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Abstract

We consider an asset whose risk-neutral dynamics are described by a general local-stochastic volatility

model. In this setting, we derive a family of asymptotic expansions for the transition density of the

underlying as well as for European-style option prices and for implied volatilities. Our expansions are

numerically efficient. Approximate transition densities and implied volatilities are explicit; they do not

require any special functions nor do they require numerical integration. Approximate option prices

require only a Normal CDF (as is the case of the Black-Scholes setting). Additionally, we establish

rigorous error bounds for our transition density expansion. To illustrate the accuracy and versatility of

our implied volatility expansion, we implement this expansion under five different model dynamics: CEV

local volatility, quadratic local volatility, Heston stochastic volatility, 3/2 stochastic volatility, and SABR

local-stochastic volatility. Our implied volatility expansion is found to perform favorably compared to

other well-known expansions for these models.

Keywords: implied volatility, local-stochastic volatility, CEV, Heston, SABR.

1 Introduction

Neither local volatility (LV) nor stochastic volatility (SV) models are able to fit empirically observed implied

volatility levels over the full range of strikes an maturities. This has led to the development of local-

stochastic volatility (LSV) models, which combine the features of LV and SV models by describing the

instantaneous volatility of an underlying S by a function f(St, Zt) where Z is some auxiliary, possibly

multidimensional, stochastic process (see, for instance, Lipton (2002), Alexander and Nogueira (2004), Ewald

(2005), Henry-Labordere (2009) and Clark (2010)). Compared to their LV and SV counterparts, LSV models

produce implied volatility surfaces that more closely match those observed in the market. However, LSV

models rarely allow for exact formulas for option prices. Thus, LSV models present two challenges. First,

given an LSV model, can one find accurate closed-form approximations for option prices? Second, given

approximate option prices, can one find accurate closed-form approximations for implied volatilities?
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In the area of pricing, there have been a number or recent developments. An exhaustive review of LSV

pricing approximations would be prohibitive. However, we mention the following: Lorig (2012) adds multi-

scale stochastic volatility to general scalar diffusions, and thus obtains analytically tractable eigenfunction

approximations for options prices. Pagliarani and Pascucci (2013) add general local volatility to the Heston

model and obtain a Fourier-like representation for approximate option prices.

Typically, unobservable LSV (or SV or LV) model parameters are obtained by calibrating these models

to implied volatilities that are observed on the market. To do this, one must find model-induced implied

volatilities over a range of strikes and maturities. Computing model-induced implied volatilities from option

prices by inverting the Black-Scholes formula numerically is a computationally intensive task, and therefore,

not suitable for the purposes of calibration. For this reason closed-form approximations for model-induced

implied volatilities are needed. A number of different approach have been taken for computing approximate

implied volatilities in LV, SV and LSV models. We review some of these approaches below.

Concerning LV models, perhaps the earliest and most well-known implied volatility result is due to

Hagan and Woodward (1999), who use singular perturbation methods to obtain an implied volatility ex-

pansion for general LV models. For certain models (e.g., CEV) they obtain closed-form approximations.

More recently, Lorig (2013) uses regular perturbation methods to obtain an implied volatility expansion

when a LV model can be written as a regular perturbation around Black-Scholes. Jacquier and Lorig (2013)

extend and refine the results of Lorig (2013) to find closed-form approximations of implied volatility for local

Lévy-type models with jumps. Gatheral, Hsu, Laurence, Ouyang, and Wang (2012) examines the small-time

asymptotics of implied volatility for LV models using heat kernel methods.

There is no shortage of implied volatility results for SV models either. Fouque, Lorig, and Sircar (2012)

(see also Fouque, Papanicolaou, Sircar, and Solna (2011)) derive an asymptotic expansion for general multi-

scale stochastic volatility models using combined singular and regular perturbation theory. Forde and Jacquier

(2011) use the Freidlin-Wentzell theory of large deviations for SDEs to obtain the small-time behavior of im-

plied volatility for general stochastic volatility models with zero correlation. Their work adds mathematical

rigor to previous work by Lewis (2007). Forde and Jacquier (2009) use large deviation techniques to obtain

the small-time behavior of implied volatility in the Heston model (with correlation). They further refine

these results in Forde, Jacquier, and Lee (2012).

Concerning LSVmodels, perhaps the most well-known implied volatility result is due to Hagan, Kumar, Lesniewski, and W

(2002), who use WKB approximation methods to obtain implied volatility asymptotics in a LSV model with

a CEV-like factor of local volatility and a GBM-like factor of non-local volatility (i.e., the SABR model).

More recently, Henry-Labordère (2005) uses a heat kernel expansion on a Riemann manifold to derive first

order asymptotics for implied volatility for any LSV model. As an example, he introduces the λ-SABR

model, which is a LSV model with a mean reverting non-local factor of volatility, and obtains closed form

asymptotic formulas for implied volatility in this setting. See also Henry-Labordère (2009).

There are also some model-free results concerning the extreme-strike behavior of implied volatility. Most

notably, we mention the work of Lee (2004) and Gao and Lee (2011).

