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Abstract. Various valuation adjustments, or XVAs, can be written in terms of non-linear PIDEs equivalent to FB-4

SDEs. In this paper we develop a Fourier-based method for solving FBSDEs in order to efficiently and5

accurately price Bermudan derivatives, including options and swaptions, with XVA under the flexible6

dynamics of a local Lévy model: this framework includes a local volatility function and a local jump7

measure. Due to the unavailability of the characteristic function for such processes, we use an asymptotic8

approximation based on the adjoint formulation of the problem.9
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1. Introduction. After the financial crisis in 2007, it was recognized that Counterparty Credit12

Risk (CCR) poses a substantial risk for financial institutions. In 2010 in the Basel III framework an13

additional capital charge requirement, called Credit Valuation Adjustment (CVA), was introduced14

to cover the risk of losses on a counterparty default event for over-the-counter (OTC) uncollateral-15

ized derivatives. The CVA is the expected loss arising from a default by the counterparty and can16

be defined as the difference between the risky value and the current risk-free value of a derivatives17

contract. CVA is calculated and hedged in the same way as derivatives by many banks, therefore18

having efficient ways of calculating the value and the Greeks of these adjustments is important.19

One common way of pricing CVA is to use the concept of expected exposure, defined as the20

mean of the exposure distribution at a future date. Calculating these exposures typically involve21

computationally time-consuming Monte Carlo procedures, like nested Monte Carlo schemes or22

the more efficient least squares Monte Carlo method (LSM)([19]). Recently the Stochastic Grid23

Bundling method (SGBM) was introduced as an improvement of the standard LSM ([15]). This24

method was extended to pricing CVA for Bermudan options in [10]. Another recently introduced25

alternative is the so-called finite-differences Monte Carlo method (FDMC), see [7]. The FDMC26

method uses the scenario generation from the Monte Carlo method combined with finite-difference27

option valuation.28

Besides CVA, many other valuation adjustments, collectively called XVA, have been introduced29
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in option pricing in the recent years, causing a change in the way derivatives contracts are priced.30

For instance, a companies own credit risk is taken into account with a debt value adjustment (DVA).31

The DVA is the expected gain that will be experienced by the bank in the event that the bank32

defaults on its portfolio of derivatives with a counterparty. To reduce the credit risk in a derivatives33

contract, the parties can include a credit support annex (CSA), requiring one or both of the parties34

to post collateral. Valuation of derivatives under CSA was first done in [23]. A margin valuation35

adjustment (MVA) arises when the parties are required to post an initial margin. In this case the36

cost of posting the initial margin to the counterparty over the length of the contract is known as37

MVA. Funding value adjustments (FVA) can be interpreted as a funding cost or benefit associated38

to the hedge of market risk of an uncollateralized transaction through a collateralized market.39

While there is still a debate going on about whether to include or exclude this adjustment, see [14],40

[13] and [5] for an in-depth overview of the arguments, most dealers now seem to indeed take into41

account the FVA. The capital value adjustment (KVA) refers to the cost of funding the additional42

capital that is required for derivative trades. This capital acts as a buffer against unexpected losses43

and thus, as argued in [12], has to be included in derivative pricing.44

For pricing in the presence of XVA, one needs to redefine the pricing partial differential equation45

(PDE) by constructing a hedging portfolio with cashflows that are consistent with the additional46

funding requirements. This has been done for unilateral CCR in [23], bilateral CCR and XVA in47

[2] and extended to stochastic rates in [17]. This results in a non-linear PDE.48

Non-linear PDEs can be solved with e.g. finite-difference methods or the LSM for solving49

the corresponsing backward stochastic differential equation (BSDE). In [24] an efficient forward50

simulation algorithm that gives the solution of the non-linear PDE as an optimum over solutions of51

related but linear PDEs is introduced, with the computational cost being of the same order as one52

forward Monte Carlo simulation. The downside of these numerical methods is the computational53

time that is required to reach an accurate solution. An efficient alternative might be to use Fourier54

methods for solving the (non-)linear PDE or related BSDE, such as the COS method, as was55

introduced in [8], extended to Bermudan options in [9] and to BSDEs in [25]. In certain cases the56

efficiency of these methods is further increased due the ability to the use the fast Fourier transform57

(FFT).58

In this paper we consider an exponential Lévy-type model with a state-dependent jump mea-59

sure and propose an efficient Fourier-based method to solve for Bermudan derivatives, including60

options and swaptions, with XVA. We derive, in the presence of jumps, a non-linear partial integro-61

differential equation (PIDE) and its corresponding BSDE for an OTC derivative between the bank62

B and its counterparty C in the presence of CCR, bilateral collateralization, MVA, FVA and KVA.63

We extend the Fourier-based method known as the BCOS method, developed in [25], to solve the64
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BSDE under Lévy models with non-constant coefficients. As this method requires the knowledge65

of the characteristic function of the forward process, which, in the case of the Lévy process with66

variable coefficients, is not known, we will use an approximation of the characteristic function ob-67

tained by the adjoint expansion method developed in [21], [20] and extended to the defaultable68

Lévy process with a state-dependent jump measure in [1]. Compared to other state-of-the-art69

methods for calculating XVAs, like Monte Carlo methods and PDE solvers, our method is both70

more efficient and multipurpose. Furthermore we propose an alternative Fourier-based method for71

explicitly pricing the CVA term in case of unilateral CCR for Bermudan derivatives under the local72

Lévy model. The advantage of this method is that is allows us to use the FFT, resulting in a73

fast and efficient calculation. The Greeks, used for hedging CVA, can be computed at almost no74

additional cost.75

The rest of the paper is structured as follows. In Section 2 we introduce the Lévy models with76

non-constant coefficients. In Section 3 we derive the non-linear PIDE and corresponding BSDE for77

pricing contracts under XVA. In Section 4 we propose the Fourier-based method for solving this78

BSDE and in Section 5.1 this method is extended to pricing Bermudan contracts. In Section 5.279

an alternative FFT-based method for pricing and hedging the CVA term is proposed and Section80

6 presents numerical examples validating the accuracy and efficiency of the proposed methods.81

2. The model. We consider a defaultable asset St whose risk-neutral dynamics are given by82

St = 1{t<ζ}e
Xt ,83

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt +

∫
R
qdÑt(t,Xt−, dq),84

dÑt(t,Xt−, dq) = dNt(t,Xt−, dq)− a(t,Xt−)ν(t, dq)dt,(1)85

ζ = inf{t ≥ 0 :

∫ t

0
γ(s,Xs)ds ≥ ε},86

87

where dÑt(t,Xt−, dq) is a compensated random measure with state-dependent Lévy measure

ν(t,Xt−, dq) = a(t,Xt−)ν(dq).

