaults, we find the following boundary conditions:

08 .= u(t,,1,0) =1V =179 + (M — 1V + ITHT + RB(M — 1V + 179",
0° == u(t,z,0,1) =1V + 'Y + RE(M — 1V - TF)Vr (M -1V — 179)~,

so that the portfolio value at default is given by

0, = 17.C<7.30$ + 17_B<7_097].8,

with 7 = min(7?, 7¢). Further we introduce the default risky, zero-recovery bonds (ZCBs) P? and

PC with respective maturities TP and T¢ and face value one if the issuer has not defaulted, and

zero otherwise. The dynamics of PB and P¢ are given by

dPP = rpPPdt — PPdJB,
dP’ =rcPCdt — PCdJC,

where JP = 1.8« and JC = 1.c<;. Both counting processes JB, JC are two independent point
processes that jump from zero to one on default of B and C with intensities 77 and v, respectively.
We construct a hedging portolio consisting of the shorted derivative, A units of X, g units of

cash, oo units of P¢ and ap units of PE:
I(t) = —a(t, z) + A@t) X, + ap(t)PP + ac(t)PE + g(t).

The shares position provides a dividend income of rpA(t) X;dt and requires a financing cost of
rrA(t) X¢dt. The seller will short the counterparty bond through a repurchase agreement and incur

the financing costs of —rac(t)PF, assuming no haircut. The cashflows from the collateralization
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EFFICIENT XVA COMPUTATION UNDER LOCAL LEVY MODELS 7

follow from the rate rp¢ received and rgo paid on the initial margin and the rate r; paid or received

on the collateral, depending on whether IV > 0 and the bank receives collateral or IV < 0 and the

bank pays collateral repectively. From holding the regulatory capital we incur a cost of rx K(t).

Finally, the rates r and rg are respectively received or paid on the surplus cash in the account:

—a(t,x) — IV(t) + ITY — ap(t)PP. Thus, the change in the cash account is given by

dg(t) =[(rp — rr)A)X; — rac(t)PE + rrelre — rrelpe — ril” (t) — r K (t)
+r(—a(t,x) = IV (t) + Irc — ap(t)PP) + Ap(—a(t, x) — IV (t) + Irc — ap(t) )" ]dt.

Assuming the portfolio is self-financing we have

dIL(t) = — di(t, z) + A(t)dX; + ap(t)dPE + ac(t)dPE + dg(t)

=—du(t,x) + A(t)u(t,x)dt + A(t)o(t, x)dWs + A(t) / qdNy(t, X,_, dq)
R

+ ap(t)dPP + ac(t)dPE + dg(t).

Applying 1t6’s Lemma to 4(t, z) gives us:

du(t, x) =Lu(t, x)dt + o(t, x)0,0(t, x)dW; + /(ﬁ(t, x4 q) — a(t,z))dN(t, z,dq)

R
— (08 —a(t, x))dJP — (09 — a(t,x))dJE .

Thus, we find,

Al = — La(t, 2)dt — o(t, 2)dyi(t, 2)dW, — / (ilt, z + q) — i(t, 2))dN (£, X,_, dg)

By choosing

R
+ (08 —a(t,z))dJP + (0° — a(t,x))dJE

+ A(t)o(t, z)dW; + A(t) / qdNy(t, X;_,dq) — oB(t)PBdJP — oC(t)PC dJF
R

+[A@®) (u(t, ) + (rp — 7r)T) + P (AR PF + ()M P

+ (rpe + T)ITC — rpclfC — (rr + T)Iv(t) —rrgK(t) + ra(t, x)

+ Ap(—a(t,z) — IV (t) + ITC — oB(t) PP) " ]dt.
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we hedge the Brownian motion and jump-to-default risk in the hedging portfolio, i.e.,

dIl = — La(t, z)dt — /
R

+ [0ptu(t, z) (u(t, ) + (rp — rr)x) — (68 — a(t,2))Ap — (8¢ — a(t, ) \c
+ (rre + 1) ITC —rpeIFC — (rp + 7)1V (t) — rc K (t) + ri(t, z)
+ Ap(08 = IV (t) + 179)7dt.

(a(t,x + q) — (t,z))dN(t, X;_, dq) + Oy 0(t, a:)/ qdNy(t, X;_, dq)
R

Notice that we are in an incomplete market, as it is not possible to choose A(t) such that the
portfolio is risk-free (due to the presence of the state-dependent jumps). Following standard ar-
guments, see e.g. [11] and [6], we assume that an investor holds a diversified portfolio of several
hedging portfolios and that the jumps for the different portfolios are uncorrelated. The variance of

this ‘portfolio of portfolios’ will then be small and the expected return on the portfolio is given by
E[dII] = 0.

The assumption of the jump risk being diversifiable is valid if the jump parameters are adjusted
to contain the so-called market price of risk, as can be done by e.g. fitting them from the market.
We find the pricing PIDE to be

(5) Lu(t,z) =f(t,z,u(t,x), 0yu(t, z)),
where we have defined
f(t,x,a(t, x), Op0(t, 2)) =0, a(t, x)(u(t,z) + (rp — rr)x) — (05 (t) — a(t,x))\p
— (0°(t) — a(t,z))Ae + (rre + )T —rpe IS — (rp + 7)1V (1)
—rgK(t) +ra(t,z) + Ap(0P — 1V () + 179)",
and used
E [ /R (alt, z + q) — a(t, z) — 200(t, 2))dN (£, X g)| =0,
due to the jump measure being compensated.