In this paper, we consider general LSV models. For these models, we derive a family of closed-form

asymptotic expansions for transition densities, option prices and implied volatilities. Our method most
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closely follows that of Lorig, Pagliarani, and Pascucci (2013) who derive a family of density and option

price expansions for scalar Lévy-type processes. Lorig, Pagliarani, and Pascucci (2013) use a very general

technique, the so-called Adjoint Expansion method, first introduced by Pagliarani and Pascucci (2012) and

Pagliarani, Pascucci, and Riga (2013) (see also Corielli, Foschi, and Pascucci (2010) for previous related re-

sults). The major contributions of this manuscript are as follows:

• Whereas Pagliarani and Pascucci (2012) expand the coefficients of a scalar diffusion as a Taylor series

about an arbitrary point, i.e. f(x) =
∑
n an(x − x̄)n, in order to achieve their approximation result,

we expand the diffusion coefficients of a multi-dimensional diffusion in an arbitrary basis, i.e. f(x, y) =
∑
n

∑
h cn,hBn,h(x, y). Thus, we not only extend the results of Pagliarani and Pascucci (2012) from

one to multiple dimensions, but we also consider more general expansions.

• We provide an explicit formula for the nth term in our transition density and option-price expansions.

The terms in the density expansion appear as Hermite polynomials multiplied by Gaussian kernels and

thus, can be computed extremely quickly. In Lorig et al. (2013) the nth term of the transition density

is given as a Fourier transform, which is computationally more intensive. In Pagliarani et al. (2013),

no general formula for the nth term appears.

• We provide closed-form approximations for implied volatility in a general local-stochastic volatil-

ity setting. We show (through a series of numerical experiments) that our implied volatility ap-

proximation performs favorably when compared to other well-known implied volatility approxima-

tions (e.g., Hagan and Woodward (1999) for CEV, Forde, Jacquier, and Lee (2012) for Heston, and

Hagan, Kumar, Lesniewski, and Woodward (2002) for SABR).

• Many of the above-mentioned implied volatility approximations rely on some special structure for the

underlying diffusion (e.g., fast- or slow-varying volatility, or some particular Riemannian geometry

which allows for closed-form computation of geodesics). When these structures are absent, the asso-

ciated implied volatility expansions will not work. By contrast, our implied volatility approximation

works for any LSV model (actually, by the Adjoint Expansion method, jumps can be added as well).

Thus, in addition to being highly accurate, our approach is quite general and includes several models

of great interest for the financial industry. For instance, to the best of our knowledge, we give the

first approximation formula for implied volatilities in the 3/2 stochastic volatility model. Of late, the

3/2 model has attracted much interest due to its ability match market prices for both European-style

options as well as variance and volatility derivatives Baldeaux and Badran (2012).

• We provide a general result showing how to pass in a model-free way from a price expansion to an

implied volatility expansion.

The rest of this paper proceeds as follows: In Section 2 we present the general class of local-stochastic

volatility models. We also list some technical model assumptions. Next, in Section 3 we derive the option-

pricing PDE. In Section 4 we derive a formal asymptotic expansion (in fact, a family of asymptotic expan-

sions) for the function that solves the option-pricing PDE. The main result of this Section is Theorem 9,

which shows that every term in our price (density) expansion can be written as a differential operator acting
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on a Black-Scholes price (Gaussian density). We also establish error bounds for our asymptotic price and

density expansions in Section 4. In Section 5 we derive our implied volatility results. We do this in two steps.

First, in Section 5.1 we show how one can pass in a model-free way from a price expansion to an implied

volatility expansion. Next, in Section 5.2 we show that, when the price expansion is as given in Theorem 9,

the implied volatility expansion is explicit. That is, the expansion does not require any integration or special

functions. In Section 6 we implement our implied volatility expansion under five different model dynamics:

CEV local volatility, quadratic local volatility, Heston stochastic volatility, 3/2 stochastic volatility, and

SABR local-stochastic volatility. Section 7 reviews our results and suggests directions for future research.

Long proofs are given in the Appendix.

2 General local-stochastic volatility models

For simplicity, we assume a frictionless market, no arbitrage, zero interest rates and no dividends. We take,

as given, an equivalent martingale measure P, chosen by the market on a complete filtered probability space

(Ω,F, {Ft, t ≥ 0},P). The filtration {Ft, t ≥ 0} represents the history of the market. All stochastic processes

defined below live on this probability space and all expectations are taken with respect to P. We consider a

strictly positive asset S whose risk-neutral dynamics are given by

St = exp(Xt),

dXt = −1

2
σ2(Xt, Yt)dt+ σ(Xt, Yt)dWt, X0 = x ∈ R,

dYt = α(Xt, Yt)dt+ β(Xt, Yt)dBt, Y0 = y ∈ R,

d〈W,B〉t = ρ(Xt, Yt) dt, |ρ| < 1.





(1)

We assume that SDE (1) has a unique strong solution, that σ and β are strictly positive functions and that

σ, β, ρ and α are smooth. Sufficient conditions for the existence of a unique strong solution can be found,

for example, in Ikeda and Watanabe (1989). We also assume that the coefficients are such that ESt < ∞
for all t ∈ [0,∞). The class of models described by (1) enjoys the following features:

• Local-stochastic volatility. The diffusion coefficient of X depends both locally on X and non-locally

on an auxiliary driving process Y through the function σ(x, y).

• Martingale property. The drift − 1
2σ

2(X,Y ) of X is chosen so as to ensure that S = eX is a

martingale (as it must be to rule out arbitrage).

• Arbitrary Y dynamics. Both the drift α(X,Y ) and diffusion coefficient β(X,Y ) of the auxiliary

driving process Y are allowed to depend on both X and Y .

• Arbitrary correlation. The correlation ρ(X,Y ) between the Brownian motions W and B is allowed

to depend on both X and Y .