The default time ζ of St is defined in a canonical way as the first arrival time of a doubly stochastic88

Poisson process with local intensity function γ(t, x) ≥ 0, and ε ∼ Exp(1) and is independent of89

Xt. This way of modeling default is also considered in a diffusive setting in [4] and for exponential90

Lévy models in [3]. Thus our model includes a local volatility function, a local jump measure, and91

a default probability which is dependent on the underlying. We define the filtration of the market92

observer to be G = FX ∨FD, where FX is the filtration generated by X and FDt := σ({ζ ≤ u}, u ≤93

t), for t ≥ 0, is the filtration of the default. Using this definition of default, the probability of94
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default is95

PD(t) := P(ζ ≤ t) = 1− e−
∫ t
0 γ(s,x)ds.(2)96

97

We assume furthermore98

∫
R
e|q|a(t, x)ν(dq) <∞.99

If we were to impose that the discounted asset price S̃t := e−rtSt is a G-martingale, we get the

following restriction on the drift coefficient:

µ(t, x) = γ(t, x) + r − σ2(t, x)

2
− a(t, x)

∫
R
ν(dq)(eq − 1− q),

with r being the risk-free (collateralized) rate. In the whole of the paper we assume deterministic,100

constant interest rates, while the derivations can easily be extended to time-dependent rates. The101

integro-differential operator of the process is given by (see e.g. [22])102

Lu(t, x) =∂tu(t, x) + µ(t, x)∂xu(t, x)− γ(t, x)u(t, x) +
σ2(t, x)

2
∂xxu(t, x)103

+ a(t, x)

∫
R
ν(dq)(u(t, x+ q)− u(t, x)− q∂xu(t, x)).104

105

3. XVA computation. Consider the bank B and its counterparty C, both of whom might

default. Assume the dynamics of the underlying as in (1) with γ(t, x) = 0. Define û(t, x) to be the

value to the bank of the (default risky) portfolio with valuation adjustments referred to as XVA

and u(t, x) to be the risk-free value. Note that the difference between these two values,

TVA := û(t, x)− u(t, x),

is called the total valuation adjustment and in our setting this consists of106

TVA = CVA + DVA + KVA + MVA + FVA.(3)107
108

The risk-free value u(t, x) solves a linear PIDE:109

Lu(t, x) = ru(t, x),(4)110

u(T, x) = φ(x),111
112

where L is given in (2) with γ(t, x) = 0 . Assuming the dynamics in (1), this linear PIDE can be113

solved with the methods presented in [1].114
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3.1. Derivative pricing under CCR and bilateral CSA agreements. In [2], the authors derive115

an extension to the Black-Scholes PDE in the presence of a bilateral counterparty risk in a jump-to-116

default model with the underlying being a diffusion, using replication arguments that include the117

funding costs. In [17] this derivation is extended to a multivariate diffusion setting with stochastic118

rates in the presence of CCR, assuming that both parties B and C are subject to default. To119

mitigate the CCR, both parties exchange collateral consisting of the initial margin and the variation120

margin. The parties are obliged to hold regulatory capital, the cost of which is the KVA and face the121

costs of funding uncollateralized positions, known as FVA. Both [2] and [17] extend the approach122

of [23], in which unilateral collateralization was considered. We extend their approach to derive123

the value of û(t, x) when the underlying follows the jump-diffusion defined in (1). We assume124

a one-dimensional underlying diffusion and consider all rates to be deterministic and, for ease of125

notation, constant. The classical pricing theory assumes that market participants can freely borrow126

and lend, without the necessity of exchanging collateral, at a single risk-free interest rate. Here127

we take a more realistic approach and specify different rates, defined in 3.1, for different types of128

lending.129

Rate Definition

r the risk-free rate

rR the rate received on funding secured by the underlying asset

rD the dividend rate in case the stock pays dividends

rF the rate received on unsecured funding

rB the yield on a bond of the bank B

rC the yield on the bond of the counterparty C

λB λB := rB − r
λC λC := rC − r
λF λF := rF − r
RB the recovery rate of the bank

RC the recovery rate of the counterparty
Table 3.1

Definitions of the rates used throughout this chapter.

Assume that the parties B and C enter into a derivatives contract on the spot asset that pays130

the bank B the amount φ(Xt) at maturity T . The value of this derivative to the bank at time t131

is denoted by û(t, x, JB, JC) and depends on the value of the underlying X and the default states132

JB and JC of the bank B and counterparty C.133

The cashflows are viewed from the perspective of the bank B. At the default time of either134

This manuscript is for review purposes only.
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the counterparty or the bank, the value of the derivative to the bank û(t, x) is determined with135

a mark-to-market rule M , which may be equal to either the derivative value û(t, x, 0, 0) prior to136

default or the risk-free derivative value u(t, x), depending on the specifications in the ISDA master137

agreement. Denote by τB and τC the random default times of the bank and the counterparty138

respectively. Define ITC to be the initial margin posted by the bank to the counterparty, IFC the139

initial margin posted by the counterparty to the bank and IV (t) to be the variation margin on140

which a rate rI is paid or received. The initial margin is constant throughout the duration of the141

contract and K(t) is the regulatory capital on which a rate of rK is paid/received. We will use the142

notation x+ = max(x, 0) and x− = min(x, 0). In a situation in which the counterparty defaults,143

the bank is already in the possession of IV + IFC . If the outstanding value M − (IV + IFC) is144

negative, the bank has to pay the full amount (M−IV −IFC)−, while if the contract has a positive145

value to the bank, it will recover only RC(M − IV − IFC)+. Using a similar argument in case the146

bank defaults, we find the following boundary conditions:147

θB := u(t, x, 1, 0) = IV − ITC + (M − IV + ITC)+ +RB(M − IV + ITC)−,148

θC := u(t, x, 0, 1) = IV + IFC +RC(M − IV − IFC)+ + (M − IV − IFC)−,149
150

so that the portfolio value at default is given by

θτ = 1τC<τBθ
C
τ + 1τB<τCθ

B
τ ,

with τ = min(τB, τC). Further we introduce the default risky, zero-recovery bonds (ZCBs) PB and151

PC with respective maturities TB and TC and face value one if the issuer has not defaulted, and152

zero otherwise. The dynamics of PB and PC are given by153

dPBt = rBP
B
t dt− PBt−dJBt ,154

dPCt = rCP
C
t dt− PCt−dJCt ,155

156

where JBt = 1τB≤t and JCt = 1τC≤t. Both counting processes JB, JC are two independent point157

processes that jump from zero to one on default of B and C with intensities γB and γC , respectively.158

We construct a hedging portolio consisting of the shorted derivative, ∆ units of X, g units of

cash, αC units of PC and αB units of PB:

Π(t) = −û(t, x) + ∆(t)Xt + αB(t)PBt + αC(t)PCt + g(t).

The shares position provides a dividend income of rD∆(t)Xtdt and requires a financing cost of159

rR∆(t)Xtdt. The seller will short the counterparty bond through a repurchase agreement and incur160

the financing costs of −rαC(t)PCt , assuming no haircut. The cashflows from the collateralization161
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follow from the rate rTC received and rFC paid on the initial margin and the rate rI paid or received162

on the collateral, depending on whether IV > 0 and the bank receives collateral or IV < 0 and the163

bank pays collateral repectively. From holding the regulatory capital we incur a cost of rKK(t).164

Finally, the rates r and rF are respectively received or paid on the surplus cash in the account:165

−û(t, x)− IV (t) + ITC − αB(t)PBt . Thus, the change in the cash account is given by166

dg(t) =[(rD − rR)∆(t)Xt − rαC(t)PCt + rTCITC − rFCIFC − rIIV (t)− rKK(t)167

+ r(−û(t, x)− IV (t) + ITC − αB(t)PBt ) + λF (−û(t, x)− IV (t) + ITC − αB(t)PBt )−]dt.168
169

Assuming the portfolio is self-financing we have170

dΠ(t) =− dû(t, x) + ∆(t)dXt + αB(t)dPBt + αC(t)dPCt + dg(t)171

=− dû(t, x) + ∆(t)µ(t, x)dt+ ∆(t)σ(t, x)dWt + ∆(t)

∫
R
qdÑt(t,Xt−, dq)172

+ αB(t)dPBt + αC(t)dPCt + dg(t).173
174

Applying Itô’s Lemma to û(t, x) gives us:175

dû(t, x) =Lû(t, x)dt+ σ(t, x)∂xû(t, x)dWt +

∫
R

(û(t, x+ q)− û(t, x))dÑ(t, x, dq)176

− (θB − û(t, x))dJBt − (θC − û(t, x))dJCt .177
178

Thus, we find,179

dΠ =− Lû(t, x)dt− σ(t, x)∂xû(t, x)dWt −
∫
R

(û(t, x+ q)− û(t, x))dÑ(t,Xt−, dq)180

+ (θB − û(t, x))dJBt + (θC − û(t, x))dJCt181

+ ∆(t)σ(t, x)dWt + ∆(t)

