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Abstract We consider a class of ultraparabolic differential equations that satisfy
the Hörmander’s hypoellipticity condition and we prove that the weak solutions to
the equation with measurable coefficients are locally bounded functions. The method
extends the Moser’s iteration procedure and has previously been employed in the
case of operators verifying a further homogeneity assumption. Here we remove that
assumption by proving some potential estimates and some ad hoc Sobolev type
inequalities for solutions.
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1 Introduction

We consider a class of second order partial differential equations of Kolmogorov–
Fokker–Planck type with measurable coefficients in the form

Lu(x, t) :=
m0∑

i, j=1

∂xi

(
ai j (x, t)∂x j u(x, t)

) +
N∑

i, j=1

bi j xi∂x j u(x, t)− ∂t u(x, t)= 0 (1)

where (x, t) = (x1, . . . , xN , t) = z denotes the point in R
N+1, and 1 ≤ m0 ≤ N .
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In order to state our assumptions, we define the principal part of L as follows

K = ∆m0 + Y, (2)

where∆m0 is the Laplace operator in the variables x1, . . . , xm0 and Y is the first order
part of L:

Y =
N∑

i, j=1

bi j xi∂x j − ∂t . (3)

Our assumptions are:

[H.1] the principal part K of L is hypoelliptic (i.e., every distributional solution of
K u = 0 is a C∞ function);

[H.2] the coefficients ai j , 1 ≤ i, j ≤ m0, are real valued, measurable functions of
z. Moreover ai j = a ji , 1 ≤ i, j ≤ m0, and there exists a positive constant µ
such that

µ−1|ξ |2 ≤
m0∑

i, j=1

ai j (z)ξiξ j ≤ µ|ξ |2

for every z ∈ R
N+1 and ξ ∈ R

m0 . The matrix B = (bi j )i, j=1,...,N is constant.

In the sequel, an equation of the form (1) satisfying [H.1]–[H.2] will be simply
called a KFP equation. A well-known criterion for the hypoellipticity of K is the
Hörmander’s condition [16] which in our setting reads:

rank Lie
(
∂x1, . . . , ∂xm0

,Y
)
(z) = N + 1, ∀z ∈ R

N+1,

where Lie (∂x1 , . . . , ∂xm0
,Y ) denotes the Lie algebra generated by the first order

differential operators (vector fields) ∂x1, . . . , ∂xm0
,Y . Then [H.1] only depends on m0

and on the first order part of L . We explicitly remark that uniformly parabolic operators
(for which m0 = N and B ≡ 0) are KFP operators and the related principal part is
the usual heat operator in R

N+1. On the other hand, there are also several examples of
degenerate KFP operators, i.e., with m0 strictly lesser than N , from diffusion theory
and mathematical finance.

Example 1 Consider the following kinetic equation

∂t f − 〈v,∇x f 〉 = Q( f ), t ≥ 0, x ∈ R
n, v ∈ R

n (4)

where n ≥ 1 and Q( f ) is the so-called “collision operator” which can take either a
linear or a non-linear form. The solution f corresponds at each time t to the density
of particles at the point x with velocity v. If

Q( f ) = divv (∇v f + v f ) ,
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then (4) becomes the prototype of the linear Fokker–Planck equation (see, for instance,
[8] and [32]) and it can be written in the form (1) by choosing m0 = n, N = 2n and

B =
(

In In

0 0

)
,

where In is the identity n × n matrix.
In the Boltzmann–Landau equation (see [6,20] and [21])

Q( f ) =
n∑

i, j=1

∂vi

(
ai j (·, f )∂v j f

)
,

the coefficients ai j depend on the unknown function through some integral expression.

Example 2 Equations of the form (1) arise in mathematical finance as well. More
specifically, the following linear KFP equation

S2∂SS V + f (S)∂M V − ∂t V = 0, S, t > 0, M ∈ R

with either f (S) = log S or f (S) = S, arises in the Black and Scholes theory when
considering the problem of the pricing of Asian options (see [3]). Moreover, in the
stochastic volatility model by Hobson and Rogers, the price of an European option is
given as a solution of the KFP equation

1

2
σ 2(S − M) (∂SS V − ∂S V )+ (S − M)∂M V − ∂t V = 0,

for some positive continuous function σ (see [15] and [9]). In the theory of bonds and
interest rates, KFP equations are considered in the study of the possible realization of
Heath–Jarrow–Morton [14] models in terms of a finite dimensional Markov diffusion
(see, for instance, [33] and [4]). We finally recall that non-linear KFP equations of the
form

∆x u + h(u)∂yu − ∂t u = f (·, u), (x, y, t) ∈ R
m0 × R × R.

occur in the theory of stochastic utility theory (see [1,2], and [7]).

It is well known that the natural geometric setting for the study of KFP operators
is the analysis on Lie groups (see for instance [13,34]).

The theory has been widely developed in the simplest case of homogeneous Lie
groups. A systematic study of this class of operators, when the coefficents ai j are
constant, has been carried out by Kupcov [18], and by Lanconelli and Polidoro [19].
The existence of a fundamental solution has been proved by Weber [36], Il’in [17],
Eidelman [12] and Polidoro [29,30] in the case of Hölder continuous coefficients ai j .
Pointwise upper and lower bound for the fundamental solution, mean value formulas
and Harnack inequalities are given in [29,30]; Schauder type estimates have been
proved by Satyro [35], Lunardi [22], Manfredini [23].
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In the more general case of non-homogeneous groups, the existence of a funda-
mental solution has been proved in [19] for KFP operators with constant coefficients
and by Di Francesco and Pascucci in [10] for Hölder continuous coefficients. We
also recall some mean value formulas proved by Morbidelli in [25] and Harnack type
inequalities in [25] and in [11].

Concerning the regularity of the weak solutions to (1), we recall the papers [5,24,
31], where the coefficients ai j satisfy a suitable vanishing mean oscillation condition.
In [28] we proved some pointwise estimate for the weak solutions to (1) by adapt-
ing a classical iterative method introduced by Moser [26,27] to the non-Euclidean
framework of the homogeneous Lie groups. The main goal in the papers by Moser
is a Harnack inequality. With the aim to adapt this theory to operators in the form
(1), a crucial step is the proof of a Poincaré type inequality which has not yet been
established.

The Moser’s method is based on a combination of a Caccioppoli type estimate
with the classical embedding Sobolev inequality. Due to the strong degeneracy of
the KFP operators, we encountered in [28] a new difficulty: the natural extension
of the Caccioppoli estimates gives an L2

loc bound only of the first order derivatives
∂x1u, . . . , ∂xm0

u of the solution u of (1), but it does not give any information on the
other spatial directions. The main idea used in [28] is to prove a Sobolev type inequality
only for the solutions to (1), by using a representation formula for the solution u in
terms of the fundamental solution of the principal part K of L . More specifically, let
u be a solution to (1), then

K u = (K − L)u =
m0∑

i=1

∂xi Fi , (5)

where

Fi =
m0∑

j=1

(
δi j − ai j

)
∂x j u, i = 1, . . . ,m0.