Equation (1) includes virtually all one-factor stochastic volatility models, all local stochastic volatility models,

and all one-factor local-stochastic volatility models.
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Remark 1 (Multi-factor local-stochastic volatility models and time-dependent coefficients). The results

of this paper can be extended in a straightforward fashion to include models with n non-local factors of

volatility and time-dependent drift and diffusion coefficients:

St = exp(Xt),

dXt = −1

2
σ2(t,Xt,Yt)dt+ σ(t,Xt,Yt)dWt, X0 = x ∈ R,

dY
(i)
t = α(i)(t,Xt,Yt)dt+

n∑

i=1

β(i,j)(t,Xt,Yt)dB
(j)
t , Y0 = y ∈ R

n,

d〈W,B(i)〉t = ρ(i)(t,Xt,Yt) dt, |ρ(i)| < 1.

Though, for simplicity, we restrict our analysis to the case of time-homogenous coefficients and n = 1.

3 Transition density and option pricing PDE

Let Vt be the time t value of a European derivative, expiring at time T > t with payoff H(XT , YT ). Using

risk-neutral pricing, the value Vt of the derivative at time t is given by the conditional expectation of the

option payoff

Vt = E[H(XT , YT )|Ft] = E[H(XT , YT )|Xt, Yt].

Note that we have used the Markov property of the process (X,Y ) to replace the filtration Ft by the sigma-

algebra generated by (Xt, Yt). Thus, to value a European-style option we must compute functions of the

form

v(t, x, y) := E[H(XT , YT )|Xt = x, Yt = y] =

∫

R2

dw dz p(t, x, y;T,w, z)H(w, z). (2)

Here, p(t, x, y;T,w, z) is the transition density of the process (X,Y ). Note that, by setting H = δw,z (the

Dirac mass at (w, z)) the function v(t, x, y) becomes the transition density p(t, x, y;T,w, z) since

∫

R2

dw′dz′ p(t, x, y;T,w′, z′)δw,z(w
′, z′) = p(t, x, y;T,w, z).

If the function v, defined by (2), is C1,2([0, T ),R2), then v satisfies the Kolmogorov Backward equation

(∂t +A)v = 0, v(T, x, y) = H(x, y),

where the operator A is the infinitesimal generator of the process (X,Y ), given explicitly by

A = a(x, y)(∂2x − ∂x) + α(x, y)∂y + b(x, y)∂2y + c(x, y)∂x∂y, (3)

and where the functions a, b and c are defined as

a(x, y) :=
1

2
σ2(x, y), b(x, y) :=

1

2
β2(x, y), c(x, y) := ρ(x, y)σ(x, y)β(x, y).
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At this stage, it is convenient to define

t(s) := T − s, u(t(s), x, y) := v(s, x, y).

Then, a simple application of the chain rule shows

(−∂t +A)u = 0, u(0, x, y) = H(x, y). (4)

In what follows, it will be convenient to characterize the differential operator A by its action on oscillating

exponential functions ψλ,ω(x, y) :=
1
2π e

iλx+iωy. Indeed, observe that

Aψλ,ω(x, y) = φ(x, y, λ, ω)ψλ,ω(x, y), ψλ,ω(x, y) :=
1

2π
eiλx+iωy

where φ(x, y, λ, ω), referred to as the symbol of A, is given by

φ(x, y, λ, ω) = a(x, y)(−λ2 − iλ) + α(x, y)iω − b(x, y)ω2 − c(x, y)λω.

The symbol of A appears naturally in connection with the Fourier transform as follows. For any f ∈ S(R2),

the Schwartz space or space of rapidly decreasing functions on R
2, we define

Fourier Transform : [F f ](λ, ω) = f̂(λ, ω) :=
1

2π

∫

R2

dxdy e−iλx−iωyf(x, y),

Inverse Transform : [F−1 f̂ ](x, y) = f(x, y) =
1

2π

∫

R2

dλdω eiλx+iωy f̂(λ, ω).

Note that

Af(x, y) =
1

2π

∫

R2

dλdω φ(x, y, λ, ω) eiλx+iωy f̂(λ, ω). (5)

4 Density and option price expansions

Our goal is to construct an approximate solution of Cauchy problem (4). Extending the approach of

Pagliarani and Pascucci (2012) and Lorig, Pagliarani, and Pascucci (2013) for scalar Markov processes to

the present multi-dimensional setting, we assume that the symbol of A admits an expansion of the form

φ(x, y, λ, ω) =

∞∑

n=0

n∑

h=0

Bn−h,h(x, y)φn−h,h(λ, ω), (6)

where (Bi,j) is a sequence of analytic basis functions satisfying B0,0 = 1 and where each φi,j(λ, ω) is of the

form

φi,j(λ, ω) = ai,j(−λ2 − iλ) + αi,j iω − bi,j ω
2 − ci,j λω.

Observe that each φi,j(λ, ω) is the symbol of a differential operator Ai,j where

Ai,j := φi,j(Dx,Dy), Dx := −i∂x, Dy := −i∂y,
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which is the infinitesimal generator of a constant coefficient diffusion in R
2. Noting that

Ai,jψλ,ω(x, y) = φi,j(λ, ω)ψλ,ω(x, y),

we see that, formally, the generator A can be written as follows

A =

∞∑

n=0

An, An =

n∑

h=0

Bn−h,h(x, y)φn−h,h(Dx,Dy). (7)

Note that the basis functions (Bi,j) can be seen as symbols of the differential operators Bi,j(−i∂λ,−i∂ω)
since

Bi,j(−i∂λ,−i∂ω)ψx,y(λ, ω) = Bi,j(x, y)ψx,y(λ, ω).

Remark 2. More generally, one could consider a decomposition of φ as follows

φ(x, y, λ, ω) =

∞∑

n=0

n∑

h=0

2∑

i+j=1

Bi,jn−h,h(x, y)a
i,j
n−h,h(iλ)

i(iω)j .