∫
R
qdÑt(t,Xt−, dq)− αB(t)PBt−dJ

B
t − αC(t)PCt−dJ

C
t182

+ [∆(t)(µ(t, x) + (rD − rR)x) + αB(t)λBP
B
t + αC(t)λCP

C
t183

+ (rTC + r)ITC − rFCIFC − (rI + r)IV (t)− rKK(t) + rû(t, x)184

+ λF (−û(t, x)− IV (t) + ITC − αB(t)PBt )−]dt.185
186

By choosing187

∆ = ∂xu(t, x), αB = −θ
B − û(t, x)

PB
, αC = −θ

C − û(t, x)

PC
,188

189
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we hedge the Brownian motion and jump-to-default risk in the hedging portfolio, i.e.,190

dΠ =− Lû(t, x)dt−
∫
R

(û(t, x+ q)− û(t, x))dÑ(t,Xt−, dq) + ∂xû(t, x)

∫
R
qdÑt(t,Xt−, dq)191

+ [∂xû(t, x)(µ(t, x) + (rD − rR)x)− (θB − û(t, x))λB − (θC − û(t, x))λC192

+ (rTC + r)ITC − rFCIFC − (rI + r)IV (t)− rKK(t) + rû(t, x)193

+ λF (θB − IV (t) + ITC)−]dt.194
195

Notice that we are in an incomplete market, as it is not possible to choose ∆(t) such that the196

portfolio is risk-free (due to the presence of the state-dependent jumps). Following standard ar-197

guments, see e.g. [11] and [6], we assume that an investor holds a diversified portfolio of several198

hedging portfolios and that the jumps for the different portfolios are uncorrelated. The variance of199

this ‘portfolio of portfolios’ will then be small and the expected return on the portfolio is given by200

E[dΠ] = 0.201
202

The assumption of the jump risk being diversifiable is valid if the jump parameters are adjusted203

to contain the so-called market price of risk, as can be done by e.g. fitting them from the market.204

We find the pricing PIDE to be205

Lû(t, x) =f(t, x, û(t, x), ∂xû(t, x)),(5)206
207

where we have defined208

f(t, x, û(t, x), ∂xû(t, x)) =∂xû(t, x)(µ(t, x) + (rD − rR)x)− (θB(t)− û(t, x))λB209

− (θC(t)− û(t, x))λC + (rTC + r)ITC − rFCIFC − (rI + r)IV (t)210

− rKK(t) + rû(t, x) + λF (θB − IV (t) + ITC)−,211
212

and used213

E
[∫

R
(û(t, x+ q)− û(t, x)− z∂xû(t, x))dÑ(t,Xt−, q)

]
= 0,214

215

due to the jump measure being compensated.216

3.2. BSDE representation. In this section we will cast the PIDE in (5) in the form of a217

Backward Stochastic Differential Equation. We begin by recalling the non-linear Feynman-Kac218

theorem in the presence of jumps, see e.g. [16].219

Theorem 1 (Non-linear Feynman-Kac Theorem). Consider Xt as in (1) and the BSDE220

Yt = φ(XT ) +

∫ T

t
f

(
s,Xs, Ys, Zs, a(s,Xs−)

∫
R
Vs(q)δ(s, q)ν(dq)

)
ds−

∫ T

t
ZsdWs221

−
∫ T

t

∫
R
Vs(q)dÑs(s,Xs, q),(6)222

223
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where δ(t, q) is a non-negative function such that
∫
R |δ(s, q)|

2ν(dq) < ∞, T is the time horizon, f224

is the generator and φ is the terminal condition. The functions µ, σ, a and the generator f are225

assumed to be uniformly Lipschitz continuous in the space variables, for all t ∈ [0, T ]. Consider the226

non-linear PIDE227 Lu(t, x) = f(t, x, u(t, x), ∂xu(t, x)σ(t, x), a(t, x)
∫
R(u(t, x+ q)− u(t, x))δ(t, q)ν(dq)),

u(T, x) = ψ(x).
(7)228

229

If the PIDE in (7) has a solution u(t, x) ∈ C1,2, the solution (Yt, Zt, Vt) of the FBSDE in (6) can230

be represented as231

Y t,x
s = u(s,Xt,x

s ),232

Zt,xs = ∂xu(s,Xt,x
s )σ(s,Xt,x

s ),233

V t,x
s (q) = u(s,Xt,x

s + q)− u(s,Xt,x
s ), q ∈ R,234

235

for all s ∈ [t, T ], where Y is a continuous, real-valued and adapted processes and where Z and V236

are continuous, real-valued and predictable processes.237

In our case, the BSDE corresponding to the PIDE in (5) is given by238

Yt = φ(XT ) +

∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
ZsdWs −

∫ T

t

∫
R
Vs(q)dÑ(s,Xs, dq),(8)239

240

where we have defined the driver function to be241

f(t, x, y, z) =zσ(t, x)−1(µ(t, x) + (rD − rR)x)− λB(θB − y)− λC(θC − y)242

+ (rTC + r)ITC − rFCIFC − (rI + r)IV (t)− rKK(t) + ry243

+ λF (θB − IV (t) + ITC)−.244
245

3.2.1. Close-out value M = û(t, x). We derive, for completion, the driver function in the246

scenario in which the close-out value has a mark-to-market rule M equal to û, the risky portfolio247

value. Then the driver function has the following form248

f(t, x, y, z) =zσ(t, x)−1(µ(t, x) + (rD − rR)x)− rKK(t)249

+ (rTC + rB)ITC − (rFC + λC)IFC − (rI + rB + λC)IV (t)250

+ (rB + λC)y − λB((y − IV (t) + ITC)+ +RB(y − IV (t) + ITC)−)251

− λC(RC(y − IV (t)− IFC)+ + (y − IV (t)− IFC)−)252

− λF (y − IV (t) + ITC)−,253
254

where we have used (y − IV (t) + ITC)+ +RB(y − IV (t) + ITC)+ = (y − IV (t) + ITC)−.255
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3.2.2. Close-out value M = u(t, x). We also consider the case of the close-out value being256

equal to u, the risk-free portflio value. This convention is most often used in the industry. In this257

case the driver function becomes258

f(t, x, y, z) =zσ(t, x)−1(µ(t, x) + (rD − rR)x) + (rB + λC)y259

− rKK(t)− (rTC + rB)ITC − (rFC + λC)IFC − (rI + rB + λC)IV (t)260

− λB((u− IV (t) + ITC)+ +RB(u− IV (t) + ITC)−)261

− λC(RC(u− IV (t)− IFC)+ + (u− IV (t)− IFC)−)262

− λF (u− IV (t) + ITC)−,263
264

where u(t, x) is the solution to the linear PIDE given in (4) so that the driver function is linear in265

y. This results in a linear PIDE which can be solved with the method in [1], without the use of266

BSDEs.267

3.2.3. A simplified driver function. Following [12], one can derive that the KVA is a function268

of trade properties (i.e. maturity, strike) and/or the exposure at default, which in turn is a function269

of the portfolio value, so that the cost of holding the capital can be rewritten as270

rKK(t) = rKc1û(t, x),271
272

with c1 being a function of the trade properties. The collateral is paid when the portfolio has a273

negative value, and received when the collateral has a positive value. Assuming the collateral is a274

multiple of the portfolio value we have275

IV (t) = c2û(t, x),276
277

where c2 is some constant. Then, the driver function is simply a function of the portfolio value and278

its first derivative.279

Remark 2. Note that in the case of ‘no collateralization’ or ‘perfect collateralization’, the driver280

function reduces to f(t, û(t, x)) = ru(t) max(û(t, x), 0), for a function ru here left unspecified. In281

this case the BSDE is similar to the one considered in [24].282

4. Solving FBSDEs. In this section we extend the BCOS method from [25] to solving FBSDEs283

under local Lévy models with variable coefficients and jumps. The conditional expectations result-284

ing from the discretization of the FBSDE are approximated using the COS method. This requires285

the characteristic function, which we approximate using the Adjoint Expansion Method of [21] and286