Since the Fi ’s depend only on the first order derivatives ∂x j u, j = 1, . . . ,m0, the

Caccioppoli inequality yields an H−1
loc -estimate of the right hand side of (5). Thus, by

using some potential estimate for the fundamental solution of K , we prove the needed
bound for the L p

loc norm of u.
The proof of the Caccioppoli type inequality plainly extends to non-homogeneous

groups, whereas the Sobolev inequalities used in [28] heavily rely on the homogeneity
of the fundamental solution. The main results of this paper are some L p potential
estimates for the convolution with the non-homogeneous fundamental solution Γ of
K and with the derivatives ∂x1Γ, . . . , ∂xm0

Γ , that are given in Sect. 3, Theorem 2.
Section 2 contains some known facts about K and on the related Lie group. Section 4
is devoted to the Moser’s iterative procedure.

In order to state our main results we introduce some notations. We denote by
D = (∂x1, . . . , ∂xN ), 〈·, ·〉, respectively, the gradient and the inner product in R

N .
Besides, Dm0 is the gradient with respect to the variables x1, . . . , xm0 . We also write
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operator L in (1) and the vector field Y defined in (3) in a more compact form:

L = div(AD)+ Y, Y = 〈x, B D〉 − ∂t (6)

where A = (ai j )1≤i, j≤N , ai j ≡ 0 if i > m0 or j > m0.

Definition 1 A weak solution of (1) in a subset Ω of R
N+1 is a function u such that

u, Dm0 u,Y u ∈ L2
loc(Ω) and

∫

Ω

−〈ADu, Dϕ〉 + ϕY u = 0, ∀ϕ ∈ C∞
0 (Ω). (7)

In the sequel we will also consider weak sub-solutions of (1), namely functions u
such that u, Dm0 u,Y u ∈ L2

loc(Ω) and

∫

Ω

−〈ADu, Dϕ〉 + ϕY u ≥ 0, ∀ϕ ∈ C∞
0 (Ω), ϕ ≥ 0. (8)

Moreover u is a weak super-solution of (1) if −u is a sub-solution. Clearly, if u is a
sub and super-solution of (1), then it is a solution.

As we shall see in Sect. 2, the natural geometry underlying operator L is determined
by a suitable homogeneous Lie group structure on R

N+1. Our main results below reflect
this non-Euclidean background. Let “◦” denote the Lie product on R

N+1 defined in
(13), and consider the cylinder

R1 =
{
(x, t) ∈ R

N × R | |x | < 1, |t | < 1
}
.

For every z0 ∈ R
N+1 and r > 0, we set

Rr (z0) ≡ z0 ◦ δr (R1) =
{

z ∈ R
N+1 | z = z0 ◦ δr (ζ ), ζ ∈ R1

}
. (9)

We also denote Rr = Rr (0). Our main result is the following

Theorem 1 Let u be a non-negative weak solution of (1) in Ω . Let z0 ∈ Ω and r, 
,
0 < r

2 ≤ 
 < r ≤ 1, be such that Rr (z0) ⊆ Ω . Then there exists a positive constant
c which depends on µ and on the homogeneous dimension Q (cf. (21)) such that, for
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every p > 0, it holds

sup
R
(z0)

u p ≤ c

(r − 
)Q+2

∫

Rr (z0)

u p. (10)

Estimate (10) also holds for every p < 0 such that u p ∈ L1(Rr (z0)).

Remark 1 Sub and super-solutions also verify estimate (10) for suitable values of p
(see Corollary 2). More precisely, (10) holds for

(i) p ≥ 1 or p < 0, if u is a non-negative weak sub-solution of (1) such that
u p ∈ L1(Rr (z0));

(ii) p ∈]0, 1
2 [, if u is a non-negative weak super-solution of (1). In this case, the

constant c in (10) also depends on p.

A direct consequence of Theorem 1 is the local boundedness of weak solutions
to (1).

Corollary 1 Let u be a weak solution of (1) inΩ . Let z0, 
, r as in Theorem 1. Then,
we have

sup
R
(z0)

|u| ≤
⎛

⎜⎝
c

(r − 
)Q+2

∫

Rr (z0)

|u|p

⎞

⎟⎠

1
p

, ∀p ≥ 1, (11)

where c = c(Q, µ).

The following result restores the analogy with the classical result by Moser. Denote
R−

r (x0, t0) = Rr (x0, t0) ∩ {t < t0}, then

Proposition 1 Let u be a non-negative weak solution of (1) in Ω . Let z0 ∈ Ω and

r, 
, 0 < r
2 ≤ 
 < r ≤ 1, be such that R−

r (z0) ⊆ Ω . Suppose that u p ∈ L1(R−
r (z0)),

for some p < 0. Then there exists a positive constant c which depends on µ and on
the homogeneous dimension Q such that

sup
R−

 (z0)

u p ≤ c

(r − 
)Q+2

∫

R−
r (z0)

u p.

2 Preliminaries

In this section we recall some known facts about the principal part K of L , and we
give some preliminary results. We first recall that K is invariant with respect to a Lie
product in R

N+1. More specifically, we let

E(s) = exp(−s BT ), s ∈ R, (12)

123



Pointwise estimates for a class of non-homogeneous Kolmogorov equations

and we denote by �ζ , ζ ∈ R
N+1, the left translation �ζ (z) = ζ ◦ z in the group law

(x, t) ◦ (ξ, τ ) = (ξ + E(τ )x, t + τ), (x, t), (ξ, τ ) ∈ R
N+1, (13)

then we have

K ◦ �ζ = �ζ ◦ K .

We recall that, by Proposition 2.1 of [19], hypothesis [H.1] is equivalent to assume
that for some basis on R

N , the matrix B has the canonical form

⎛

⎜⎜⎜⎜⎜⎝

∗ B1 0 · · · 0
∗ ∗ B2 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · Br

∗ ∗ ∗ · · · ∗

⎞

⎟⎟⎟⎟⎟⎠
(14)

where Bk is a mk−1 × mk matrix of rank mk , k = 1, 2, . . . , r with

m0 ≥ m1 ≥ . . .mr ≥ 1, and
r∑

k=0

mk = N ,

and the blocks denoted by “∗” are arbitrary.
We denote by Γ (·, ζ ) the fundamental solution of K in (2) with pole at ζ ∈ R

N+1.
An explicit expression of Γ (·, ζ ) has been constructed in [16] and [18]:

Γ (z, ζ ) = Γ (ζ−1 ◦ z, 0), ∀z, ζ ∈ R
N+1, z �= ζ,

where

Γ ((x, t), (0, 0)) =
⎧
⎨

⎩
(4π)−

N
2√

det C(t) exp
(− 1

4 〈C−1(t)x, x〉 − t tr(B)
)

if t > 0,

0 if t ≤ 0,
(15)

and

C(t) =
t∫

0

E(s)

(
Im0 0
0 0

)
ET (s)ds

(E(·) is the matrix defined in (12) and Im0 is the m0 × m0 identity matrix). Note that
hypothesis [H.1] implies that C(t) is strictly positive for every positive t (see [19,
Proposition A.1]). If we denote by K ∗ the formal adjoint of K : K ∗ = ∆m0 + Y ∗,
and by Γ ∗ its fundamental solution, then

Γ ∗(z, ζ ) = Γ (ζ, z), for every z, ζ ∈ R
N+1 : z �= ζ. (16)
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Let us explicitly note that, since Y ∗ = −Y − tr B, we have

∫

RN

Γ ∗(x, t, ξ, 0) d ξ = et tr B, for every (x, t) ∈ R
N × R

+.