However, because this generalization brings with it a significant notational cost (i.e., it introduces two new

indices, which one must keep track of), we restrict our analysis to the case where φ is given by (6).

Below, we illustrate a few useful choices for basis functions.

Example 3 (Taylor series). In Pagliarani, Pascucci, and Riga (2013), the authors expand the drift and

diffusion coefficients of a scalar diffusion as a power series about an arbitrary point. Extending this idea to

the multiple dimensions, we fix a point (x̄, ȳ) ∈ R
2 and we expand

α(x, y) =

∞∑

n=0

n∑

h=0

αn−h,h(x− x̄)n−h(y − ȳ)h, αn−h,h :=
1

(n− h)!h!
∂n−hx ∂hyα(x̄, ȳ),

a(x, y) =

∞∑

n=0

n∑

h=0

an−h,h(x− x̄)n−h(y − ȳ)h, an−h,h :=
1

(n− h)!h!
∂n−hx ∂hy a(x̄, ȳ),

b(x, y) =

∞∑

n=0

n∑

h=0

bn−h,h(x− x̄)n−h(y − ȳ)h, bn−h,h :=
1

(n− h)!h!
∂n−hx ∂hy b(x̄, ȳ),

c(x, y) =

∞∑

n=0

n∑

h=0

cn−h,h(x− x̄)n−h(y − ȳ)h, cn−h,h :=
1

(n− h)!h!
∂n−hx ∂hy c(x̄, ȳ).





(8)

Setting Bn−h,h(x, y) = (x− x̄)n−h(y − ȳ)h we observe that (6) and (7) become, respectively

φ(x, y, λ, ω) =

∞∑

n=0

n∑

h=0

(x− x̄)n−h(y − ȳ)hφn−h,h(λ, ω),

A =

∞∑

n=0

n∑

h=0

(x− x̄)n−h(y − ȳ)hφn−h,h(Dx,Dy).

where the coefficients αn−h,h, an−h,h, bn−h,h and cn−h,h of φn−h,h are given in (8).
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Example 4 (Two-Point Taylor Series). Consider a local volatility model dXt = − 1
2σ

2(Xt)dt + σ(Xt)dWt

with generator A and symbol φ given by

A = a(x)(∂2x − ∂x), φ(x, λ) = a(x)(−λ2 − iλ), a(x) :=
1

2
σ2(x). (9)

For fixed x̄0, x̄1, x̄2 ∈ R, the function a can be expanded as a two-point Taylor series as follows

a(x) = a(x̄0) +
∞∑

n=0

(an(x̄0, x̄1, x̄2)(x− x̄1) + an(x̄0, x̄2, x̄1)(x− x̄2)) (x− x̄1)
n(x− x̄2)

n, (10)

where

a0(x̄0, x̄1, x̄2) =
a(x̄2)− a(x̄0)

x̄2 − x̄1
,

an(x̄0, x̄1, x̄2) =

n∑

h=0

(h+ n− 1)!

h!n!(n− h)!

(−1)hh∂n−hx̄1
[a(x̄1)− a(x̄0)] + (−1)n+1n∂n−hx̄2

[a(x̄2)− a(x̄0)]

(x̄1 − x̄2)h+n+1
.

For the derivation of this result we refer the reader to Estes and Lancaster (1972); Lopez and Temme (2002).

Note that truncating the two-point Taylor series expansion (10) at n = m results in an expansion for a which

is of order O(x2m+1). The advantage of using a two-point Taylor series is that, by considering the first n

derivatives of a function a at two points x̄1 and x̄2, one can achieve a more accurate approximation of a over

a wider range of values than if one were to approximate a using 2n derivatives at a single point (i.e., the

usual Taylor series approximation).

Using (9) and (10), we can formally express the symbol φ as

φ(x, λ) =

∞∑

n=0

Bn(x)φn(λ),

where B0(x) = 1, φ0 = −a(x̄0)(λ2 + iλ) and

Bn(x) = (an−1(x̄0, x̄1, x̄2)(x− x̄1) + an−1(x̄0, x̄2, x̄1)(x− x̄2)) (x− x̄1)
n−1(x− x̄2)

n−1, n ≥ 1,

φn(λ) = −(λ2 + iλ), n ≥ 1.

Example 5 (Non-local approximation in a weighted L2-space). Let (Bi,j) be an orthonormal basis in the

weighted space L2(R2,m(x, y)dxdy). Then φi,j(λ, ω) is given by

φi,j(λ, ω) = 〈φ(·, ·, λ, ω), Bi,j(·, ·)〉m.

For instance, one could choose the Hermite polynomials Hn centered at (x̄, ȳ) as basis functions

Bn,h(x, y) =
Hn(x− x̄)√
(2n)!!

√
π

Hh(y − ȳ)√
(2h)!!