[1].287
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4.1. Discretization of the BSDE. Consider the forward process Xt as in (1) and the BSDE288

Yt as in (8). Define a partition 0 = t0 < t1 < ... < tN = T of [0, T ] with a fixed time step289

∆t = tn+1 − tn, for n = N − 1, ...0. Rewriting the set of FBSDEs we find,290

Xn+1 =Xn +

∫ tn+1

tn

µ(s,Xs)ds+

∫ tn+1

tn

σ(s,Xs)dWs +

∫ tn+1

tn

∫
R
qdÑs(s,Xs−, dq),291

Yn =Yn+1 +

∫ tn+1

tn

f (s,Xs, Ys, Zs) ds−
∫ tn+1

tn

ZsdWs −
∫ tn+1

tn

∫
R
Vs(q)dÑs(s,Xs−, dq).(9)292

293

One can obtain an approximation of the process Yt by taking conditional expectations with respect294

to the underlying filtration Gn, using the independence of Wt and Ñt(t,Xt−, dq) and by approxi-295

mating the integrals that appear with a theta method, as first done in [26] and extended to BSDEs296

with jumps in [25]:297

Yn ≈ En[Yn+1] + ∆tθ1f (tn, Xn, Yn, Zn) + ∆t(1− θ1)En [f (tn+1, Xn+1, Yn+1, Zn+1)] .298
299

Let ∆Ws := Ws−Wn for tn ≤ s ≤ tn+1. Multiplying both sides of equation (9) by ∆Wn+1, taking300

conditional expectations and applying the theta-method gives301

Zn ≈ −θ−12 (1− θ2)En[Zn+1] +
1

∆t
θ−12 En[Yn+1∆Wn+1]302

+ θ−12 (1− θ2)En [f (tn+1, Xn+1, Yn+1, Zn+1) ∆Wn+1] .303
304

Since in our scheme the terminal values are functions of time t and the Markov process X, it is305

easily seen that there exist deterministic functions y(tn, x) and z(tn, x) so that306

Yn = y(tn, Xn), Zn = z(tn, Xn).307
308

The functions y(tn, x) and z(tm, x) are obtained in a backward manner using the following scheme309

y(tN , x) =φ(x), z(tN , x) = ∂xφ(x)σ(tM , x),310

for n = N − 1, ..., 0:311

y(tn, x) =En[y(tn+1, Xn+1)] + ∆tθ1f (tn, x) + ∆t(1− θ1)En [f(tn+1, Xn+1)] ,(10)312

z(tn, x) =− 1− θ2
θ2

En[z(tn+1, Xn+1)] +
1

∆t
θ−12 En[y(tn+1, Xn+1)∆Wn+1](11)313

+
1− θ2
θ2

En [f(tn+1, Xn+1)∆Wn+1] ,314
315

where we have simplified notations with316

f(t,Xt) := f (t,Xt, y(t,Xt), z(t,Xt)) .317
318

In the case θ1 > 0 we obtain an implicit dependence on y(tn, x) in (10) and we use P Picard319

iterations starting with initial guess En[y(tn+1, Xn+1)] to determine y(tn, x). Note that due to the320

independence of the driver function on Vs(q), we choose not to calculate Vn(q) = v(tn, Xn, q) in the321

interation. This simplifies the computation and reduces the computational time.322
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4.2. The characteristic function. Is it well-known (see, for instance, [18, Section 2.2]) that the323

price V of a European option with maturity T and payoff Φ(ST ) is given by324

Vt = 1{ζ>t}e
−r(T−t)E

[
e−

∫ T
t γ(s,Xs)dsφ(XT )|Xt

]
, t ≤ T,325

326

in the measure corresponding to the risk-neutral dynamics in (1) and where we have defined φ(x) :=327

Φ(ex). Thus, in order to compute the price of an option, we must evaluate functions of the form328

v(t, x) := E
[
e−

∫ T
t γ(s,Xs)dsφ(XT )|Xt = x

]
.(12)329

330

Under standard assumptions, by the Feynman-Kac theorem, v can be expressed as the classical331

solution of the following Cauchy problem332 Lv(t, x) = 0, t ∈ [0, T [, x ∈ R,

v(T, x) = φ(x), x ∈ R,
333

334

with L as in (2).335

The function v in (12) can be represented as an integral with respect to the transition distri-336

bution of the defaultable log-price process logSt:337

v(t, x) =

∫
R
φ(y)Γ(t, x;T, dy).338

339

Here we notice explicitly that Γ(t, x;T, dy) is not necessarily a standard probability measure because

its integral over R can be strictly less than one; nevertheless, with a slight abuse of notation, we

say that its Fourier transform

Γ̂(t, x;T, ξ) := F(Γ(t, x;T, ·))(ξ) :=

∫
R
eiξyΓ(t, x;T, dy), ξ ∈ R,

is the characteristic function of logS. Following [21] and [1] we expand the state-dependent coeffi-

cients

s(t, x) :=
σ2(t, x)

2
, µ(t, x), γ(t, x), a(t, x),

around some point x̄. The coefficients s(t, x), γ(t, x) and a(t, x) are assumed to be continuously340

differentiable with respect to x up to order n ∈ N.341

Introduce the nth-order approximation of L in (2):342

Ln = L0 +

n∑
k=1

(
(x− x̄)kµk(t) + (x− x̄)ksk(t)∂xx − (x− x̄)kγk(t)343

+

∫
R

(x− x̄)kak(t)ν(dq)(eq∂x − 1− q∂x)
)
,344

345
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where346

L0 = ∂t + µ0(t)∂x + s0(t)∂xx − γ0(t) +

∫
R
a0(t)ν(dq)(eq∂x − 1− q∂x),347

348

and349

sk =
∂kxs(·, x̄)

k!
, γk =

∂kxγ(·, x̄)

k!
, µk(dq) =

∂kxµ(·, x̄)

k!
, ak =

∂kxa(·, x̄)

k!
k ≥ 0.350

351

The basepoint x̄ is a constant parameter which can be chosen freely. In general the simplest choice352

is x̄ = x (the value of the underlying at initial time t).353

Assume for a moment that L0 has a fundamental solution G0(t, x;T, y) that is defined as the

solution of the Cauchy problemL0G
0(t, x;T, y) = 0 t ∈ [0, T [, x ∈ R,

G0(T, ·;T, y) = δy.

In this case we define the nth-order approximation of Γ as

Γ(n)(t, x;T, y) =
n∑
k=0

Gk(t, x;T, y),

where, for any k ≥ 1 and (T, y), Gk(·, ·;T, y) is defined recursively through the following Cauchy

problem 
L0G

k(t, x;T, y) = −
k∑

h=1

(Lh − Lh−1)Gk−h(t, x;T, y) t ∈ [0, T [, x ∈ R,

Gk(T, x;T, y) = 0, x ∈ R.