3.2. BSDE representation. In this section we will cast the PIDE in (5) in the form of a
Backward Stochastic Differential Equation. We begin by recalling the non-linear Feynman-Kac

theorem in the presence of jumps, see e.g. [16].

Theorem 1 (Non-linear Feynman-Kac Theorem). Consider X; as in (1) and the BSDE
T T
Vim o)+ [ f (XY Zualo Xoo) [ Vidsawtan ) as = [ zaw,
R t

©) [ [ vwasis. x0,



228

229

230
231

246
247

248

249
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where 6(t,q) is a non-negative function such that [ 16(s, q)|*v(dg) < oo, T is the time horizon, f
is the generator and ¢ is the terminal condition. The functions u, o, a and the generator f are
assumed to be uniformly Lipschitz continuous in the space variables, for allt € [0, T]. Consider the
non-linear PIDE

Lu(t, z) = f(t 3, u(t, 2), pu(t, 2)o(t,2), alt, 2) fy (ult, + g) — u(t, 2))5(¢, Q) (dg)),

w(T, x) = ().

If the PIDE in (7) has a solution u(t,z) € C%2, the solution (Y, Zy,V;) of the FBSDE in (6) can

be represented as

}/st’x = u(87 X?x)?

Z8" = Opu(s, XE%)o (s, X17),

VE(q) = u(s, X0* + q) — u(s, X17), qER,
for all s € [t,T], where Y is a continuous, real-valued and adapted processes and where Z and V
are continuous, real-valued and predictable processes.

In our case, the BSDE corresponding to the PIDE in (5) is given by

(8) o(X7) + /stS,YS,Z)ds—/t ZydW, — // q)dN (s, X, dq),

where we have defined the driver function to be

f(tsa,y,2) =20 (t, @) (u(t,x) + (rp — rr)z) = Ap(0° —y) — Ao (07 —y)
+ (rre + )T —rpeIFC — (rp + )1V () —rgK () + 1y
+ Ap (08 — IV (t) + 179~
3.2.1. Close-out value M = 4u(t,z). We derive, for completion, the driver function in the

scenario in which the close-out value has a mark-to-market rule M equal to @, the risky portfolio

value. Then the driver function has the following form

f(t,z,y,2) =z0(t,z) " (u(t,z) + (rp — rr)x) — rr K (1)
+ (rre + ) IT¢ = (ree + A)TFC = (rr + 1+ A) IV (1)
+(rp+ M)y —Ap((y— IV (&) + I") T + RE(y — 1V (t) + I"°)7)
S AGRE Gy — 1V (1) — IFO) + (y — 1V(8) — 17O)")
—Ap(y —IV() +17)7,

where we have used (y — IV (t) + ITC)* + Rp(y — IV (t) + ITO)YF = (y — IV (t) + ITC)~.
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3.2.2. Close-out value M = u(t,z). We also consider the case of the close-out value being
equal to u, the risk-free portflio value. This convention is most often used in the industry. In this

case the driver function becomes

f(t,2,y,2) =z0(t,2) " (p(t, ) + (rp — rr)2) + (rB + Ao)y
—rgK(t) = (rre + ) ITC — (rpc + Xo)IFC — (rr + 75 + A\o) IV (1)
—Ap((u—T1V(t) + 1T + RB(u— 1V (t) + IT9)7)
—Ao(R(u — 1V (t) = IFOY 4 (u— 1V (t) — T79)7)
—Ap(u— IV (t) 4+ 179,

where u(t, x) is the solution to the linear PIDE given in (4) so that the driver function is linear in
y. This results in a linear PIDE which can be solved with the method in [1], without the use of
BSDEs.

3.2.3. A simplified driver function. Following [12], one can derive that the KVA is a function
of trade properties (i.e. maturity, strike) and/or the exposure at default, which in turn is a function

of the portfolio value, so that the cost of holding the capital can be rewritten as
rrK(t) = rrei(t, o),

with ¢; being a function of the trade properties. The collateral is paid when the portfolio has a
negative value, and received when the collateral has a positive value. Assuming the collateral is a

multiple of the portfolio value we have
Iv(t) = CQﬁ(ta $),

where ¢y is some constant. Then, the driver function is simply a function of the portfolio value and

its first derivative.

Remark 2. Note that in the case of ‘no collateralization’ or ‘perfect collateralization’, the driver
function reduces to f(t,au(t,x)) = r,(t) max(u(t,z),0), for a function r, here left unspecified. In
this case the BSDE is similar to the one considered in [2/].