Let K0 = ∆m0 + Y0 be an operator satisfying condition [H.1], where Y0 =
〈x, B0 D〉 − ∂t and

B0 =

⎛

⎜⎜⎜⎜⎜⎝

0 B1 0 · · · 0
0 0 B2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Br

0 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠
. (17)

Then K0 is invariant with respect to the dilations defined as

δλ = diag(λIm0 , λ
3 Im1 , . . . , λ

2r+1 Imr , λ
2) = diag(Dλ, λ

2), λ > 0, (18)

where Imk denotes the mk ×mk identity matrix. More specifically (see [19, Proposition
2.2]) we have that

K0 ◦ δλ = λ2 (δλ ◦ K0) , for every λ > 0. (19)

In (19) “◦” denotes the composition law related to K0. The converse implication is also
true: K is invariant with respect to the dilations (δλ)λ>0 if, and only if, the ∗-blocks
of B in (14) are zero matrices. In that case the corresponding matrices E0 and C−1

0
satisfy

E0(λ
2s) = DλE0(s)D 1

λ
, C−1

0 (λ−2t) = DλC−1
0 (t)Dλ (20)

for any s, t ∈ R and λ > 0. The fundamental solution Γ0 of K0 is a homogeneous
function with respect to (δλ)λ>0, namely

Γ0(δλ(z), 0) = λ−QΓ0(z, 0), for every z ∈ R
N+1 \ {0}, λ > 0,

where

Q = m0 + 3m1 + · · · + (2r + 1)mr . (21)

We denote by ‖ · ‖ the following norm:

‖z‖ ≡
⎛

⎝
N∑

j=1

x
α j
j + |t | (2r+1)!

2

⎞

⎠

1
(2r+1)!
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where α j = (2r + 1)! if 1 ≤ j ≤ m0 and

α j = (2r + 1)!
2k + 1

, if 1 +
k−1∑

i=0

mi ≤ j ≤
k∑

i=0

mi , 1 ≤ k ≤ r.

Note that ‖ · ‖ is δλ-homogeneous of degree 1, i.e.,

‖δλz‖ = λ‖z‖ for every λ > 0. (22)

We will denote by

B(ζ, 
) =
{

z ∈ R
N+1 : ‖ζ−1 ◦ z‖ < 


}
(23)

the ball with center at ζ ∈ R
N+1 and radius 
 > 0. As we will see in Sect. 3 [formula

(47)] we have

meas B(ζ, 
) = 
Q+2 meas B(0, 1),

(“meas” denotes the Lebesgue measure) then the natural number Q + 2 will be called
the homogeneous dimension of R

N+1 with respect to (δλ)λ>0.
It is known that homogeneous operators provide a good approximation of the non-

homogeneous ones. In order to be more specific, consider any operator K = ∆m0 +
〈x, B D〉 − ∂t satisfying condition [H.1]. Define K0 = ∆m0 + 〈x, B0 D〉 − ∂t , where
B0 is the matrix in (17), and denote by Γ0 its fundamental solution of K0. Then, for
every b > 0, there exists a positive constant a such that

1

a
Γ0(z) ≤ Γ (z) ≤ a Γ0(z)

for every z ∈ R
N+1 such thatΓ0(z) ≥ b (see [19, Theorem 3.1]). The above result says

that, in some sense, Γ0 shares some homogeneity properties with Γ , so that we can
use the norm ‖ · ‖ also when K is not invariant with respect to (δλ)λ>0. We explicitly
note that the dilations (δλ)λ>0 only depend on the matrix B0.

For every λ ∈]0, 1] we set

Kλ = λ2
(
δλ ◦ K ◦ δ 1

λ

)
. (24)

In order to explicitly write Kλ and its fundamental solution, we note that, if

B =

⎛

⎜⎜⎜⎜⎜⎝

B0,0 B1 0 · · · 0
B1,0 B1,1 B2 · · · 0
...

...
...

. . .
...

Br−1,0 Br−1,1 Br−1,2 · · · Br

Br,0 Br,1 Br,2 · · · Br,r

⎞

⎟⎟⎟⎟⎟⎠
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where Bi, j are the mi × m j blocks denoted by “∗” in (14), then Kλ = ∆m0 + Yλ,
where

Yλ := 〈x, BλD〉 − ∂t (25)

and Bλ := λ2 DλB D 1
λ
, i.e.,

Bλ =

⎛

⎜⎜⎜⎜⎜⎝

λ2 B0,0 B1 0 · · · 0
λ4 B1,0 λ2 B1,1 B2 · · · 0
...

...
...

. . .
...

λ2r Br−1,0 λ2r−2 Br−1,1 λ2r−4 Br−1,2 · · · Br

λ2r+2 Br,0 λ2r Br,1 λ2r−2 Br,2 · · · λ2 Br,r

⎞

⎟⎟⎟⎟⎟⎠
. (26)

The fundamental solution Γλ of Kλ is given by

Γλ ((x, t), (0, 0)) =
⎧
⎨

⎩
(4π)−

N
2√

det Cλ(t) exp
(
− 1

4 〈C−1
λ (t)x, x〉 − t tr(Bλ)

)
if t > 0,

0 if t ≤ 0,
(27)

with

Eλ(s) = exp(−s BT
λ ), Cλ(t) =

t∫

0

Eλ(s)

(
Im0 0
0 0

)
ET
λ (s)ds. (28)

Since the translation group related to Kλ depends on λ, it will be denoted by “◦λ”:

(x, t) ◦λ (ξ, τ ) = (ξ + Eλ(τ )x, t + τ), (x, t), (ξ, τ ) ∈ R
N+1. (29)

We remark explicitly that ◦λ defines a 1-parameter family of Lie groups structures, in
which λ = 0 corresponds to a homogeneous Lie group structure.

We recall that, for every given T > 0, there exists a positive constant cT such that

〈C0(t)x, x〉 (1 − cT λ
2t) ≤ 〈Cλ(t)x, x〉 ≤ 〈C0(t)x, x〉 (1 + cT λ

2t),
〈
C−1

0 (t)y, y
〉
(1 − cT λ

2t) ≤
〈
C−1
λ (t)y, y

〉
≤

〈
C−1

0 (t)y, y
〉
(1 + cT λ

2t); (30)

for every x, y ∈ R
N , t ∈]0, T ] and λ ∈ [0, 1] (see [19, Formula (3.23) and (3.24)]).

In the sequel we will also use the following result

Lemma 1 Let T > 0 and cT as above. Then:

i) there exists a positive constant c′
T such that

∥∥∥D√
t

(
C−1
λ (t)− C−1

0 (t)
)

D√
t

∥∥∥ ≤ c′
T λ

2t

for every t ∈]0, T ] and λ ∈ [0, 1];
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ii) there exist two positive constants c′′
T , c′′′

T such that

c′′
T t Q(1 − cT λ

2t) ≤ det Cλ(t) ≤ c′′′
T t Q(1 + cT λ

2t),

for every (x, t) ∈ R
N ×]0, T ] and λ ∈ [0, 1] such that t < 1

cT
.