Notice that354

Lk − Lk−1 =(x− x̄)kµh(t)∂x + (x− x̄)ksk(t)∂xx − (x− x̄)kγk(t)355

+

∫
R

(x− x̄)kak(t)ν(dq)(eq∂x − 1− q∂x).356
357

Correspondingly, the nth-order approximation of the characteristic function Γ̂ is defined to be358

Γ̂(n)(t, x;T, ξ) =

n∑
k=0

F
(
Gk(t, x;T, ·)

)
(ξ) :=

n∑
k=0

Ĝk(t, x;T, ξ), ξ ∈ R.359

Now, by transforming the simplified Cauchy problems into adjoint problems and solving these in360

the Fourier space we find361

Ĝ0(t, x;T, ξ) = eiξxe
∫ T
t ψ(s,ξ)ds,362

Ĝk(t, x;T, ξ) = −
∫ T

t
e
∫ T
s ψ(τ,ξ)dτF

(
k∑

h=1

(
L̃
(s,·)
h (s)− L̃(s,·)

h−1(s)
)
Gk−h(t, x; s, ·)

)
(ξ)ds,363

364
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14 A. BOROVYKH, A. PASCUCCI, C.W. OOSTERLEE

with365

ψ(t, ξ) = iξµ0(t) + s0(t)ξ
2 +

∫
R
a0ν(t, dq)(eizξ − 1− izξ),366

L̃
(t,y)
h (t)− L̃(t,y)

h−1(t) = µh(t)h(y − x̄)h−1 + µh(t)(y − x̄)h∂y − γh(t)(y − x̄)h367

+ sh(t)h(h− 1)(y − x̄)h−2 + sh(t)(y − x̄)h−1 (2h∂y + (y − x̄)∂yy)368

+

∫
R
ah(t)ν̄(dq)

(
(y + q − x̄)heq∂y − (y − x̄)h − q

(
h(y − x̄)h−1 − (y − x̄)h∂y

))
,369

370

where ν̄(dq) = ν(−dq).371

Remark 3. After some algebraic manipulations it can be shown, see [1], that the characteristic372

function approximation of order n is a function of the form373

(13) Γ̂(n)(t, x;T, ξ) := eiξx
n∑
k=0

(x− x̄)kgn,k(t, T, ξ),374

where the coefficients gn,k, with 0 ≤ k ≤ n, depend only on t, T and ξ, but not on x. The approx-375

imation formula can thus always be split into a sum of products of functions depending only on ξ376

and functions that are linear combinations of (x− x̄)meiξx, m ∈ N0.377

4.3. The COS formulae. The conditional expectations are approximated using the COS method,378

which was developed in [9] and applied to FBSDEs with jumps in [25]. The conditional expectations379

arising in the equations (10)-(11)are all of the form En[h(tn+1, Xn+1)] or En[h(tn+1, Xn+1)∆Wn+1].380

The COS formula for the first conditional expectation reads381

Exn[h(tn+1, Xn+1)] ≈
J−1∑′

j=0

Hj(tn+1)Re

(
Γ̂

(
tn, x; tn+1,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
,382

383

where
∑′

denotes an ordinary summation with the first term weighted by one-half, J > 0 is the384

number of Fourier-cosine coefficients we use, Hj(tn+1) denotes the jth Fourier-cosine coefficients of385

the function h(tn+1, x) and Γ̂ (tn, x; tn+1, ξ) is the conditional characteristic function of the process386

Xn+1 given Xn = x. For the second conditional expectation, using integration by parts, we obtain387

Exn[h(tn+1, Xn+1)∆Wn]388

≈ ∆tσ(tn, x)

J−1∑′

j=0

Hj(tn+1)Re

(
i
jπ

b− a
Γ̂

(
tn, x; tn+1,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
.389

390

See [25] for the full derivations.391
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Remark 4. Note that these formulas are obtained by using an Euler approximation of the forward392

process and using the 2nd-order approximation of the characteristic function of the actual process.393

We have found this to be more exact than using the characteristic function of the Euler process,394

which is equivalent to using just the 0th-order approximation of the characteristic function.395

Finally we need to approximate the Fourier-cosine coefficients Hj(tn+1) of h at time points tn,396

where n = 0, ..., N . The Fourier-cosine coefficient of h at time tn+1 is defined by397

Hj(tn+1) =
2

b− a

∫ b

a
h(tn+1, x) cos

(
jπ
x− a
b− a

)
dx.398

399

Due to the structure of the approximated characteristic function of the local Lévy process, see (13),

the coefficients of the functions z(tn+1, x) and the explicit part of y(tn+1, x) can be computed using

a FFT algorithm, as we do in Appendix A, because of the matrix in (20) being of a certain form.

In order to determine Fj(tn+1), the Fourier-Cosine coefficient of the function

f (tn+1, x, y(tn+1, x), z(tn+1, x)) ,

due to the intricate dependence on the functions z and y we choose to approximate the integral in400

Fj with a discrete Fourier-Cosine transform (DCT). For the DCT we compute the integrand, and401

thus the functions z(tn+1, x) and y(tn+1, x), on an equidistant x-grid. Note that in this case we can402

easily approximate all Fourier-Cosine coefficients with a DCT (instead of the FFT). If we take J403

grid points defined by xi := a+ (i+ 1
2) b−aJ and ∆x = b−a

J we find using the mid-point integration404

rule the approximation405

Hj(tn+1) ≈
2

J

J−1∑′

i=0

h(tn+1, xi) cos

(
jπ

2i+ 1

2G

)
,406

407

which can be calculated using a DCT algorithm, with the computational time being O(J log J).408

Remark 5. We define the truncation range [a, b] as follows:

[a, b] :=

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
,

where cn is the nth cumulant of log-price process logS, as proposed in [8]. The cumulants are409

calculated using the 0th-order approximation of the characteristic function.410

5. XVA computation for Bermudan derivatives. The method in Section 4 allows us to com-411

pute the XVA as in (3), consisting of CVA, DVA, MVA, KVA and FVA. In this section, we apply412

this method to computing Bermudan derivative values with XVA. For the CVA component in the413

XVA we develop an alternative method, which due to the ability to use the FFT results in a414

particularly efficient computation.415
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5.1. XVA computation. Consider an OTC derivative contract between the bank B and the416

counterparty C with a Bermudan-type exercise possibility: there is a finite set of so-called exercise417

moments {t1, ..., tM} prior to the maturity, with 0 ≤ t1 < t2 < · · · < tM = T . The payoff from the418

point-of-view of bank B is given by Φ(tm, Xtm). Denote û(t, x) to be the risky Bermudan option419

value and c(t, x) the so-called continuation value. By the dynamic programming approach, the420

value for a Bermudan derivative with XVA and M exercise dates t1, ..., tM can be expressed by a421

backward recursion as422

û(tM , x) = Φ(tM , x),423
424

and the continuation value solves the non-linear PIDE defined in (5)425 
Lc(t, x) = f(t, x, c(t, x), ∂xc(t, x)), t ∈ [tm−1, tm[

c(tm, x) = û(tm, x)

û(tm−1, x) = max{Φ(tm−1, x), c(tm−1, x)}, m ∈ {2, . . . ,M}.

426

427

The derivative value is set to be û(t, x) = c(t, x) for t ∈]tm−1, tm[, and, if t1 > 0, also for t ∈ [0, t1[.428

The payoff function might take on various forms:429

1. (Portfolio) Following [24], we can consider Xt to the process of a portfolio which can take430

on both positive and negative values. Then, when exercised at time tm, bank B receives431

the portfolio and Φ(tm, x) = x.432

2. (Bermudan option) In case the Bermudan contract is an option, the option value to the433

bank can not have a negative value for the bank. At the same time, in case of default of434

the bank itself, the counterparty loses nothing. In this case the framework simplifies to one435

with unilateral collateralization and default risk and the payoff at time tm, if exercised, is436

given by Φ(tm, x) = (K − ex)+ for a put and Φ(tm, x) = (ex −K)+ for a call with K being437

the strike price.438

3. (Bermudan swaptions) A Bermudan swaption is an option in which the holder, bank B,439

has the right to exercise and enter into an underlying swap with fixed end date tM+1.440

If the swaption is exercised at time tm the underlying swap starts with payment dates441

Tm = {tm+1, ..., tM+1}. Working under the forward measure corresponding to the last reset442

date tM , the payoff function is given by443

Φ(tm, x) = NS

(
M∑
k=m

P (tm, tk+1, x)

P (tm, tM )
∆t

)
max(cp(S(tm, Tm, x)−K), 0),444

445

where NS is the notional, cp = 1 for a payer swaption and cp = −1 for a receiver swaption,446

P (tm, tk, x) is the price of a ZCB conditional on Xtm = x and S(tm, Tm, x) is the forward447

This manuscript is for review purposes only.