4. Solving FBSDEs. In this section we extend the BCOS method from [25] to solving FBSDEs
under local Lévy models with variable coefficients and jumps. The conditional expectations result-
ing from the discretization of the FBSDE are approximated using the COS method. This requires

the characteristic function, which we approximate using the Adjoint Expansion Method of [21] and

[1].
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4.1. Discretization of the BSDE. Consider the forward process X; as in (1) and the BSDE
Y; as in (8). Define a partition 0 = tp < t; < ... < ty = T of [0,T] with a fixed time step
At =tp41 —ty, for n =N —1,...0. Rewriting the set of FBSDEs we find,

tn+1 tn+1 tnt1 -
X1 =Xo + / (s, Xo)ds + / o (s, Xo)dW, + / / 4dN,(s, X, dg),
tn tn tn

tn41 tn41 tn+1
9)  Yi=Ynu +/ f(s,XS,YS,ZS)ds—/ ZodW, — / Q)AN,(s, X, dq).
tn tn

One can obtain an approximation of the process Y; by taking cond1t10na1 expectations with respect
to the underlying filtration G,, using the independence of W; and Nt(t,Xt_, dq) and by approxi-
mating the integrals that appear with a theta method, as first done in [26] and extended to BSDEs
with jumps in [25]:

~ ]E [ n—i—l] + Atelf (tn’Xnv Yna Z, ) + At(l - el)En [f (tn—l—la Xn+17Yn+17 Zn—i—l)] .

Let AWy := Wy — W, for t,, < s < t,,4+1. Multiplying both sides of equation (9) by AW, 41, taking
conditional expectations and applying the theta-method gives

1
At
+ 92_1(1 - GQ)En [f (tn+17 Xnt1, Y1, Zn+1) AWn-ﬁ-l] :

Zn = =0 (1 — 02)E[Zns1] + 05 "B Vi1 AW, 4]

Since in our scheme the terminal values are functions of time ¢ and the Markov process X, it is

easily seen that there exist deterministic functions y(t,,x) and z(t,,x) so that
Y, = y(tnaXn)a Zy = Z(tnaXn)-
The functions y(t,, z) and z(t,,, z) are obtained in a backward manner using the following scheme

y(tn, ) =¢(x), 2(tn,x) = dpg(x)o(tar, ),
form=N-1,...,0:

(10) y(tna 55) :En[y(tn-i-h Xn—i—l)] + Atelf (tnv -73) + At(l - el)En [f(tn—Ha Xn—f—l)] ’
1-06 1

(11) 2(tn, ) = — TQEn[z(tn+len+l)] Ate 1E [Y(tnt1, Xnt1) AWiga]
1-06
#En [f(tn-l-l’ Xn+1)AWn+1] )

where we have simplified notations with
f(t7 Xt) = f (t7 Xta y(t7 Xt)v Z(tv Xt)) .

In the case #; > 0 we obtain an implicit dependence on y(t,,z) in (10) and we use P Picard
iterations starting with initial guess E,,[y(tn+1, Xn+1)] to determine y(t,,z). Note that due to the
independence of the driver function on V,(q), we choose not to calculate V;,(q) = v(tn, Xp, q) in the

interation. This simplifies the computation and reduces the computational time.
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4.2. The characteristic function. Is it well-known (see, for instance, [18, Section 2.2]) that the

price V' of a European option with maturity 7" and payoff ®(Sr) is given by
Vi = Lo TR [ AKX (Xp) X, |, < T,

in the measure corresponding to the risk-neutral dynamics in (1) and where we have defined ¢(x) :=

®(e”). Thus, in order to compute the price of an option, we must evaluate functions of the form
(12) o(t, @) i= B [e” kX6 (X)X, = 0]

Under standard assumptions, by the Feynman-Kac theorem, v can be expressed as the classical

solution of the following Cauchy problem

Lu(t,x) =0, te[0,T], z €R,
(T, z) = ¢(z), xz € R,

with L as in (2).
The function v in (12) can be represented as an integral with respect to the transition distri-

bution of the defaultable log-price process log S:
olta) = [ ST 5T, dy).

Here we notice explicitly that T'(¢, z; T, dy) is not necessarily a standard probability measure because
its integral over R can be strictly less than one; nevertheless, with a slight abuse of notation, we

say that its Fourier transform

A

F@%ﬂO:f@@@ﬂﬁ@%j/#W@%ﬂ@% ¢eR,
R

is the characteristic function of log S. Following [21] and [1] we expand the state-dependent coeffi-

cients
o?(t, )

2 9

around some point Z. The coefficients s(t,z), (¢, z) and a(t,z) are assumed to be continuously

s(t,x) ==

wu(t, z), ~(t, x), a(t, ),

differentiable with respect to x up to order n € N.

Introduce the nth-order approximation of L in (2):
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where
Lo = 0y + po(t)0r + 50(t)0za — Y0(t) + /Rao(t)u(dq)(eqa’“‘ —1—qd,),
and
oks(-,z Ok (-, z 8’“ T oka(-,x

The basepoint T is a constant parameter which can be chosen freely. In general the simplest choice
is = x (the value of the underlying at initial time ¢).
Assume for a moment that Ly has a fundamental solution GO(t,z;T,y) that is defined as the
solution of the Cauchy problem
LoGO(t,z;T,y) =0 te[0,T[, r € R,
GUT,T,y) = 6.