Proof i) Since C−1
λ (t) and C−1

0 (t) are symmetric, we have

∥∥∥D√
t

(
C−1
λ (t)− C−1

0 (t)
)

D√
t

∥∥∥ = sup
|y|≤1

〈(
C−1
λ (t)− C−1

0 (t)
)

D√
t y, D√

t y
〉

≤ cT λ
2t sup

|y|≤1

〈
C−1

0 (t)D√
t y, D√

t y
〉
= cT λ

2t sup
|y|≤1

〈
C−1

0 (1)y, y
〉
,

by the second set of inequalities in (30) and the second identity in (20). This
proves the claim.

ii) Let µk be the k-th eigenvalue of D 1√
t
Cλ(t)D 1√

t
, and let vk be one of the cor-

responding eigenvector; it is not restrictive to assume that |vk | = 1. Then (30)
yields

〈
C0(t)D 1√

t
vk, D 1√

t
vk

〉
(1 − cT λ

2t) ≤ µk ≤
〈
C0(t)D 1√

t
vk, D 1√

t
vk

〉
(1 + cT λ

2t)

so that, by (20),

〈C0(1)vk, vk〉 (1 − cT λ
2t) ≤ µk ≤ 〈C0(1)vk, vk〉 (1 + cT λ

2t).

Since det

(
D 1√

t
Cλ(t)D 1√

t

)
is the product of its eigenvalues, from the above

inequality it follows that

c′′
T (1 − cT λ

2t)N ≤ det

(
D 1√

t
Cλ(t)D 1√

t

)
≤ c′′′

T (1 + cT λ
2t)N ,

for suitable positive constants c′′
T , c′′′

T , provided that t is suitable small. Thus, (ii)

follows from the fact that det D√
t = t

Q
2 . ��

3 Potential estimates

In this section we prove some Lq estimates of the Γλ-potential of a function f ∈
L p(RN+1):

Γλ( f )(z) :=
∫

RN+1

Γλ(z, ζ ) f (ζ )dζ, z ∈ R
N+1. (31)
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We will also consider the potential Γλ(Dm0 f ), i.e.,

Γλ(Dm0 f )(z) := −
∫

RN+1

D(ζ )
m0
Γλ(z, ζ ) f (ζ )dζ (32)

where Dm0Γλ(x, t, ξ, τ ) is the gradient with respect to x1, . . . , xm0 and the superscript

in D(ζ )
m0 indicates that we are differentiating w.r.t. the variable ζ .

The main result of this section is the following L p estimate in the domain ST =
R

N ×]0, T ].
Theorem 2 Let f ∈ L2(ST ). There exists a positive constant c = c(T, B) such that

‖Γλ( f )‖L 2̃κ (ST )
≤ c‖ f ‖L2(ST )

, (33)

‖Γλ(Dm0 f )‖L2κ (ST )
≤ c‖ f ‖L2(ST )

, (34)

for every λ ∈]0, 1], where κ̃ = 1 + 4
Q−2 and κ = 1 + 2

Q .

We first prove an uniform (in λ) pointwise bound for Γλ and D(ζ )
m0 Γλ.

Proposition 2 For every T > 0 there exists a positive constant CT such that:

Γλ(z, ζ ) ≤ CT

‖ζ−1 ◦λ z‖Q
, (35)

∣∣∣D(ζ )
m0
Γλ(z, ζ )

∣∣∣ ≤ CT

‖ζ−1 ◦λ z‖Q+1 , (36)

for every z, ζ ∈ ST and λ ∈]0, 1].
Proof Let z = (x, t), ζ = (ξ, τ ) ∈ ST andλ ∈]0, 1]. Denotew = (y, s) = ζ−1◦λz =
(x − Eλ(t − τ)ξ, t − τ). Then, in order to prove (35), it is sufficient to show that

‖w‖QΓλ(w) ≤ CT , for every w ∈ ST and λ ∈]0, 1]. (37)

By (27) and Lemma 1 we get

Γλ(y, s) ≤ (4π)− N
2

√
c′′

T s Q(1 − cT λ2s)
e
−1

4
〈C−1

0 (s)y, y〉(1 − cT λ
2s)− λ2s tr(B)

for s < 1
cT

. On the other hand, (20) yields

〈C−1
0 (s)y, y〉 =

〈
C−1

0 (1)D 1√
s

y, D 1√
s

y

〉
≥

∣∣∣∣D 1√
s

y

∣∣∣∣
2

min|η|=1
〈C−1

0 (1)η, η〉,
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and (22) gives

‖(y, s)‖ =
∥∥∥∥

(
D√

s D 1√
s

y, s

)∥∥∥∥ = √
s

∥∥∥∥

(
D 1√

s
y, 1

)∥∥∥∥ ≤ c̃
√

s

(∣∣∣∣D 1√
s

y

∣∣∣∣ + 1

)
, (38)

for a constant c̃ only dependent on the norm. Hence,

‖(y, s)‖QΓλ(y, s) ≤ C0

(∣∣∣∣D 1√
s

y

∣∣∣∣ + 1

)Q

exp

(
−c0

∣∣∣∣D 1√
s

y

∣∣∣∣
2
)

(39)

for every (y, s) ∈ ST such that s < 1
2cT

, where the constants C0, c0 only depend on

T and on the matrix B. This proves the claim (37) for s < 1
2cT

.

If 1
2cT

> T the proof is accomplished, otherwise we have to show that (37) holds

in the set R
N × [ 1

2cT
, T ]. To that aim, we observe that det Cλ(s) is a positive function

which continuously depend on (s, λ) in the compact set [ 1
2cT
, T ] × [0, 1]. The same

assertion holds for the positive matrix D√
sC−1
λ (s)D√

s . Then

Γλ(y, s) ≤ C1 exp

(
−c1

4

∣∣∣∣D 1√
s

y

∣∣∣∣
2
)
,

where

C1 = (4π)− N
2 eT |tr(B)|

√
min

[ 1
2cT

,T ]×[0,1]
det Cλ(s)

,

c1 = min
[ 1

2cT
,T ]×[0,1]

min|η|=1

〈
D√

sC−1
λ (s)D√

sη, η
〉
.

Then, by using again (38), we get

‖(y, s)‖QΓλ(y, s) ≤ C1s
Q
2 c̃ Q

(∣∣∣∣D 1√
s

y

∣∣∣∣ + 1

)Q

exp

(
−c1

4

∣∣∣∣D 1√
s

y

∣∣∣∣
2
)
,

for every (y, s) ∈ R
N × [ 1

2cT
, T ]. This proves that

‖(y, s)‖QΓλ(y, s) ≤ C2

(∣∣∣∣D 1√
s

y

∣∣∣∣ + 1

)Q

exp

(
−c2

∣∣∣∣D 1√
s

y

∣∣∣∣
2
)

(40)

for every (y, s) ∈ ST , where the constants C2, c2 only depend on T and on the matrix
B. Since the right hand side of (40) is a bounded function, we get the claim (37).

123



C. Cinti et al.

In order to simplify the proof of (36), we first observe that (16) implies

D(ζ )
m0
Γλ(z, ζ ) = Dm0Γ

∗
λ (ζ, z),

so that it is sufficient to consider ∂ξ jΓ
∗
λ (ξ, τ, x, t) for j = 1, . . . ,m0.