EFFICIENT XVA COMPUTATION UNDER LOCAL LÉVY MODELS 17

swap rate given by448

S(tm, Tm, x) =

(
1− P (tm, tm+1, x)

P (tm, tM , x)

)/( M∑
k=m

P (tm, tk+1, x)

P (tm, tM , x)
∆t

)
.449

450

To solve for the continuation value we define a partition with N steps tm−1 = t0,m < t1,m <451

t2,m < ... < tn,m < ... < tN,m = tm between two exercise dates tm−1 and tm, with fixed time step452

∆tn := tn+1,m − tn,m. Applying the method developed in Section 4, we find the following time453

iteration for the continuation value and its derivative454

c(tN,m, x) = û(tm, x), z(tN,m, x) = ∂xû(tm, x)σ(tN,m, x)455

for n = N − 1, ..., 0456

c(tn,m, x) ≈ ∆tnθ1f(tn,m, x, c(tn,m, x), z(tn,m, x))457

+

J−1∑′

j=0

Ψj(x)(Cj(tn+1,m) + ∆tn(1− θ1)Fj(tn+1,m)),(14)458

z(tn,m, x) ≈
J−1∑′

j=0

−1− θ2
θ2

Zj(tn+1,m)Ψj(x)459

+

(
1

∆tnθ2
Cj(tn+1,m) +

1− θ2
θ2

Fj(tn+1,m)

)
σ(tn+1,m, x)∆tnΨ̄j(x)(15)460

461

where we have defined462

Ψj(x) = Re

(
Γ̂

(
tn,m, x; tn+1,m,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
,463

Ψ̄j(x) = Re

(
i
jπ

b− a
Γ̂

(
tn,m, x; tn+1,m,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
,464

465

and the Fourier-cosine coefficients are given by466

Cj(tn+1,m) =
2

b− a

∫ b

a
c(tn+1,m, x) cos

(
jπ
x− a
b− a

)
dx,467

Zj(tn+1,m) =
2

b− a

∫ b

a
z(tn+1,m, x) cos

(
jπ
x− a
b− a

)
dx,468

Fj(tn+1,m) =
2

b− a

∫ b

a
f(tn+1,m, x, c(tn+1,m, x), ∂xc(tn+1,m, x)) cos

(
jπ
x− a
b− a

)
dx.469

470

In order to determine the function c(tn, x), we will perform P Picard iterations. To evaluate the471

coefficients with a DCT we need to compute the integrand f(tn+1,m, x, c(tn+1,m, x), z(tn+1,m, x)) on472

the equidistant x-grid with xi, for i = 0, ..., J − 1. In order to compute this at each time step tn,m473

we thus need to evaluate c(tn,m, x) and z(tn+1,m, x) on the x-grid with J equidistant points using474

formula (14)-(15). This matrix-vector product results in a computational time of order O(J2).475
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The total algorithm for computing the value of a Bermudan contract with XVA can be sum-476

marised as in Algorithm 1 in Figure 5.1. The total computational time for the algorithm is477

O(M · N(J2 + PJ + J log J + J)), consisting of the computation for M · N times the compu-478

tation of the characteristic function on the x-grid, initialization of the Picard method, computation479

of the P Picard approximations for c(tn,m, x) and computing the Fourier coefficients Fj(tn) and480

Cj(tn).481

1. Define the x-grid with J grid points given by xi = a+ (i+ 1
2) b−aJ for i = 0, ..., J − 1.

2. Calculate the final exercise date values c(tN,M , x) = û(tM , x) and z(tN,M , x) =

∂xû(tM , x)σ(tN,M , x) on the x-grid and compute the terminal coefficients Cj(tM ),

Zj(tM ) and Fj(tM ) using the DCT.

3. Recursively for the exercise dates m = M − 1, ..., 0 do:

(a) For time steps n = N − 1, ..., 0 do:

i. Compute c(tn,m, x), z(tn,m, x) using formula (14)-(15) and use these to de-

termine f(tn,m, x, c(tn,m, x), z(tn,m, x)) on the x-grid.

ii. Subsequently, use these to determine Fj(tn,m), Zj(tn,m) and Cj(tn,m) using

the DCT.

(b) Compute the new terminal conditions c(tN,m−1, x) = max{φ(t0,m, x), c(t0,m, x)}
and z(tN,m−1, x) = ∂x max{φ(t0,m, x), c(t0,m, x)}σ(tN,m−1, x) (either analyti-

cally or numerically) and the corresponding Fourier-cosine coefficients.

4. Finally v(t0, x0) = c(t0,0, x0).

Figure 5.1. Algorithm 1: Bermudan derivative valuation with XVA

5.2. An alternative for CVA computation. In this section we present an efficient alternative

way of calculating the CVA term in (3) in the case of unilateral CCR using a Fourier-based method.

Due to the ability of using the FFT this method is considerably faster for computing the CVA than

the method presented in Section 5.1. We use the definition of CVA at time t given by

CVA(t) = û(t,Xt)− u(t,Xt),

where u(t,Xt) is as usual the default-free value of the Bermudan option, while û(t,Xt) is the value482

including default. We consider the model as defined in (1). We will compute u(t,Xt) and û(t,Xt)483

using the COS method and the approximation of the characteristic function (as derived in Section484

4.3), without default (γ(t, x) = 0) and with default respectively. In case of a default the payoff485

becomes zero. Note that the risky option value û(t, x) computed with the characteristic function486
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for a defaultable underlying corresponds exactly to the option value in which the counterparty487

might default with the probablity of default, PD(t), defined as in (2). Thus, in this case we have488

unilateral CCR and ζ = τC , the default time of the counterparty.489

Using the definition of the defaultable St, it is well-known (see, for instance, [18, Section 2.2])490

that the risky no-arbitrage value of the Bermudan option on the defaultable asset St at time t is491

û (t,Xt) = 1{ζ>t} sup
τ∈Tt

E
[
e−

∫ τ
t (r+γ(s,Xs))dsφ(τ,Xτ )|Xt

]
.492

493

494

Remark 6 (Wrong-way risk). By allowing the dependence of the default intensity on the under-495

lying, a simplified form of wrong-way risk is incorporated into the CVA valuation.496

Note that the option value at time t becomes 0 if default occurs prior to time t. For a Bermudan497

put option with strike price K, we simply have φ(t, x) = (K − x)+. By the dynamic programming498

approach, the option value can be expressed by a backward recursion as499

û(tM , x) = 1{ζ>tM}max(φ(tM , x), 0)500
501

and502

c(t, x) = E
[
e
∫ tm
t (r+γ(s,Xs))dsû(tm, Xtm)|Xt = x

]
, t ∈ [tm−1, tm[

û(tm−1, x) = 1{ζ>tm−1}max{φ(tm−1, x), c(tm−1, x)}, m ∈ {2, . . . ,M}.
(16)503

504

Thus to find the risky option price û(t,Xt) one uses the defaultable asset and in order to get505

the default-free value u(t,Xt) one uses the default-free asset by setting γ(t, x) = 0 and the CVA506

adjustment is calculated as the difference between the two. Both û(t, x) and u(t, x) are calculated507

using the approximated characteristic function and the COS method applied to the continuation508

value, as is done in [1]. Due to the characteristic function being of the form (13), we are able to509

use a FFT in the matrix-vector multiplication. For more details, refer to Appendix A.510