In this case we define the nth-order approximation of I' as
(”)tazTy ZGt;ETy

where, for any k > 1 and (T,y), G*(-,-;T,vy) is defined recursively through the following Cauchy
problem
LoGF(t,z;T,y) = — th:1(Lh — Ly 1)GF Mt 2, T, y) tel[0,T], z € R,
GH(T,2;T,y) =0, ) r € R.
Notice that
Ly — L1 =(x — 2)*pp(t)0s + (2 — 2)*s1,(t)0pe — (2 — T)Fy1(2)

+ [ @ o ada) e -1~ q0,)
R
Correspondingly, the nth-order approximation of the characteristic function I is defined to be
f(”)(t,$;T,§):Zf(Gk(t,:c;T ) Z (t,z;T,E), EeR
k=0

Now, by transforming the simplified Cauchy problems into adjoint problems and solving these in
the Fourier space we find

EO(t, 21T, €) = e Il Vis©)is

k
GH(t, 2 T,€) = / eli ¥rO)irp (Z (L7(9) = L)) G* s, ->> (&)ds,

h=1
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with

Bt €) = i€po(t) + s0()E? + /R aov(t, dg) (€€ — 1 — iz€),

LI () — L) () = pn(Oh(y — 2)" + (6 (y — 2)"0y — w(t)(y — )"
+sn(Oh(h = 1)y — )" 2 + s, () (y — )" (20, + (y — T)Dyy)

+ [ an®ntda) ((r+a =0 — (=" q (hy - 2" - 4= 9"9,)).

where v(dq) = v(—dq).

Remark 3. After some algebraic manipulations it can be shown, see [1], that the characteristic

function approximation of order n is a function of the form

n
(13) DO (t, 2 T,€) 1= ") "(w — 2)F g (£, T,8),
k=0
where the coefficients gy 1, with 0 < k < n, depend only on t,T and £, but not on x. The approz-
imation formula can thus always be split into a sum of products of functions depending only on &

and functions that are linear combinations of (x — )™e®, m € Ny.

4.3. The COS formulae. The conditional expectations are approximated using the COS method, Jj
which was developed in [9] and applied to FBSDEs with jumps in [25]. The conditional expectations
arising in the equations (10)-(11)are all of the form E,[A(t,+1, Xn+1)] or Ep[h(tns1, Xnt1) AWni1].

The COS formula for the first conditional expectation reads

J—1 .
i f T .. —a
En[h(tn+1, n+1 Z Hj n+1 Re < (tn,x tn+1, b—a) exp (z]Trb — a>> s

k)

/
where Z denotes an ordinary summation with the first term weighted by one-half, J > 0 is the
number of Fourier-cosine coefficients we use, H;(t,+1) denotes the jth Fourier-cosine coefficients of
the function A(t,+1, ) and I (tn, x; tnt1,&) is the conditional characteristic function of the process

X1 given X, = x. For the second conditional expectation, using integration by parts, we obtain

En[h(tnt1, Xny1) AW,]
JT oA Jm .. —a
~ A ns L H n r ny Lilntl, 7 .
to(t Z tH)Re(b—a (t Ty tpa1 b_a>exp(237rb_a>>

See [25] for the full derivations.
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Remark 4. Note that these formulas are obtained by using an Euler approximation of the forward
process and using the 2nd-order approrimation of the characteristic function of the actual process.
We have found this to be more exact than using the characteristic function of the Euler process,

which is equivalent to using just the Oth-order approximation of the characteristic function.

Finally we need to approximate the Fourier-cosine coefficients Hj(t,4+1) of h at time points t,,
where n = 0, ..., N. The Fourier-cosine coefficient of h at time t¢,,11 is defined by

2 b T —a
Hj(th41) = T h(tn+1, )cos( L )dw.

Due to the structure of the approximated characteristic function of the local Lévy process, see (13),
the coefficients of the functions z(t,+1, z) and the explicit part of y(t,+1,2) can be computed using
a FFT algorithm, as we do in Appendix A, because of the matrix in (20) being of a certain form.

In order to determine F}(t,41), the Fourier-Cosine coefficient of the function

f (tn—i-l) x, y(tn-i-l) I’), Z(tn+17 $)) )

due to the intricate dependence on the functions z and y we choose to approximate the integral in

F; with a discrete Fourier-Cosine transform (DCT). For the DCT we compute the integrand, and

thus the functions z(t,+1, ) and y(tn+1, ), on an equidistant z-grid. Note that in this case we can

easily approximate all Fourier-Cosine coeflicients With a DCT (instead of the FFT). If we take J
a

grid points defined by z; := a + (i + %)b% and Az = =2 we find using the mid-point integration

rule the approximation

J-1
2 ! 2141
n+1 le; h n+17$z COos <]7[' e, )7
which can be calculated using a DCT algorithm, with the computational time being O(.J log J).

Remark 5. We define the truncation range [a,b] as follows:

la,b] == [ \/m,q—i-L\/r}

where ¢, s the nth cumulant of log-price process log S, as proposed in [8]. The cumulants are

calculated using the Oth-order approximation of the characteristic function.

5. XVA computation for Bermudan derivatives. The method in Section 4 allows us to com-
pute the XVA as in (3), consisting of CVA, DVA, MVA, KVA and FVA. In this section, we apply
this method to computing Bermudan derivative values with XVA. For the CVA component in the
XVA we develop an alternative method, which due to the ability to use the FFT results in a

particularly efficient computation.
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5.1. XVA computation. Consider an OTC derivative contract between the bank B and the
counterparty C' with a Bermudan-type exercise possibility: there is a finite set of so-called exercise
moments {¢y,...,tpr} prior to the maturity, with 0 < ¢; <t < --- < tpy = T. The payoff from the
point-of-view of bank B is given by ®(t,,, X;,,). Denote 4(t,x) to be the risky Bermudan option
value and c¢(t,z) the so-called continuation value. By the dynamic programming approach, the
value for a Bermudan derivative with XVA and M exercise dates t1,...,t); can be expressed by a

backward recursion as
ﬁ(tM, ac) = (I)(tM, ac),
and the continuation value solves the non-linear PIDE defined in (5)

Le(t,x) = f(t, z, c(t, x), Ozc(t, ), t € [tm—1,tm]
c(tm, ) = W(tm, x)

W(tm—1,2) = max{P®(tym—1, ), c(tm-1,2)}, me{2,...,M}.