As before, we let (η, σ ) = z−1 ◦λ ζ = (ξ − Eλ(τ − t)x, τ − t) and we note that

∂η jΓ
∗
λ (η, σ ) = −1

2
Γ ∗
λ (η, σ )

(
C−1
λ (−σ)η

)

j
for j = 1, . . . ,m0. (41)

We next claim that

∣∣∣∣
(
C−1
λ (−σ)η

)

j

∣∣∣∣ ≤ C3√−σ
∣∣∣∣D 1√−σ

η

∣∣∣∣ for j = 1, . . . ,m0, (42)

for every (η, σ ) ∈ R
N × [−T, 0[, where the constant C3 only depends on T and on

the matrix B, so that, by (38), we obtain

‖(η, σ )‖ ·
∣∣∣∣
(
C−1
λ (−σ)η

)

j

∣∣∣∣ ≤ c̃ C3

(∣∣∣∣D 1√−σ
η

∣∣∣∣ + 1

)2

. (43)

On the other hand, the same argument used in the proof of (40) gives the following
estimate

‖(η, σ )‖QΓ ∗
λ (η, σ ) ≤ C2

(∣∣∣∣D 1√−σ
η

∣∣∣∣ + 1

)Q

exp

(
−c2

∣∣∣∣D 1√−σ
η

∣∣∣∣
2
)

for every (η, σ ) ∈ R
N × [−T, 0[, and (36) follows from (43) and (41).

We next prove (42):

∣∣∣∣
(
C−1
λ (−σ)η

)

j

∣∣∣∣ ≤
∣∣∣∣
((

C−1
λ (−σ)− C−1

0 (−σ)
)
η
)

j

∣∣∣∣ +
∣∣∣∣
(
C−1

0 (−σ)η
)

j

∣∣∣∣

= 1√−σ

∣∣∣∣∣

(
D√−σ

(
C−1
λ (−σ)− C−1

0 (−σ)
)

D√−σ D 1√−σ
η

)

j

∣∣∣∣∣

+ 1√−σ

∣∣∣∣∣

(
D√−σC−1

0 (−σ)D√−σ D 1√−σ
η

)

j

∣∣∣∣∣

≤ 1√−σ
∥∥∥D√−σ

(
C−1
λ (−σ)− C−1

0 (−σ)
)

D√−σ
∥∥∥ ·

∣∣∣∣D 1√−σ
η

∣∣∣∣

+ 1√−σ
∣∣∣∣C−1

0 (1)D 1√−σ
η

∣∣∣∣ ,
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by (20). From Lemma 1—(i) it follows that

∣∣∣∣
(
C−1
λ (−σ)η

)

j

∣∣∣∣ ≤ 1√−σ
(

c′
T λ

2(−σ)+ C4

) ∣∣∣∣D 1√−σ
η

∣∣∣∣ ,

where C4 depends on C−1
0 (1). This proves (42). ��

In view of Proposition 2 we define, for λ ∈ [0, 1], α ∈]0, Q + 2[ and p > 1

I αλ f (z) = (meas Bλ(0, 1))−
α

Q+2

∫

ST ∩{τ<t}

f (ζ )

‖ζ−1 ◦λ z‖α dζ, z ∈ R
N+1, (44)

where f ∈ L p(ST ). We next prove a result which is analogous to the classical potential
estimates on homogeneous Lie groups (cf., for instance, [13]).

Proposition 3 Let α ∈]0, Q + 2[, λ ∈ [0, 1] and T > 0. Consider f ∈ L p(ST ) for
some p ∈]1,+∞[. Then the function I αλ f is defined almost everywhere and there
exists a constant c = c(T, B, p, α) such that

‖I αλ f ‖Lq (ST ) ≤ c ‖ f ‖L p(ST ), (45)

where q is defined by

1

q
= 1

p
+ α

Q + 2
− 1.

The proof is analogous to that in the framework of homogeneous Lie groups: the
main difference occurs in the change of variable of integration, where some extra terms
appear.

Remark 2 Let T ∈ R
+, λ ∈ [0, 1]. For any f ∈ L1(ST ) we have

∫

RN ×]0,t[
f (ζ−1 ◦λ z)dζ =

∫

RN ×]0,t[
esλ2trB f (y, s)dy ds, ∀ z = (x, t) ∈ ST ;

(46)∫

RN ×]τ,T [
f (ζ−1 ◦λ z)dz =

∫

RN ×]0,T −τ [
f (y, s)dy ds, ∀ ζ = (ξ, τ ) ∈ ST .

Indeed, it suffices to perform the change of variableΦ(y, s) = (Eλ(−s)(x − y), t −s)
in the first integral and note that detEλ(−s) = esλ2trB , by (26) and (28). On the other
hand, in the second integral we use the change of variableΨ (y, s)=(y+Eλ(s)ξ, τ+s),
and note that detJΨ (w) = 1.

In particular, the second identity in (46) yields that for every ball

Bλ(ζ, 
) =
{

z ∈ R
N+1 : ‖ζ−1 ◦λ z‖ < 


}
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it holds

meas Bλ(ζ, 
) = 
Q+2 meas Bλ(0, 1). (47)

We next prove a Young type inequality for the inhomogeneous Lie group related
to Kλ. Note that the Lie group corresponding to λ = 0 is homogeneous and Lemma 2
restores the standard Young inequality.

Lemma 2 Let p, q, r ∈ [1,∞] be three constant such that 1
p + 1

q = 1 + 1
r and let

λ ∈ [0, 1]. Let f ∈ L p(ST ) and g ∈ Lq(ST ), then the function f ∗λ g defined as

f ∗λ g(z) =
∫

ST ∩{τ<t}
f (ζ−1 ◦λ z)g(ζ )dζ

belongs to Lr (ST ) and

‖ f ∗λ g‖Lr (ST )
≤ e

λ2T
(

1− 1
q

)
|tr(B)| ‖ f ‖L p(ST )

‖g‖Lq (ST )
.

Proof We argue as in the proof of the classical Young’s inequality, and use Remark 2.
For any α, β ∈ [0, 1] and p1, p2 ≥ 0 such that 1

p1
+ 1

p2
+ 1

r = 1 we have

| f ∗λ g(z)| ≤
∫

ST ∩{τ<t}

∣∣∣ f (ζ−1 ◦λ z)
∣∣∣ |g(ζ )| dζ

≤
⎛

⎜⎝
∫

ST ∩{τ<t}

∣∣∣ f (ζ−1 ◦λ z)
∣∣∣
(1−α)r |g(ζ )|(1−β)r dζ

⎞

⎟⎠

1
r

·
⎛

⎜⎝
∫

ST ∩{τ<t}

∣∣∣ f (ζ−1 ◦λ z)
∣∣∣
αp1

dζ

⎞

⎟⎠

1
p1

·
⎛

⎜⎝
∫

ST ∩{τ<t}
|g(ζ )|βp2 dζ

⎞

⎟⎠

1
p2

by the Hölder inequality. We then change variable in the last but one integral: by
Remark 2 we have

∫

ST ∩{τ<t}

∣∣∣ f (ζ−1 ◦λ z)
∣∣∣
αp1

dζ ≤ eTλ2|trB|
∫

RN ×]0,t[
| f (w)|αp1 dw.
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Thus, by integrating in the set ST , we get

‖ f ∗λ g‖Lr (ST )
≤ e

Tλ2 |trB|
p1 ‖ f ‖αLαp1 (ST )

‖g‖β
Lβp2 (ST )

·
⎛

⎜⎝
∫

ST

|g(ζ )|(1−β)r

⎛

⎜⎝
∫

ST ∩{t>τ }

∣∣∣ f (ζ−1 ◦λ z)
∣∣∣
(1−α)r

dz

⎞

⎟⎠ dζ

⎞

⎟⎠

1
r

.