5.2.1. Hedging CVA. In practice CVA is hedged and thus practitioners require efficient ways511

to compute the sensitivity of the CVA with respect to the underlying. The widely used bump-512

and revalue- method, while resulting in precise calculations, might be slow to compute. Using the513

Fourier-based approach we find the following explicit formulas allowing for an easy computation of514
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the first- and second-order derivatives of the CVA with respect to the underlying:515

∆̂ = e−r(t1−t0)
J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
ijπ

b− a
gdn,0

(
t0, t1,

jπ

b− a

)
+ gdn,1

(
t0, t1,

jπ

b− a

)))
V̂ d
j (t1)516

− e−r(t1−t0)
J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
ijπ

b− a
grn,0

(
t0, t1,

jπ

b− a

)
+ grn,1

(
t0, t1,

jπ

b− a

)))
V̂ r
j (t1),517

Γ̂ = e−r(t1−t0)
J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
− ijπ

b− a
gdn,0

(
t0, t1,

jπ

b− a

)
− gdn,1

(
t0, t1,

jπ

b− a

)
518

+ 2
ijπ

b− a
gdn,1

(
t0, t1,

jπ

b− a

)
+

(
ijπ

b− a

)2

gdn,0

(
t0, t1,

jπ

b− a

)
+ 2gdn,2

(
t0, t1,

jπ

b− a

)))
V̂ d
j (t1)519

− e−r(t1−t0)
J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
− ijπ

b− a
grn,0

(
t0, t1,

jπ

b− a

)
− grn,1

(
t0, t1,

jπ

b− a

)
520

− 2
ijπ

b− a
grn,1

(
t0, t1,

jπ

b− a

)
+

(
ijπ

b− a

)2

grn,0

(
t0, t1,

jπ

b− a

)
+ 2grn,2

(
t0, t1,

jπ

b− a

)))
V̂j(t1)

r,521
522

where V d
k and V r

k are the Fourier-cosine coefficients with the defaultable and default-free charac-523

teristic functions terms, gdn,h and grn,h, respectively.524

6. Numerical experiments. In this Section we present numerical examples to justify the accu-525

racy of the methods in practice. We compute the XVA with the method presented in Section 5.1526

and the CVA in the case of unilateral CCR with the method from Section 5.2, which we show is527

more efficient for cases in which one only needs to compute the CVA.528

The computer used in the experiments has an Intel Core i7 CPU with a 2.2 GHz processor.529

We use the second-order approximation of the characteristic function. We have found this to be530

sufficiently accurate by numerical experiments and theoretical error estimates. The formulas for531

the second-order approximation are simple, making the methods easy to implement.532

6.1. A numerical example for XVA. In this section we check the accuracy of the method from533

Section 5.1. We will compute the Bermudan option value with XVA using a simplified drivers534

function f(t, û(t, x)) = −rmax(û(t, x), 0). Out method is easily extendible to the drivers functions535

in Section 3.2. Consider Xt to be a portfolio process and the payoff, if exercised at time tm, to be536

given by Φ(tm, x) = x. In this case the value we can receive at every exercise date is the value of537

the portfolio.538

Consider the model in Section 2 without default, with a local jump measure and a local volatility539

This manuscript is for review purposes only.



EFFICIENT XVA COMPUTATION UNDER LOCAL LÉVY MODELS 21

function with CEV-like dynamics and Gaussian jumps defined by540

σ(x) = beβx,(17)541

ν(x, dq) = λeβx
1√

2πδ2
exp

(
−(q −m)2

2δ2

)
dq.(18)542

543

We assume the following parameters in equations (17)-(18), unless otherwise mentioned: b =544

0.15, β = −2, λ = 0.2, δ = 0.2, m = −0.2, r = 0.1, K = 1 and X0 = 0. In the LSM the number545

of time steps is taken to be 100 and we simulate 105 paths. In the COS method we take L = 10,546

J = 256, θ1 = 0.5 and N = 10, M = 10, making the total number of time steps N ·M = 100.547

The results of the method compared to a LSM are presented in Table 6.1. These results show548

that our method is able to solve non-linear PIDEs accurately. The CPU time of the approximating549

method depends on the number of time steps M · N and is approximately 5 · (N ·M) ms. The550

effects of the non-linear part become clear when we compare the option value with and without551

XVA. The results are presented in Figure 6.1. In Figure 6.2 we present the convergence results for552

the parameters in the COS approximation. The number of Fourier-cosine terms in the summation553

is given by J = 2d, d = 1, ..., 8, the number of exercise dates is fixed, M = 10, and the number of554

time steps between each exercise date is set at N = 1, 10.

maturity T X0 MC value with XVA COS value with XVA

0.5 0 0.03998-0.04051 0.04169

0.2 0.2326-0.2330 0.23504

0.4 0.4251-0.4254 0.4265

0.6 0.6169-0.6171 0.6172

0.8 0.8077-0.8079 0.8074

1 1.000-1.000 1.0000

1 0 007703-0.07785 0.07878

0.2 0.2611-0.2617 0.2660

0.4 0.4461-0.4465 0.4493

0.6 0.6288-0.6291 0.6311

0.8 0.8126-0.8129 0.8120

1 1.001-1.001 1.000
Table 6.1

A Bermudan put option with XVA (10 exercise dates, expiry T = 1) in the CEV-like model for the 2nd-order

approximation of the characteristic function, and a LSM.

555
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Figure 6.1. Values for a Bermudan portfolio at time t = 0 with and without XVA as a function of x. The payoff

function is Φ(tm, x) = x and the process is the CEV-like model.

Figure 6.2. Convergence of the absolute error for a Bermudan portfolio under the CEV-like model with payoff

function Φ(tm, x) = x for varying N and J .

6.2. A numerical example for CVA. In this section we validate the accuracy of the method556

presented in Section 5.2 and compute the CVA in the case of unilateral CCR under the model557

dynamics given in Section 2 with a local jump measure, a local default function and a local volatility558

function with CEV-like dynamics and Gaussian jumps defined by defined as in (18) and a local559

default function γ(x) = ceβx. We assume the same parameters as in 6.2, except r = 0.05 and we560

take c = 0.1 in the default function. In the LSM the number of time steps is taken to be 100 and561

we simulate 105 paths. In the COS method we take L = 10 and J = 100.562

The results for the CVA valuation with the FFT-based method and with LSM are presented in563

Table 6.2. The CPU time of the LSM is at least 5 times the CPU time of the approximating method,564

which for M exercise dates is approximately 3 ·M ms, thus more efficient then the computation565

of the XVA with the method in 5.1. The optimal exercise boundary in Figure 6.3 shows that the566

exercise region becomes larger when the probability of default increases; this is to be expected: in567

case of the default probability being greater, the option of exercising early is more valuable and568
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used more often.569

maturity T strike K MC CVA COS CVA

0.5 0.6 4.200 · 10−4 − 4.807 · 10−4 1.113 · 10−4

0.8 0.001525-0.001609 9.869·10−4

1 0.01254-0.01273 0.01138

1.2 0.005908-0.005931 0.005937

1.4 0.006657-0.06758 0.006898

1.6 0.007795-0.008008 0.007883

1 0.6 8.673 · 10−4 − 9.574 · 10−4 4.463 · 10−4

0.8 0.005817-0.006040 0.003535

1 0.02023-0.02054 0.01882

1.2 0.01221-0.01222 0.1272

1.4 0.01378-0.01391 0.01360

1.6 0.01532-0.01502 0.01554
Table 6.2

CVA for a Bermudan put option (10 exercise dates, expiry T = 0.5, 1) in the CEV-like model for the 2nd-order

approximation of the characteristic function, and a LSM.