The derivative value is set to be 4(t,x) = ¢(t, z) for t €]t,—1,tm[, and, if t; > 0, also for t € [0, t1].
The payoff function might take on various forms:

1. (Portfolio) Following [24], we can consider X; to the process of a portfolio which can take
on both positive and negative values. Then, when exercised at time t,,, bank B receives
the portfolio and ®(t,,,z) = x.

2. (Bermudan option) In case the Bermudan contract is an option, the option value to the
bank can not have a negative value for the bank. At the same time, in case of default of
the bank itself, the counterparty loses nothing. In this case the framework simplifies to one
with unilateral collateralization and default risk and the payoff at time t,,, if exercised, is
given by ®(t,,,z) = (K —€e®)" for a put and ®(t,,, ) = (e* — K)* for a call with K being
the strike price.

3. (Bermudan swaptions) A Bermudan swaption is an option in which the holder, bank B,
has the right to exercise and enter into an underlying swap with fixed end date tp741.
If the swaption is exercised at time t,, the underlying swap starts with payment dates
T = {tm+1, .-, tar+1}. Working under the forward measure corresponding to the last reset

date 7, the payoff function is given by

M Pt tr1, )
(b, ) = N5 [ Y DAL ) max(cy(S(tm, T, ) — K),0),
ke P(tmv tM)
=m
where N is the notional, cp = 1 for a payer swaption and ¢, = —1 for a receiver swaption,

P(tm, tr,x) is the price of a ZCB conditional on X;, = x and S(ty,, Tm, ) is the forward
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swap rate given by

M
S(tm, T, ) = <1 - P(tm’tm“’x)> / (Z PG’”’“““’”N) .
k

P(tm,tM,l‘) — P(tm,tM,x)

To solve for the continuation value we define a partition with IV steps t,,—1 = tom < tim <
tom < oo <tpm < ... <tnm = tm between two exercise dates t,,—1 and t,,, with fixed time step
Aty := tyy1im — th,m. Applying the method developed in Section 4, we find the following time

iteration for the continuation value and its derivative
c(tnm,x) = u(ty, ), 2(tNm, ) = Opt(ty, )0 (tNm, T)
forn=N-1,...,0

C(tn,rm l’) ~ Atnelf(tn,my €z, C(tn,ma $)a Z(tn,ma CC))

J-1
/
(14) + Z \Ijj(x)(cj(tn-i-l,m) + Atp(1 = el)Fj(tn-lrl,m))’
7=0
J-1
r1-6
2(tagm 1) 2 Y _WQZjanH,m)qxj(m)
=0
1 1 -6 -
(15) + At, 0, Cj(tnt1,m) + T2Fj(tn+1,m> o (tnt1,m, ) Aty V()

where we have defined

. gm ..o—a
U,(xz) = Re <I‘ (tmm, L tny1,m, b—a) exp (Z]Wb — a)) )
_ L Jm A g ..o—a
U;(z) = Re (Zb — aF <tn,m,$§tn+1,ma b—a) CXp <Z]7Tb_a>> ’

and the Fourier-cosine coefficients are given by

b S T—a

Ci(tnt1,m) = " c(tpt1,m,x)cos | jm — dz,
2 b . rT—a

Zj(tny1,m) = " a / 2(tn+1,m, ) cos (]71’ - a> dx,

2 b S r—a
F}'(tn+1,m) - m / f(tn—i-l,m: x, C(tn—i-l,m’ x)a 8zc(tn-‘rl,mv x)) COos <]7T b > dx.
a

—a
In order to determine the function c(t,,z), we will perform P Picard iterations. To evaluate the
coefficients with a DCT we need to compute the integrand f(t,41,m, %, ¢(tnt1,m, ), 2(tnt1,m, x)) on
the equidistant x-grid with x;, for ¢ =0, ..., J — 1. In order to compute this at each time step ¢, ,,
we thus need to evaluate c(ty m, ) and z(ty41,m, ) on the z-grid with J equidistant points using

formula (14)-(15). This matrix-vector product results in a computational time of order O(.J?).



476
478

179
480

481

18 A. BOROVYKH, A. PASCUCCI, C.W. OOSTERLEE

The total algorithm for computing the value of a Bermudan contract with XVA can be sum-
marised as in Algorithm 1 in Figure 5.1. The total computational time for the algorithm is
O(M - N(J? + PJ + JlogJ + J)), consisting of the computation for M - N times the compu-
tation of the characteristic function on the z-grid, initialization of the Picard method, computation

of the P Picard approximations for ¢(t, m,) and computing the Fourier coefficients Fj(t,) and

Cj (tn)

1. Define the z-grid with J grid points given by z; = a + (i + %)IFTa fort=0,...,J — 1.
2. Calculate the final exercise date values c(tna,z) = w(ty,z) and z(tn v, z) =
Ozu(tar, x)o(tn ar,x) on the x-grid and compute the terminal coefficients Cj(tar),
Zj(ty) and Fj(tar) using the DCT.
3. Recursively for the exercise dates m = M — 1,...,0 do:
(a) For time steps n =N —1,...,0 do:
i. Compute c(tn,m, ), 2(tn,m,x) using formula (14)-(15) and use these to de-
termine f(t,,m,x, c(tn,m, ), 2(tn,m,x)) on the z-grid.
ii. Subsequently, use these to determine Fj(ty, ), Z;(tn,m) and Cj(ty m) using
the DCT.
(b) Compute the new terminal conditions ¢(tn m—1,2) = max{@(tom,x), c(tom, )}
and z(tnym—1,2) = Opmax{¢(tom,x),c(tom,)}o(tNm—1,2) (either analyti-
cally or numerically) and the corresponding Fourier-cosine coefficients.