We change again the variable in the last integral: in this case Remark 2 gives

‖ f ∗λ g‖Lr (ST )
≤ e

Tλ2 |trB|
p1 ‖ f ‖αLαp1 (ST )

‖ f ‖1−α
L(1−α)r (ST )

· ‖g‖β
Lβp2 (ST )

‖g‖1−β
L(1−β)r (ST )

. (48)

From this point we conclude the proof as in the classical case: for any given p, q, r ∈
[1,∞] such that 1

p + 1
q = 1 + 1

r we choose α = 1 − p
r , β = 1 − q

r (note that

α, β ∈ [0, 1]), then p1 = p
α
, p2 = q

β
(so that αp1 = (1 − α)r and βp2 = (1 − β)r ).

The proof of the Proposition then follows from (48). ��
Proof of Proposition 3 As in the proof of Lemma 2, we follow a classical argument
and use Remark 2 when it is needed.

We first introduce some standard notation. Consider a measurable function f :
Ω → R where Ω denotes a measurable subset of R

N+1, and let β f (a) = meas
{
z ∈

Ω : | f (z)| > a
}

denote its distribution function. We say that f belongs to the space

L p
w(Ω) (for p ≥ 1) if there exists a positive constant C such that β f (a) ≤ (C

a

)p
, for

every positive a. In that case

‖ f ‖L p
w(Ω)

= inf
{

C > 0 : β f (a) ≤ (C
a

)p
}
,

is the weak-L p norm of f . We also recall that

‖ f ‖L p(Ω) =
⎛

⎝p

∞∫

0

a p−1β f (a)da

⎞

⎠

1
p

. (49)

In order to prove (45), we show that, for every p, q ∈]1,∞[ satisfying 1
q + 1 =

1
p + α

Q+2 , we have

‖I αλ f ‖Lq
w(ST )

≤ C̄‖ f ‖L p(ST ), (50)

for a positive constant C̄ depending on T, α, p and on the matrix B. The thesis follows
from the Marcinkiewicz interpolation theorem.
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In order to simplify the proof of (50), we assume ‖ f ‖L p(ST ) = 1, since it is not
restrictive. Moreover we write Eq. (44) as

I αλ f (z) =
∫

ST ∩{τ<t}
gα(ζ

−1 ◦λ z) f (ζ )dζ (51)

where

gα(w) = (meas Bλ(0, 1))−
α

Q+2

‖w‖α .

Note that, by (47), gα has norm equal to one in the space L
Q+2
α

w (RN+1).
For any a > 0, we set

b =
⎛

⎝a

2

(
Q + 2

qα

) p−1
p

e− p−1
p λ2T |tr B|

⎞

⎠

qα
Q+2

, (52)

we define

g+
α (w) =

{
gα(w), if gα(w) > b,

0, otherwise,
g−
α (w) = gα(w)− g+

α (w),

and

J+
α f (z) =

∫

ST ∩{τ<t}
g+
α (ζ

−1 ◦λ z) f (ζ )dζ,

J−
α f (z) =

∫

ST ∩{τ<t}
g−
α (ζ

−1 ◦λ z) f (ζ )dζ.

To prove (50), we recall (51) and note that

βIαλ f (a) ≤ βJ+
α f (a/2)+ βJ−

α f (a/2). (53)

We first consider the term βJ−
α f . By the Hölder inequality we get

|J−
α f (z)| ≤

⎛

⎜⎝
∫

ST ∩{τ<t}

∣∣∣g−
α (ζ

−1 ◦λ z)
∣∣∣

p
p−1

dζ

⎞

⎟⎠

p−1
p

‖ f ‖L p(ST )

≤ eλ
2T p−1

p |tr B|

⎛

⎜⎝
∫

ST ∩{τ<t}

∣∣g−
α (y, s)

∣∣ p
p−1 dy ds

⎞

⎟⎠

p−1
p

,
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by Remark 2, since we assume ‖ f ‖L p(ST ) = 1. By using (49) and (52) we find

⎛

⎜⎝
∫

ST ∩{τ<t}

∣∣g−
α (y, s)

∣∣ p
p−1 dy ds

⎞

⎟⎠

p−1
p

≤ a

2
e−λ2T p−1

p |tr B|
,

so that |J−
α f (z)| ≤ a

2 for every z ∈ ST . Thus

βJ−
α f (a/2) = 0. (54)

We next consider the term βJ+
α f . By Lemma 2 we have

‖J+
α f ‖L p(ST ) ≤ e

λ2T
(

1− 1
p

)
|tr(B)| ∥∥g+

α

∥∥
L1(ST )

‖ f ‖L p(ST )

≤ e
λ2T

(
1− 1

p

)
|tr(B)| α

Q + 2 − α
b1− Q+2

α ,

since ‖ f ‖L p(ST )
= 1 and

∥∥g+
α

∥∥
L1(ST )

≤ α

Q + 2 − α
b1− Q+2

α ,

by (49). Thus, being ‖J+
α f ‖L p

w(ST )
≤ ‖J+

α f ‖L p(ST ), we get

βJ+
α f (a/2) ≤ a−p eλ

2T (p−1)|tr(B)|
(

2α

Q + 2 − α

)p

b
p
(

1− Q+2
α

)

= C̄ a−q ,

where the C̄ is a positive constant that depends on T, α, p and on the matrix B (recall
our choice (52) of b). Then the above inequality and (54) give

βIαλ f (a) ≤ C̄ a−q ,

for any a > 0. This proves (50) and concludes the proof. ��
Proof of Theorem 2 By Proposition 2 we get

|Γλ( f )(z)| ≤ C̄T I Q
λ | f (z)|,

∣∣Γλ(Dm0 f )(z)
∣∣ ≤ C̄T I Q+1

λ | f (z)|,

for every z ∈ ST . Estimates (33) and (34) then follow from Proposition 3. ��
As in the homogeneous case (see [28, Lemma 2.5]) we can use the fundamental

solution Γ as a test function in the definition of sub and super-solution.
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Lemma 3 Let v be a weak sub-solution of div(ADv) + Yλv = 0 in Ω . For every
ϕ ∈ C∞

0 (Ω), ϕ ≥ 0, and for almost every z ∈ R
N+1, we have

∫

Ω

−〈ADv, D (Γλ(z, ·)ϕ)〉 + Γλ(z, ·)ϕYλv ≥ 0.

An analogous result holds for weak super-solutions.

Proof For every ε > 0, we set

χε(z, ζ ) = χ

(‖ζ−1 ◦ z‖
ε

)
, z, ζ ∈ R

N+1,

where χ ∈ C1([0,+∞[, [0, 1]) is such that χ(s) = 0 for s ∈ [0, 1], χ(s) = 1 for
s ≥ 2 and 0 ≤ χ ′ ≤ 2. By (8), for every ε > 0 and z ∈ R

N+1, we have

0 ≤
∫

Ω

−〈ADv, D (Γλ(z, ·)χε(z, ·)ϕ)〉 + Γλ(z, ·)χε(z, ·)ϕYλv

= −I1,ε(z)+ I2,ε(z)− I3,ε(z),

where

I1,ε(z) =
∫

Ω

〈ADv, D (Γλ(z, ·))〉χε(z, ·)ϕ,

I2,ε(z) =
∫

Ω

Γλ(z, ·)χε(z, ·) (−〈ADv, Dϕ〉 + ϕYλv) ,

I3,ε(z) =
∫

Ω

〈ADv, Dχε(z, ·)〉Γλ(z, ·)ϕ.