√
π
, Hn(x) := (−1)n

∂nx exp(−x2)
exp(−x2) . (11)

Such basis functions are orthonormal under a Gaussian weighting

〈Bi,j , Bh,l〉m := δi,jδh,l, m(x, y) = exp
(
−(x− x̄)2 − (y − ȳ)2

)
.
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Having discussed some useful basis functions, we now return to Cauchy problem (4). We re-write the operator

A in (7) as

A =

∞∑

n=0

εnAn, ε = 1, (12)

where we have introduced ε, which serves merely as an accounting feature. Next, we suppose that the

solution u can be written as a sum of the form

u = uε :=
∞∑

n=0

εnun, ε = 1. (13)

We insert expansions (12) and (13) into PDE (4) and collect terms of like order in ε. We find

O(1) : (−∂t +A0)u0 = 0, u0(0, x, y) = H(x, y), (14)

O(εn) : (−∂t +A0)un = −
n∑

h=1

Ahun−h, un(0, x, y) = 0. (15)

Having served its purpose, we set ε to the side. Our goal is to solve Cauchy problems (14) and (15). Observe

that u0, the solution of (14) is well-known

u0(t, x, y) =

∫

R2

dwdz p0(0, x, y; t, w, z)H(w, z), (16)

where p0 is the fundamental solution of PDE (14), which is simply the density fµ,Σ(x, y) of a two-dimensional

Gaussian random vector with mean vector µ and covariance matrix Σ given by

µ =

(
w + a0,0t

z − α0,0t

)
, Σ =

(
2a0,0t c0,0t

c0,0t 2b0,0t

)
.

Remark 6. In the case of Examples 3, 4 and 5 the matrix Σ is positive definite for any t > 0. For instance,

consider the Taylor series expansion (Example 3). Using (8) we have det(Σ) = tσ2(x̄, ȳ)β2(x̄, ȳ)(1−ρ(x̄, ȳ)) >
0 by the assumptions on the coefficients σ, β and ρ.

In order to find an explicit expression for the sequence of higher order terms (ui) we shall first derive an

explicit expression for ûi, the Fourier transform ui. We will then use the Fourier representation ûi to show

that each ui can be expressed as a differential operator acting on u0.

Proposition 7. Suppose H ∈ L1(R2, dxdy) and let Ĥ denote its Fourier transform. Suppose further that

un and ûn exist. Then û0 is given by

û0(t, λ, ω) = etφ0,0(λ,ω)Ĥ(λ, ω), (17)

and ûn (n ≥ 1) is given by

ûn(t, λ, ω) =

n∑

h=1

h∑

l=0

∫ t

0

ds e(t−s)φ0,0(λ,ω)Bh−l,l(i∂λ, i∂ω)φh−l,l(λ, ω)ûn−h(s, λ, ω), n ≥ 1. (18)

Note that the operator Bh−l,l(i∂λ, i∂ω) acts on everything to the right of it.
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Proof. See Appendix A.

Remark 8. Proposition 7 is the two-dimensional extension of Corollary 10 from Lorig, Pagliarani, and Pascucci

(2013). In that paper, the authors focus on scalar Lévy-type processes. In fact, although we have only con-

sidered two-dimensional diffusions in this paper, Proposition 7 remains valid if φ(x, y, λ, ω) is the symbol of

the generator of a two-dimensional Lévy-type process. In the Lévy-type case, due to the complications that

arise from jumps, un must be expressed as an inverse Fourier transform of ûn; it is not possible to find un

directly. However, because we limit the analysis in this paper to models without jumps, as the following

Theorem shows, we are able to find an explicit expression for un as a differential operator acting on u0.

Theorem 9. For every n ≥ 1, define

Ln(t, x, y, λ, ω) =

n∑

h=1

∫ t

0

dt1 · · ·
∫ tk−1

0

dth
∑

π∈Πh(n)

Φπ(h)(th, t) · · ·Φπ(1)(t1, t), (19)

where Πh(n) is the set of permutations π such that

Πh(n) = {π : N → Z
+ :

h∑

l=1

π(l) = n},

and Φh(s, t) is an abbreviation for the operator

Φh(s, t) = Φh(s, t, x, y, λ, ω,−i∂λ,−i∂ω)

:=

h∑

l=0

φh−l,l(λ, ω)
Bh−l,l(−i∂λ,−i∂ω)eiλx+iωy+(t−s)φ0,0(λ,ω)

eiλx+iωy+(t−s)φ0,0(λ,ω)
, k ≥ 1. (20)

Then un(t, x, y), the solution of (15), is given by

un(t, x, y) = Ln(t, x, y,Dx,Dy)u0(t, x, y), n ≥ 1, (21)

where u0 is the solution of Cauchy problem (14). Note that the operators (Φh)h≥1 act on everything to the

right of them. If nothing appears to the right of the operators (Φh)h≥1, then they are assumed to act on the

constant function: f = 1.

Proof. See Appendix B.

Remark 10. Note that pn, the n-th order term in the transition density expansion p =
∑∞
n=0 pn, is expressed

as a differential operator acting on p0, which is simply a two-dimensional Gaussian density. Thus, from (11),

we see that pn can be written as a sum of Hermite polynomials multiplied by a Gaussian density.

We now state an asymptotic convergence theorem which extends the results in Pagliarani, Pascucci, and Riga

(2013). Define our n-th order approximation for the prices as

v(n)(t, x, y) :=
n∑

h=0

uh(T − t, x, y),

10



where the sequence of (uh) is as given in Theorem 9. The n-th order approximation of the transition density

p(n)(t, x, y;T, z, w) is defined as the special case where H = δw,z.

The following theorem provides an asymptotic pointwise estimate as t → T− for the error encountered

by replacing the exact transition density p with the n-th order approximation p(n), when expanding the

operator A through the Taylor basis functions described in Example 3.