4. Finally v(to, zo) = c(t0,0, o).

Figure 5.1. Algorithm 1: Bermudan derivative valuation with X VA

5.2. An alternative for CVA computation. In this section we present an efficient alternative
way of calculating the CVA term in (3) in the case of unilateral CCR using a Fourier-based method.
Due to the ability of using the FFT this method is considerably faster for computing the CVA than
the method presented in Section 5.1. We use the definition of CVA at time t given by

CVA(t) = a(t, X3) — ul(t, X3),

where u(t, X;) is as usual the default-free value of the Bermudan option, while (¢, X;) is the value
including default. We consider the model as defined in (1). We will compute u(t, X;) and a(t, X+)
using the COS method and the approximation of the characteristic function (as derived in Section
4.3), without default (y(¢,z) = 0) and with default respectively. In case of a default the payoff

becomes zero. Note that the risky option value 4(t, ) computed with the characteristic function
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for a defaultable underlying corresponds exactly to the option value in which the counterparty
might default with the probablity of default, PD(t), defined as in (2). Thus, in this case we have
unilateral CCR and ¢ = 7¢, the default time of the counterparty.

Using the definition of the defaultable Sy, it is well-known (see, for instance, [18, Section 2.2])

that the risky no-arbitrage value of the Bermudan option on the defaultable asset Sy at time ¢t is

i (t, X) = Lyeogy sup B [ e i/ 010Xo)ds g XT)|Xt} .
€T

Remark 6 (Wrong-way risk). By allowing the dependence of the default intensity on the under-

lying, a simplified form of wrong-way risk is incorporated into the CVA valuation.

Note that the option value at time ¢ becomes 0 if default occurs prior to time ¢. For a Bermudan
put option with strike price K, we simply have ¢(t,z) = (K — z)". By the dynamic programming

approach, the option value can be expressed by a backward recursion as

a(tMa .%') = ]I{C>tM} max(¢(tM7 33), 0)
and

0 c(t,z) = E [elm s X)dsq g X, )|X, = x] : £ € [tm1, ]

U(tm—1,7) = Liesy,_y max{¢(tm-1,2), c(tm-1,7)}, me{2,...,M}.

Thus to find the risky option price u(t, X;) one uses the defaultable asset and in order to get
the default-free value u(t, X;) one uses the default-free asset by setting v(¢,z) = 0 and the CVA
adjustment is calculated as the difference between the two. Both (¢, x) and u(t, z) are calculated
using the approximated characteristic function and the COS method applied to the continuation
value, as is done in [1]. Due to the characteristic function being of the form (13), we are able to

use a FFT in the matrix-vector multiplication. For more details, refer to Appendix A.

5.2.1. Hedging CVA. In practice CVA is hedged and thus practitioners require efficient ways
to compute the sensitivity of the CVA with respect to the underlying. The widely used bump-
and revalue- method, while resulting in precise calculations, might be slow to compute. Using the

Fourier-based approach we find the following explicit formulas allowing for an easy computation of
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the first- and second-order derivatives of the CVA with respect to the underlying:

J-1

A (e — / jipL=a Xk T T A
A= =)y " Re <e” b=a (bj_agi,o <to,t1,b‘7_a> + 901 (to,tlab]_ a))) (t)

Jj=0

J—-1

/ ow—a [ )T T )T N
e e (¢ (o (g5 ) ot (057 ) ) e
=0
J—1

_ _ ! i T=a Z]7T jﬂ' jﬂ'
e r(t1—to) Z Re <e” b—a <— mggp <t0’t1, b—a) — g’lc'lb,l <t0,t1, b_@)

Jj=0

YT 4 JmT 1y d g d g Ad
2R <t0’t1’b—a> + (b— a> In,0 <t0,t1, b a a) + 2052 <t0,t1, T a) >>Vj (t1)

J-1

__—r(t1—to) /Re Ty _ﬂr to. t L —q" to,t L
¢ Z © b— a0\ g ) T I M,

J=0

T, g iy . g . g 5 o) \r
271)_ 291 (to’tl’b—a> + (b— a> In,0 <t0,t1, P a) + 29,9 <t0,t1, b—a a) >>V3(t1) )

where de and V) are the Fourier-cosine coefficients with the defaultable and default-free charac-

=1
I

+

teristic functions terms, gg , and g5 ;. respectively.

6. Numerical experiments. In this Section we present numerical examples to justify the accu-
racy of the methods in practice. We compute the XVA with the method presented in Section 5.1
and the CVA in the case of unilateral CCR with the method from Section 5.2, which we show is
more efficient for cases in which one only needs to compute the CVA.