Consider the first integral. Since ϕχε(z, ·)ADv → ϕADv in L2(ST ), as ε → 0, (34)
of Theorem 2 gives

I1,ε(z) →
∫

Ω

〈ADv, D (Γλ(z, ·))〉ϕ,

as ε → 0, for almost every z ∈ ST . The same argument applies to the second and
third integrals, by (33) and, since I3,ε(z) → 0 as ε → 0, we conclude the proof. ��

We next state, without proof, the following

Lemma 4 Let f ∈ C2 ∩ Lip(R) be a monotone non-decreasing function. If f is
convex (resp. concave) and u is a weak sub-solution (resp. super-solution) of (1),
then v = f (u) is a weak sub-solution (resp. super-solution) of (1).
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4 The Moser method

In this section we prove Theorem 1. We first recall that, in the case of homogeneous Lie
groups, it is not restrictive to consider the unit cylinder R1 since the transformations
of the form

ζ �−→ z0 ◦ δr (ζ ), r > 0, z0 ∈ R
N+1, (55)

preserve the class of differential equations considered. In our setting, we rely on the
following result.

Lemma 5 The function u is a weak solution of (1) in the cylinder Rr (z0) if and only
if v defined by

v(ζ ) = u(z0 ◦ δr (ζ )), ζ ∈ R1,

is a solution to the equation

L̃rv = div( ÃDv)+ Yrv = 0, in R1, (56)

where Ã(ζ ) = A(z0 ◦ δr (ζ )) satisfies hypothesis [H.2] with the same constant µ as
A, and Yr is defined in (25).

Proof Since Yr ◦ δr = r2δr ◦ Y and Y is �z0 -invariant, we have that

Yr ◦ δr ◦ �z0 = r2δr ◦ �z0 ◦ Y,

or, more explicitly,

Yrv(ζ ) = Y (ζ )r u(z0 ◦ δr (ζ )) = r2
(

Y (ζ )(u ◦ �z0)
)
(δr (ζ )) = r2 (Y u) (z0 ◦ δr (ζ )),

where the superscript in Y (ζ )r indicates that we are differentiating w.r.t. the variable ζ .
On the other hand, recalling (13) and (18), we clearly have

Dm0v(ζ ) = D(ζ )
m0

u(z0 ◦ δr (ζ )) = r(Dm0 u)(z0 ◦ δr (ζ )).

Thus we deduce L̃rv(ζ ) = r2(Lu)(z0 ◦ δr (ζ )) and the thesis follows. ��
Lemma 6 There exists a constant c̄ ∈]0, 1[ such that

z ◦r Rc̄(1−
) ⊆ R1, (57)

for every r ∈ [0, 1], 
 ∈]0, 1[ and z ∈ R
.
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Proof Let 
 ∈]0, 1[. By the expression (18) of the dilations (δλ), we see that

R
 ⊆ {(x, t) ∈ R
N+1 | |x | < 
, |t | < 
2}.

Then the thesis is a consequence of the following inclusion: there exists a positive
constant c such that

z ◦r Rε ⊆ {(ξ, τ ) | |x − ξ | < cε, |t − τ | < (cε)2}, (58)

for every z ∈ R
, 
, ε ∈]0, 1[. Indeed, if we choose ε ≤ 1−

c , we get

z ◦r Rε ⊆ R1, ∀z ∈ R
,

and this shows (57) with c̄ = c−1.
We are left with the proof of (58). If ζ = (ξ, τ ) ∈ z ◦r Rε then

ζ = z ◦r z̄ = (x̄ + Er (t̄)x, t + t̄)

for some z̄ ∈ Rε. Hence |τ − t | = |t̄ | < ε2, and

|ξ − x | = ∣∣x̄ + (
Er (t̄)− Er (0)

)
x
∣∣ ≤ |x̄ | + |t̄ | max|r |,|s|≤1

‖E ′
r (s)‖ ≤ c ε,

where c = 1 + max|r |,|s|≤1
‖E ′

r (s)‖. ��

As a consequence of the above lemmas, we only consider the unit cylinder in
the proof of Theorem 1 and prove the claim for the operators of the form L̃r . We
point out that, since its principal part is Kr , we use the group law “◦r ”. Theorem 1 is a
consequence of the following uniform (in r ) Caccioppoli and Sobolev type inequalities.

Theorem 3 (Caccioppoli type inequalities) Let u be a non-negative weak solution
of (56) for a given r ∈ [0, 1]. Let p ∈ R, p �= 0, p �= 1

2 and let 
, 
̄ be such that
1
2 ≤ 
 < 
̄ ≤ 1. If u p ∈ L2(R
̄) then Dm0 u p ∈ L2(R
) and there exists a constant c,
only dependent on the homogeneous dimension Q, such that

‖Dm0 u p‖L2(R
) ≤ c
√
µ(µ+ ε)

ε(
̄ − 
)
‖u p‖L2(R
̄), where ε = |2p − 1|

4p
. (59)

Theorem 4 (Sobolev type inequalities) Let v be a non-negative weak solution of (56),
for a given r ∈ [0, 1]. Then v ∈ L2κ

loc(R1), κ = 1 + 2
Q , and there exists a constant c,

only dependent on Q and µ, such that

‖v‖L2κ (R
) ≤ c


̄ − 


(
‖v‖L2(R
̄) + ‖Dm0v‖L2(R
̄)

)
, (60)

for every 
, 
̄ with 1
2 ≤ 
 < 
̄ ≤ 1.
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The proof of above estimates can be straightforwardly accomplished proceeding
as in Theorems 3.1 and 3.3 in [28], by using the potential estimates of the previous
section, and therefore is omitted. We are now in position to prove Theorem 1.

Proof of Theorem 1 Let u be a positive solution to Lu = 0 in Rr (z0). By Lemma 5,
the function v(ζ ) = u(z0 ◦ δr (ζ )), is a solution to (56) in R1. We first prove that there
exists a positive constant c such that

sup
R
/r

v p ≤ c

(1 − 
/r)Q+2

∫

R1

v p; (61)

then, by the change of variable (55), we obtain (10), since

∫

R1

u p(z0 ◦ δr (ζ ))dζ = 1

r Q+2

∫

Rr

u p(z0 ◦ w)dw = 1

r Q+2

∫

Rr (z0)

u p(z)dz, (62)

by Remark 2.
In order to prove (61) it is sufficient to set θ = c̄(1 − 
/r), where c̄ is the constant

in Lemma 6, and to prove that

sup
z◦r R θ

2

v p ≤ c c̄ Q+2

θQ+2

∫

z◦r Rθ

v p (63)

for every z ∈ R
/r .
By Lemma 5, the function w(ζ ) = v(z ◦r δθ (ζ )) is a solution of

L̄rθw = div( ĀDw)+ Yrθw = 0, in R1,

where Ā(ζ ) = Ã(z ◦r δθ (ζ )) satisfies hypothesis [H.2] with the same constant µ as
A. Hence, by a change of variables analogous to that in (62), in order to prove (63),
it is sufficient to show that there exists a positive constant c1, only depending on the
constant µ in hypothesis [H.2] and on the matrix B, such that

sup
R 1

2

u p ≤ c1

∫

R1

u p (64)

for every positive solution u of L̄σu = 0: in particular, we emphasize that c1 does not
depend on σ = rθ ∈ [0, 1].