Figure 6.3. Optimal exercise boundary for a Bermudan put option (10 exercise dates, expiry T = 1) in the

CEV-like model with varying default c = 0, 0.1, 0.2.

7. Conclusion. In this paper we considered pricing Bermudan derivatives under the presence570

of XVA, consisting of CVA, DVA, MVA, FVA and KVA. We derived the replicating portfolio with571
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cashflows corresponding to the different rates for different types of lending. This resulted in the572

PIDE in (5) and its corresponding BSDE (8). We propose to solve the BSDE using a Fourier-cosine573

method for the resulting conditional expectations and an adjoint expansion method for determining574

an approximation of the characteristic function of the local Lévy model in (1). This approach is575

extended to Bermudan option pricing in Section 5.1. In Section 5.2 we present an alternative576

for computing the CVA term in the case of unilateral collateralization (as is the case when the577

derivative is an option) without the use of BSDEs. This results in an even more efficient method578

due to the ability of using the FFT. We verify the accuracy of both methods in Sections 6.1 and 6.2579

by comparing it to a LSM and conclude that the method from Section 5.1 is able to price Bermudan580

options with XVA accurately and the alternative method for CVA computation from Section 5.2 is581

indeed more efficient than the BSDE method for computing just the CVA term.582

Acknowledgments. This research is supported by the European Union in the the context of583

the H2020 EU Marie Curie Initial Training Network project named WAKEUPCALL.584

Appendix A. The COS formulae. Remembering that the expected value c(t, x) in (16) can585

be rewritten in integral form, we have586

c(t, x) = e−r(tm−t)
∫
R
v(tm, y)Γ(t, x; tm, dy), t ∈ [tm−1, tm[,587

588

where, v(tm, y) can be either u(tm, y) or û(tm, y). Then we use the Fourier-cosine expansion to get589

the approximation:590

ĉ(t, x) = e−r(tm−t)
J−1∑′

j=0

Re

(
e−ijπ

a
b−a Γ̂

(
t, x; tm,

jπ

b− a

))
Vj(tm), t ∈ [tm−1, tm[(19)591

Vj(tm) =
2

b− a

∫ b

a
cos

(
jπ
y − a
b− a

)
max{φ(tm, y), c(tm, y)}dy,592

593

with φ(t, x) = (K − ex)+.594

We can recover the coefficients (Vj(tm))j=0,1,...,J−1 from (Vj(tm+1))j=0,1,...,J−1. To this end, we

split the integral in the definition of Vj(tm) into two parts using the early-exercise point x∗m, which

is the point where the continuation value is equal to the payoff, i.e. c(tm, x
∗
m) = φ(tm, x

∗
m); this

point can easily be found by using the Newton method. Thus, we have

Vj(tm) = Fj(tm, x
∗
m) + Cj(tm, x

∗
m), m = M − 1,M − 2, ..., 1,

where595

Fj(tm, x
∗
m) :=

2

b− a

∫ x∗m

a
φ(tm, y) cos

(
jπ
y − a
b− a

)
dy,

Cj(tm, x
∗
m) :=

2

b− a

∫ b

x∗m

c(tm, y) cos

(
jπ
y − a
b− a

)
dy,

596
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and Vj(tM ) = Fj(tM , logK).597

The coefficients Fj(tm, x
∗
m) can be computed analytically using x∗m ≤ logK, and by inserting598

the approximation (19) for the continuation value into the formula for Cj(tm, x
∗
m) have the following599

coefficients Ĉj for m = M − 1,M − 2, ..., 1:600

Ĉj(tm, x
∗
m) =

2e−r(tm+1−tm)

b− a
601

·
N−1∑′

k=0

Vk(tm+1)

∫ b

x∗m

Re

(
e−ikπ

a
b−a Γ̂

(
tm, x; tm+1,

kπ

b− a

))
cos

(
jπ
x− a
b− a

)
dx.602

603

From (13) we know that the nth-order approximation of the characteristic function is of the form:604

Γ̂(n)(tm, x; tm+1, ξ) = eiξx
n∑
h=0

(x− x̄)hgn,h(tm, tm+1, ξ),605

606

where the coefficients gn,h(t, T, ξ), with 0 ≤ k ≤ n, depend only on t, T and ξ, but not on x.607

Remark 7 (The defaultable and default-free characteristic functions). To find u(t, x) we use

Γ̂r(tm, x; tm+1, ξ) := eiξx
n∑
h=0

(x− x̄)hgrn,h(tm, tm+1, ξ),

the characteristic function with γ(t, x) = 0. For û(t, x) we use

Γ̂d(tm, x; tm+1, ξ) := eiξx
n∑
h=0

(x− x̄)hgdn,h(tm, tm+1, ξ),

where γ(t, x) is chosen to be some specified function.608

Using (13) we can write the Fourier coefficients of the continuation value in vectorized form as:609

Ĉ(tm, x
∗
m) =

n∑
h=0

e−r(tm+1−tm)Re
(
V(tm+1)Mh(x∗m, b)Λ

h
)
,610

611

where V(tm+1) is the vector [V0(tm+1), ..., VJ−1(tm+1)]
T andMh(x∗m, b)Λ

h is a matrix-matrix prod-612

uct with Mh a matrix with elements {Mh
k,j}

J−1
k,j=0 defined as613

Mh
k,j(x

∗
m, b) :=

2

b− a

∫ b

x∗m

eijπ
x−a
b−a (x− x̄)h cos

(
kπ
x− a
b− a

)
dx,(20)614

615

and Λh is a diagonal matrix with elements

gn,h

(
tm, tm+1,

jπ

b− a

)
, j = 0, . . . , J − 1.

One can show, see [1], that the resulting matrixMh is a sum of a Hankel and Toeplitz matrix and616

thus the resulting matrix vector product can be calculated using a FFT.617
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Stoch., 18 (2014), pp. 755–789.624

[4] P. Carr and V. Linetsky, A jump to default extended CEV model: an application of Bessel processes, Finance625

Stoch., 10 (2006), pp. 303–330.626

[5] A. Castagna, Yes, FVA is a cost for derivatives desks - A note on ‘is FVA a cost for derivatives desks?’ by627

Prof. Hull and Prof. White, working paper, (2012).628

[6] R. Cont and P. Tankov, Financial modelling with jump processes, vol. 2, Chapman & Hall, 2004.629

[7] C. de Graaf, Q. Feng, D. Kandhai, and C. Oosterlee, Efficient computation of exposure profiles for630

counterparty credit risk, International Journal of Theoretical and Applied Finance, 4 (2014).631

[8] F. Fang and C. W. Oosterlee, A novel pricing method for European options based on Fourier-cosine series632

expansions, SIAM J. Sci. Comput., 31 (2008/09), pp. 826–848.633

[9] , Pricing early-exercise and discrete Barrier options by Fourier-cosine series expansions, Numer. Math.,634

114 (2009), pp. 27–62.635

[10] Q. Feng and C. Oosterlee, Monte Carlo calculation of exposure profiles and Greeks for Bermudan and636

Barrier options under the Heston Hull-White model, submitted, (2014).637

[11] P. Forsyth, An introduction to computational finance without agonizing pain, Lecture notes, (2015), pp. 77–80.638

[12] A. Green, C. Kenyon, and C. Dennis, KVA: Capital Valuation Adjustment, Risk, 12 (2014).639

[13] J. Hull and A. White, The FVA debate, Risk, 7 (2012), pp. 83–85.640

[14] , XVAs: A gap between theory and practice, Risk, (2016).641

[15] S. Jain and C. W. Oosterlee, The stochastic grid bundling method: Efficient pricing of Bermudan options642

and their Greeks, Appl. Math. Comput., 269 (2015), pp. 412–432.643
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