The computer used in the experiments has an Intel Core i7 CPU with a 2.2 GHz processor.
We use the second-order approximation of the characteristic function. We have found this to be
sufficiently accurate by numerical experiments and theoretical error estimates. The formulas for

the second-order approximation are simple, making the methods easy to implement.

6.1. A numerical example for XVA. In this section we check the accuracy of the method from
Section 5.1. We will compute the Bermudan option value with XVA using a simplified drivers
function f(t, u(t,x)) = —rmax(a(t,z),0). Out method is easily extendible to the drivers functions
in Section 3.2. Consider X; to be a portfolio process and the payoff, if exercised at time t,,, to be
given by ®(t,,,z) = x. In this case the value we can receive at every exercise date is the value of
the portfolio.

Consider the model in Section 2 without default, with a local jump measure and a local volatility
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function with CEV-like dynamics and Gaussian jumps defined by
(17) o(z) = beP?,

1 —(qg—m)?
— )\ Pz
(18) v(z,dq) = le s exp ( 552 dg.

We assume the following parameters in equations (17)-(18), unless otherwise mentioned: b =
0.15, 6=-2,2=02,0=02, m=-02,r=0.1, K =1 and Xy = 0. In the LSM the number
of time steps is taken to be 100 and we simulate 10° paths. In the COS method we take L = 10,
J =256, 61 = 0.5 and N = 10, M = 10, making the total number of time steps IV - M = 100.

The results of the method compared to a LSM are presented in Table 6.1. These results show
that our method is able to solve non-linear PIDEs accurately. The CPU time of the approximating
method depends on the number of time steps M - N and is approximately 5 - (N - M) ms. The
effects of the non-linear part become clear when we compare the option value with and without
XVA. The results are presented in Figure 6.1. In Figure 6.2 we present the convergence results for
the parameters in the COS approximation. The number of Fourier-cosine terms in the summation
is given by J = 2¢, d =1, ..., 8, the number of exercise dates is fixed, M = 10, and the number of

time steps between each exercise date is set at N =1, 10.

maturity T' | Xg | MC value with XVA | COS value with XVA

0.5 0 0.03998-0.04051 0.04169
0.2 | 0.2326-0.2330 0.23504
0.4 | 0.4251-0.4254 0.4265
0.6 | 0.6169-0.6171 0.6172
0.8 | 0.8077-0.8079 0.8074
1 1.000-1.000 1.0000

1 0 007703-0.07785 0.07878
0.2 | 0.2611-0.2617 0.2660
0.4 | 0.4461-0.4465 0.4493
0.6 | 0.6288-0.6291 0.6311
0.8 | 0.8126-0.8129 0.8120
1 | 1.001-1.001 1.000

Table 6.1

A Bermudan put option with XVA (10 exercise dates, expiry T = 1) in the CEV-like model for the 2nd-order

approximation of the characteristic function, and a LSM.
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Cplion value
[ T~ I I S

Figure 6.1. Values for a Bermudan portfolio at time t = 0 with and without XVA as a function of x. The payoff
function is ®(tm,x) = x and the process is the CEV-like model.
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Figure 6.2. Convergence of the absolute error for a Bermudan portfolio under the CEV-like model with payoff
function ®(tm,x) =z for varying N and J.

6.2. A numerical example for CVA. In this section we validate the accuracy of the method
presented in Section 5.2 and compute the CVA in the case of unilateral CCR under the model
dynamics given in Section 2 with a local jump measure, a local default function and a local volatility
function with CEV-like dynamics and Gaussian jumps defined by defined as in (18) and a local
default function v(z) = ce®®. We assume the same parameters as in 6.2, except r = 0.05 and we
take ¢ = 0.1 in the default function. In the LSM the number of time steps is taken to be 100 and
we simulate 10° paths. In the COS method we take L = 10 and J = 100.

The results for the CVA valuation with the FFT-based method and with LSM are presented in
Table 6.2. The CPU time of the LSM is at least 5 times the CPU time of the approximating method,
which for M exercise dates is approximately 3 - M ms, thus more efficient then the computation
of the XVA with the method in 5.1. The optimal exercise boundary in Figure 6.3 shows that the
exercise region becomes larger when the probability of default increases; this is to be expected: in

case of the default probability being greater, the option of exercising early is more valuable and
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569 used more often.

maturity 1" | strike K | MC CVA COS CVA
0.5 0.6 4.200-10"4 — 4.807-107* | 1.113-10~*
0.8 0.001525-0.001609 9.869-1074
1 0.01254-0.01273 0.01138
1.2 0.005908-0.005931 0.005937
1.4 0.006657-0.06758 0.006898
1.6 0.007795-0.008008 0.007883
1 0.6 8.673-107* —9.574-10~* | 4.463 - 1074
0.8 0.005817-0.006040 0.003535
1 0.02023-0.02054 0.01882
1.2 0.01221-0.01222 0.1272
1.4 0.01378-0.01391 0.01360
1.6 0.01532-0.01502 0.01554
Table 6.2

CVA for a Bermudan put option (10 exercise dates, expiry T = 0.5,1) in the CEV-like model for the 2nd-order

approximation of the characteristic function, and a LSM.