We next prove (64). We first consider the case p > 0 which is technically more com-
plicated. Combining Theorems 3 and 4, we obtain the following estimate: if q, δ >0
verify the condition |q − 1/2|≥δ, then there exists a positive constant cδ=c(δ, Q, µ),
such that

‖uq‖L2κ (R
) ≤ cδ
(r − 
)2

‖uq‖L2(Rr )
, (65)

for every 
, r , 1
2 ≤ 
 < r ≤ 1, and σ ∈ [0, 1], where κ = 1 + 2

Q .
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Fixed a suitable δ > 0 as we shall specify later and p > 0, we iterate inequality
(65) by choosing


n = 1

2

(
1 + 1

2n

)
, pn = pκn

2
, n ∈ N ∪ {0}.

We set v = u
p
2 . If p > 0 is such that

|pκn − 1| ≥ 2δ, ∀n ∈ N ∪ {0}, (66)

by (65), we obtain

‖vκn ‖L2κ (R
n+1 )
≤ cδ
(
n − 
n+1)2

‖vκn ‖L2(R
n )
, ∀n ∈ N ∪ {0}. (67)

Since

‖vκn ‖L2κ =
(
‖v‖

L2κn+1

)κn

and ‖vκn ‖L2 = (‖v‖L2κn
)κn

,

we can rewrite (67) in the form

‖v‖
L2κn+1

(R
n+1 )
≤

(
cδ

(
n − 
n+1)2

) 1
κn

‖v‖L2κn
(R
n )

.

Iterating this inequality, we obtain

‖v‖
L2κn+1

(R
n+1 )
≤

n∏

j=0

(
cδ

(
 j − 
 j+1)2

) 1
κ j ‖v‖L2(R1)

,

and letting n go to infinity, we get

sup
R 1

2

v ≤ c̄ ‖v‖L2(R1)
,

where

c̄ =
∞∏

j=0

(
cδ

(
 j − 
 j+1)2

) 1
κ j

,

is a finite constant, dependent on δ. Thus, we have proved (64) with c1 = c̄2, for every
p > 0 which verifies condition (66).
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We now make a suitable choice of δ > 0, only dependent on the homogeneous
dimension Q, in order to show that (64) holds for every positive p. We remark that, if
p is a number of the form

pm = κm

κ + 1
, m ∈ Z,

then (66) is satisfied with δ = (2Q + 2)−1, for every m ∈ Z. Therefore (64) holds
for such a choice of p, with c1 only dependent on Q, µ. On the other hand, if p is an
arbitrary positive number, we consider m ∈ Z such that

pm = κm

κ + 1
≤ p < pm+1. (68)

Hence, by (64), we have

sup
R 1

2

u ≤
⎛

⎜⎝c1

∫

R1

u pm

⎞

⎟⎠

1
pm

≤ c
1

pm
1

⎛

⎜⎝
∫

R1

u p

⎞

⎟⎠

1
p

so that, by (68), we obtain

sup
R 1

2

u p ≤ c
p

pm
1

∫

R1

u p ≤ cκ1

∫

R1

u p.

This concludes the proof of (64) for p > 0.
We next consider p < 0. In this case, assuming that u ≥ u0 for some positive

constant u0, estimate (10) can be proved as in the case p > 0 or even more easily
since condition (65) is satisfied for every p < 0. On the other hand, if u is a non-
negative solution, it suffices to apply (10) to u + 1

n , n ∈ N, and to let n go to infinity,
by the monotone convergence theorem. ��

Proceeding as in the proof of Theorem 1, we obtain the following result

Corollary 2 Let u be a non-negative weak sub-solution of (1) in Ω . Let z0 ∈ Ω and
r, 
, 1

2 ≤ 
 < r ≤ 1, such that Rr (z0) ⊆ Ω . Then we have

sup
R
(z0)

u ≤
⎛

⎜⎝
c

(r − 
)Q+2

∫

Rr (z0)

u p

⎞

⎟⎠

1
p

, ∀p ≥ 1, (69)

inf
R
(z0)

u ≥
⎛

⎜⎝
c

(r − 
)Q+2

∫

Rr (z0)

u p

⎞

⎟⎠

1
p

, ∀p < 0, (70)

with c = c(Q, µ). Estimate (70) is meaningful only when u p ∈ L1 (Rr (z0)).
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Remark 3 Estimates (69) and (70) are a key point in the Moser’s proof of the Harnack
inequality. As stated in the introduction, we aim to adapt the Moser’s method by
proving a suitable Poincaré estimate in a future study.

We close this section by proving the local boundedness of weak solutions to (1).

Proof of Corollary 1 We consider a sequence (gn)n∈N in C∞(R, [0,+∞[) with the
following properties:

gn(s) ↓ max(0, s), s ∈ R, as n → ∞,

and, for every n ∈ N, gn is a monotone increasing, convex function which is linear
out of a fixed compact set. By Lemma 4, (gn(u)) and (gn(−u)) are sequences of
non-negative sub-solutions of L , which converge to u+ = max(0, u) and u− =
max(0,−u), respectively. Thus, the thesis follows applying (69) of Corollary 2 to
gn(u), gn(−u) and passing at limit as n goes to infinity. ��
Proof of Proposition 1 As in [28], we follow the lines of the proof of Theorem 1, by
using the following two estimates:

‖Dm0 u p‖L2(R−

 )

≤ c
√
µ(µ+ ε)

ε(r − 
)
‖u p‖L2(R−

r )
, where ε = |2p − 1|

4p
, (71)

and

‖u p‖L2κ (R−

 )

≤ c

r − 


(
‖u p‖L2(R−

r )
+ ‖Dm0 u p‖L2(R−

r )

)
, (72)

for every negative p and for any 
, r with 1
2 ≤ 
 < r ≤ 1.

The Sobolev type inequality (72) can be proved exactly as Theorem 4, since the
fundamental solution Γ (x, t, ξ, τ ) vanishes in the set {τ > t}.

In order to prove the Caccioppoli type inequality (71) we we follow the method
used in the proof of Theorem 3, by using ϕ = u2p−1ψ2 as a test function, where χn(t)
is defined as

χn(s) =
⎧
⎨

⎩

1, if s ≤ 0,
1 − ns, if 0 ≤ s ≤ 1/n,
0, if s ≥ 1/n,

for every n ∈ N. Then, by letting n → ∞, we find

∫

R−
1

(
1 − 1

2p

)
ψ2〈ADv, Dv〉 + ψ〈ADv, Dψ〉 + v2ψ

2
Yψ ≤ 0.

After that, we follow the same line used in the proof of Theorem 3 and we obtain (71).
We refer to [28] for a more detailed proof of the analogous result in homogeneous Lie
groups. ��
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