Theorem 11. Assume that the functions a = a(x, y), α = α(x, y), b = b(x, y) and c = c(x, y) are differen-

tiable up to order n with bounded and Lipschitz continuous derivatives. Assume that the covariance matrix

is bounded and uniformly positive definite. That is,

M−1|ξ|2 <
(
ξ1 ξ2

)(2a(x, y) c(x, y)

c(x, y) 2b(x, y)

)(
ξ1

ξ2

)
< M |ξ|2, (x, y) ∈ R

2, ξ = (ξ1, ξ2) ∈ R
2 \ {(0, 0)},

where M is a positive constant. If (x̄, ȳ) = (x, y) or (x̄, ȳ) = (z, w) in (8), then we have
∣∣∣p(t, x, y;T, z, w)− p(n)(t, x, y;T, z, w)

∣∣∣ ≤ gn(T − t)ΓM (t, x, y;T, z, w),

for any x, y, z, w ∈ R and t ∈ [0, T ), where ΓM denotes the Gaussian fundamental solution of the heat

operator M(∂xx + ∂yy) + ∂t and gn(s) = O

(
s

n+1
2

)
as s→ 0+.

We omit the proof of Theorem 11, which is based on the parametrix method (see, for instance, Pascucci

(2011)) and is analogous to the estimates obtained in Pagliarani, Pascucci, and Riga (2013), Theorem 2.3,

for the one-dimensional case. We obtain the same order of convergence for short maturities in the two-

dimensional case as was previously obtained in the one-dimensional case. As a direct corollary, we also have

the following asymptotic estimate for option prices.

Corollary 12. Under the assumptions of Theorem 11, for any n ∈ N we have
∣∣∣v(t, x, y)− v(n)(t, x, y)

∣∣∣ ≤ gn(T − t)

∫

R2

dwdz H(w, z) ΓM (t, x, y;T,w, z)

for x, y ∈ R and t ∈ [0, T ).

5 Implied volatility expansions

European call and put prices are commonly quoted in units of implied volatility rather than in units of

currency. In fact, in the financial industry, model parameters for the risk-neutral dynamics of a security are

routinely obtained by calibrating to the market’s implied volatility surface. Because calibration requires com-

puting implied volatilities across a range of strikes and maturities and over a large set of model parameters,

it is extremely useful to have a method of computing implied volatilities quickly.

We shall break this Section into two parts. First, in Section 5.1, we show how to pass in a general and

model-independent way from an expansion of option prices to an expansion of implied volatilities. Then,

in Section 5.2, we show that when call option prices can be computed as a series whose terms are as given

in Theorem 9, the terms in the corresponding implied volatility expansion can be computed explicitly (i.e.,

without special functions or integrals). As such, approximate implied volatilities can be computed even faster

than approximate option prices, which require the special function N, the standard normal CDF.

11



5.1 Implied volatility expansions from price expansions – the general case

To begin our analysis, we assume that one has a model for the log of the underlying X = logS. We fix

a time to maturity t > 0, an initial value X0 = x and a call option payoff H(Xt) = (eXt − ek)+. Our

goal is to find the implied volatility for this particular call option. To ease notation, we will suppress much

of the dependence on (t, x, k). However, the reader should keep in mind that the implied volatility of

the option under consideration does depend on (t, x, k), even if this is not explicitly indicated. Below, we

provide definitions of the Black-Scholes price and implied volatility, which will be fundamental throughout

this Section.

Definition 13. For a fixed (t, x, k), the Black-Scholes price uBS : R+ → R
+ is given by

uBS(σ) := exN(d+(σ))− ekN(d−(σ)), d±(σ) :=
1

σ
√
t

(
x− k ± σ2t

2

)
, (22)

Where N is the CDF of a standard normal random variable.

Definition 14. For fixed (t, x, k), the implied volatility corresponding to a call price u ∈ ((ex − ek)+, ex) is

defined as the unique strictly positive real solution σ of the equation

uBS(σ) = u. (23)

Notice that [uBS]−1 is an analytic function on its domain ((ex − ek)+, ex). For any u ∈ ((ex − ek)+, ex), we

denote by ρu the radius of convergence of the Taylor series of [uBS]−1 about u.

The main result of the Section is the following Theorem:

Theorem 15. Assume that the call price u admits an expansion of the form

u = uBS(σ0) +

∞∑

n=1

un, (24)

for some positive σ0 and some sequence (un)n≥1 where un ∈ R for all n. If

|u− uBS(σ0)| < ρuBS(σ0), (25)

then the implied volatility σ := [uBS]−1(u) is given by

σ = σ0 +
∞∑

n=1

σn, (26)

where the sequence (σn)n≥1 is defined recursively by

σn = Un(σ0)−
1

n!

n∑

h=2

Ah(σ0)Bn,h

(
σ1, 2!σ2, 3!σ1, . . . , (n− h+ 1)!σn−h+1

)
. (27)

In (27), Bn,h denotes the (n, h)-th partial Bell polynomial1 and

Un(σ0) :=
un

∂σuBS(σ0)
, n ≥ 1, (28)

An(σ0) :=
∂nσu

BS(σ0)

∂σuBS(σ0)
, n ≥ 2. (29)

1Partial Bell polynomials are already implemented in Mathematica as BellY[n, h, {x1, . . . , xn−h+1}].
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Proof. We define u(ε) an analytic function of ε by

u(ε) := uBS(σ0) +
∞∑

n=1

εnun, ε ∈ [0, 1]. (30)

Note that σ(ε) := [uBS]−1(u(ε)) is the composition of two analytic functions; it is therefore an analytic

function of ε and admits an expansion about ε = 0 of the form

σ(ε) = σ0 +
∞∑

n=1

εnσn, σn =
1

n!
∂nε σ(ε)|ε=0, (31)

which by (25) is convergent for any ε ∈ [0, 1]. By (30) we also have

un =
1

n!
∂nε u

BS(σ(ε))|ε=0. (32)

We compute the n-th derivative of the composition of the two functions in (32) by applying the Bell poly-

nomial version of the Faa di Bruno’s formula, which can be found in Riordan (1946) and Johnson (2002).