: No defaul
c=0.1
c=0.2

EXercise boundary
)
&

0.2

Exercise time

Figure 6.3. Optimal exercise boundary for a Bermudan put option (10 exercise dates, expiry T = 1) in the
CEV-like model with varying default ¢ = 0,0.1,0.2.

570 7. Conclusion. In this paper we considered pricing Bermudan derivatives under the presence
571 of XVA, consisting of CVA, DVA, MVA, FVA and KVA. We derived the replicating portfolio with



591

592
593

594

596

24 A. BOROVYKH, A. PASCUCCI, C.W. OOSTERLEE

cashflows corresponding to the different rates for different types of lending. This resulted in the
PIDE in (5) and its corresponding BSDE (8). We propose to solve the BSDE using a Fourier-cosine
method for the resulting conditional expectations and an adjoint expansion method for determining
an approximation of the characteristic function of the local Lévy model in (1). This approach is
extended to Bermudan option pricing in Section 5.1. In Section 5.2 we present an alternative
for computing the CVA term in the case of unilateral collateralization (as is the case when the
derivative is an option) without the use of BSDEs. This results in an even more efficient method
due to the ability of using the FFT. We verify the accuracy of both methods in Sections 6.1 and 6.2
by comparing it to a LSM and conclude that the method from Section 5.1 is able to price Bermudan
options with XVA accurately and the alternative method for CVA computation from Section 5.2 is

indeed more efficient than the BSDE method for computing just the CVA term.

Acknowledgments. This research is supported by the European Union in the the context of
the H2020 EU Marie Curie Initial Training Network project named WAKEUPCALL.

Appendix A. The COS formulae. Remembering that the expected value ¢(¢,x) in (16) can
be rewritten in integral form, we have

C(t,l’) = e—r(tm—t) / @(tm,y)r(t, 25 tms dy)7 te [tm—lﬁtmL
R

where, v(t,,,y) can be either u(ty,,y) or @(tm,y). Then we use the Fourier-cosine expansion to get
the approximation:

J-1

(19) é(t,x) = o~ T(tm—1) Z/ Re <ez‘j7rb“af <t,x; tm, b]—Wa)) Vi(tm), t € [tm—1,tm]

J=0

Vi(tm) = b—a

with é(t,z) = (K — ) 7.

We can recover the coefficients (Vj(tm)) ;g j_1 from (Vj(tm+1)),;_ ;1. To this end, we

b CYy—a
cos <]7Tb a> max{¢(tm,y), c(tm,y) }dy,

split the integral in the definition of Vj(t,,) into two parts using the early-exercise point x},, which
is the point where the continuation value is equal to the payoff, i.e. c(ty,,z},) = d(tm,x),); this

point can easily be found by using the Newton method. Thus, we have
Vi(tm) = Fj(tm, zy,) + Cj(tm, z;,), m=M-1,M-2,...,1,

where

N 2 Tm . Yy—a
Fi(tm,z,,) = - a/ d(tm,y) cos <]7Tb — a> dy,
2 b

* . yYy—a
Cj(tm, 7},) = b_a/* c(tm,y) cos <J7rb_a>dy,




597
598
599

600

601

602
603

604

605
606

607

610
611
612
613

614
615

616

617

EFFICIENT XVA COMPUTATION UNDER LOCAL LEVY MODELS 25

and Vj(tar) = Fj(tar, log K).

The coeflicients Fj(ty,,z},) can be computed analytically using x}, < log K, and by inserting
the approximation (19) for the continuation value into the formula for Cj(t,, },,) have the following
coefficients C’j form=M-1,M-2,...,1:

. . 2e =" (tm+1—tm)
Cj(tm, ) I S
N-1 b
' Z/ Vk‘(thrl)/ Re e AT by T3 b1, ki COs jﬂx - dr.
Pt x, b—a b—a

From (13) we know that the nth-order approximation of the characteristic function is of the form:

n

f(n) (tm7 Z; tm-i—l) é-) = elfl' Z(w - j)hgn,h(tma tm-‘rlu 5)7
h=0

where the coefficients g, ,(¢,T,&), with 0 < k < n, depend only on ¢,7" and &, but not on z.

Remark 7 (The defaultable and default-free characteristic functions). To find u(t,z) we use

n

IA‘l’r(tma &€ tm+1a 6) = 6i£m Z(CL‘ - a_j)hg;,h(tTn7 thrl? g)a
h=0

the characteristic function with v(t,z) = 0. For u(t,x) we use

n

D (b, 3 1, €) 1= €7 Y (2 — )" g1t 4 (b b1, ),
h=0

where y(t,x) is chosen to be some specified function.
Using (13) we can write the Fourier coefficients of the continuation value in vectorized form as:
n
Cltm,ah) = Y e "Im1=tn)Re (V(th)Mh(z;, b)Ah> :
h=0

where V (t,41) is the vector [Vo(tmi1)s -, Vi—1(tms1)]T and M (27, b) A" is a matrix-matrix prod-

uct with M” a matrix with elements {M}! j}g;io defined as

9 b . _
(20) Mﬁj(:r;‘n,b) : / e"™o=a (x — Z)" cos <k7T:Z a> dx,

T b—a o
and A" is a diagonal matrix with elements
Jm :
gn,h<tm;tm+1,m>, j=0,...,J—1.

One can show, see [1], that the resulting matrix M”" is a sum of a Hankel and Toeplitz matrix and

thus the resulting matrix vector product can be calculated using a FFT.
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