We have

un =
1

n!

n∑

h=1

∂hσu
BS(σ0)Bn,h

(
∂εσ(ε), ∂

2
εσ(ε), . . . , ∂

n−h+1
ε σ(ε)

)
|ε=0. (33)

Theorem 15 follows by inserting (31) into (33) and solving for σn.

In the following Proposition, we will show that the coefficients An in (29) can be computed explicitly using

an iterative algorithm. In particular, each An(σ) is a rational function of σ and no special functions appear

in its expression.

Proposition 16. Define the differential operator

J := t(∂2x − ∂x). (34)

Then

An(σ) =
Pn(J)u

BS(σ)

∂σuBS(σ)
, (35)

where Pn is a polynomial function of order n defined recursively by

P0(J) = 1,

P1(J) = σJ,

Pn(J) = σJPn−1(J) + (n− 1)JPn−2(J), n ≥ 2.

Moreover, the coefficients An(σ0) can be expressed explicitly in terms of Hermite2 polynomials.

2Our thanks to Peter Carr for pointing out the connection to Hermite polynomials.
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Proof. First, we recall the classical relation between the Delta, Gamma and Vega for European options in

the Black-Scholes setting

∂σu
BS(σ) = σJuBS(σ). (36)

Next, using the product rule for derivatives we compute

∂n+1
σ uBS = ∂nσ

(
∂σu

BS
)
= ∂nσ

(
σJuBS

)
=

n∑

h=0

(
n

h

)(
∂hσσ

) (
J∂n−hσ uBS

)
=
(
σJ∂nσ + n∂n−1

σ J
)
uBS. (37)

Equation (35) follows from (29) and (37). Now, to show that each of the An(σ) can be expressed as a sum

of Hermite polynomials, we observe that

∂nx exp
(
−
(
x−a
b

)2)

exp
(
−
(
x−a
b

)2) =
(−1)n

bn
Hn

(
x− a

b

)
, a ∈ R, b > 0, (38)

where Hn is the n-th Hermite polynomial, defined in (11). Moreover using the Black-Scholes formula for

call options (22) a direct computation shows

JuBS(σ) =
ek
√
t

σ
√
2π

exp

(
−
(
x−k−σ2t/2

σ
√
2t

)2)
. (39)

Thus, using (36) and (39) we obtain

Jn+1uBS(σ)

∂σuBS(σ)
=

JnJuBS(σ)

σJuBS(σ)
=

Jn exp

(
−
(
x−k−σ2t/2

σ
√
2t

)2)

σ exp

(
−
(
x−k−σ2t/2

σ
√
2t

)2) =
tn

σ

n∑

h=0

(
n

h

)
(−1)h

∂2n−hx exp

(
−
(
x−k−σ2t/2

σ
√
2t

)2)

exp

(
−
(
x−k−σ2t/2

σ
√
2t

)2) ,

where, in the last equality, we have used the binomial expansion of (∂xx − ∂x)
n
. Finally, using (38) with

a = k + σ2t
2 and b = σ

√
2t, we obtain

JnuBS(σ)

∂σuBS(σ)
=

n−1∑

h=0

(
n− 1

h

)
t
h
2

σ
(
σ
√
2
)2(n−1)−hH2(n−1)−h

(
x− k − σ2t/2

σ
√
2t

)
, n ≥ 1, (40)

Combining (35) with (40), we conclude that An(σ) can be expressed as a sum of Hermite polynomials. In

particular, computing An(σ) does not involve any special functions or integration.

Below, using (27) and Proposition 16, we provide explicit expressions for σn for n ≤ 3. For simplicity, we

remove the argument σ0 from Un(σ0). We have

σ1 = U1,

σ2 = U2 −
1

2

(
(k − x)2

tσ3
0

− tσ0
4

)
U2
1 ,

σ3 = U3 +
1

48

(
2tU3

1 + t2σ2
0U

3
1 + 12tσ0U1U2

)

+
1

6tσ4
0

(
3U3

1 − tσ2
0U

3
1 − 6σ0U1U2

)
(k − x)2 +

1

3t2σ6
0

U3
1 (k − x)4,

where the (Un) are as given in (28).
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5.2 Implied volatility when option prices are given by Theorem 9.

We now consider the specific case where the sequence of (un) is as given in Theorem 9. We will show

that, in this particular setting, the expansion (26) is convergent and approximate implied volatilities can be

computed without any numerical integration or special functions. We begin with the following observation:

Remark 17. From (16), one can easily show that u0 = uBS(
√
2a0,0). Then, our expansion for the price of

a European call option (13) in the general local-stochastic volatility setting (1) becomes

u = uBS(σ0) +

∞∑

n=1

un, σ0 =
√
2a0,0. (41)

From (41), it is clear that our option price expansion is of the form (24). Therefore, we can use Theorem 15

to find approximate implied volatilities.

Note that, in general, computing approximate implied volatilities using Theorem 15 requires numerical

integration, as Un appearing on the right-hand side of (27) contains un, which usually must be computed as

a numerical integral. However, as the following Proposition shows, when the sequence of (un) are as given in

Theorem 9, the sequence of (Un) appearing in (27) can be computed explicitly, with no numerical integration

and no special functions.

Proposition 18. Let the sequence of (un) be as given in Theorem 9. Then Un, defined in (28), are given by

Un(σ0) =
N(n)∑

h=0

D
(n)
h Hh

(
x− k − σ2

0t/2

σ
√
2t

)
.

where σ0 =
√
2a0,0, the sequence of coefficients (D

(n)
h ) are (t, x, y)-dependent constants, and each N (n)

(n ∈ N) is a finite positive integer.

Proof. From Theorem 9, one can deduce that every un is of the form

un =

N(n)∑

h=0

C
(n)
h ∂hx

(
∂2x − ∂x

)
uBS(σ0), σ0 =

√
2a0,0, (42)

where the sequence of (C
(n)
h ) are (t, x, y)-dependent constants and N (n) is a finite positive integer for every

n. Both the sequence of coefficients (C
(n)
h ) and the limit of the sum N (n) depend on the choice of basis

functions (Bi,j(x, y)) and can be computed explicitly using (21). However (and we shall emphasize the

following) independent of the choice of basis function, the general form (42) always holds; this is due to the

fact that B0,0(x, y) = 1. Now, using (42) we compute

Un(σ0) =
N(n)∑

h=0

C
(n)
h

∂hx
(
∂2x − ∂x

)
uBS(σ0)

∂σuBS(σ0)
(by (28))

=

N(n)∑

h=0

C
(n)
h

∂hxJu
BS(σ0)

tσ0JuBS(σ0)
(by (34))
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=
N(n)∑

h=0

C
(n)
h

∂hx exp

(
−
(
x−k−σ2

0t/2

σ
√
2t

)2)

tσ0 exp

(
−
(
x−k−σ2

0t/2

σ0

√
2t

)2) (by (39))

=

N(n)∑

h=0

D
(n)
h Hh

(
x− k − σ2

0t
2

σ0
√
2t

)
, (by (38))

where we have absorbed some powers of t and σ0 into D
(n)
h .

To review, when the sequence of (un) is as given in Theorem 9, then using Theorem 15 and Propositions 16

and 18, approximate implied volatilities can be computed as a sum of Hermite polynomials in log-moneyness:

(k − x). We emphasize: No numerical integration or special functions are required. Approximate implied

volatilities can therefore be computed even more quickly than approximate option prices (which require a

normal CDF).

Remark 19. Proposition 18 holds for any choice of the basis functions Bi,j(x, y). However, for the Taylor

expansion basis of Example 3, Corollary 12 ensures that condition (25) is satisfied for any t small enough.

Therefore the expansion (26) is convergent for short maturities.

We define the n-th order approximation of implied volatility as

σ(n) :=
n∑

h=0

σh. (43)

For a given sequence of basis functions (Bi,j) explicit expressions for each σh in the sequence (σh)h≥1 can

be computed using a using a computer algebra program such as Wolfram’s Mathematica. In Appendix

C, we provide explicit expressions for σh for h ≤ 2 when the basis functions are given by Bn,m(x, y) =

(x − x̄)n(y − ȳ)m (as in Example 3). On the authors’ websites, we also provide a Mathematica notebook

which contains the expressions for σh for h ≤ 3.

6 Implied volatility examples

In this Section we use the results of Section 5.2 to compute approximate model-induced implied volatilities

(43) under five different model dynamics in which European option prices can be computed explicitly.

• Section 6.1: CEV local volatility model

• Section 6.2: Quadratic local volatility model

• Section 6.3: Heston stochastic volatility model

• Section 6.4: 3/2 stochastic volatility model

• Section 6.5: SABR local-stochastic volatility model

Assumption 20. In all of the examples that follow we assume basis functions Bn,h(x, y) = (x− x̄)n(y− ȳ)h

(as in Example 3) with (x̄, ȳ) = (X0, Y0). Thus, approximate implied volatilities can be computed using the

formulas given in Appendix C as well as the Mathematica notebook available on the authors’ websites.
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6.1 CEV local volatility model

In the Constant Elasticity of Variance (CEV) local volatility model of Cox (1975), the dynamics of the

underlying S are given by

dSt = δSβ−1
t StdWt, S0 = s > 0.

The parameter β controls the relationship between volatility and price. When β < 1, volatility increases as

S → 0+. This feature, referred to as the leverage effect, is commonly observed in equity markets. When

β < 1, one also observes a negative at-the-money skew in the model-induced implied volatility surface. Like

the leverage effect, a negative at-the-money skew is commonly observed in equity options markets. The

origin is attainable when β < 1. In order to prevent the process S from taking negative values, one typically

specifies zero as an absorbing boundary. Hence, the state space of S is [0,∞). In log notation X := logS,

we have the following dynamics 3

dXt = −1

2
δ2e2(β−1)Xtdt+ δ e(β−1)XtdWt, X0 = x := log s. (44)

The generator of X is given by

A =
1

2
δ2e2(β−1)x(∂2x − ∂x).

Thus, from (3) we identify

a(x, y) =
1

2
δ2e2(β−1)x, b(x, y) = 0, c(x, y) = 0, α(x, y) = 0.

We fix a time to maturity t and log-strike k. Using the formulas from Appendix C as well as the Mathematica

notebook provided on the authors’ websites, we compute explicitly

σ0 = δ e(β−1)x,

σ1 =
1

2
(k − x)(β − 1)σ0,

σ2 =
1

96
(β − 1)2σ0

(
8(k − x)2 + tσ2

0,0

(
4− tσ2

0

))
,

σ3 = − 1

192
t(k − x)(β − 1)3σ3

0

(
−12 + 5tσ2

0

)
.

(45)

In the CEV setting the exact price of a call option is derived in Cox (1975):

u(t, x) = exQ(κ, 2 + 2
2−β , 2χ)− ek

(
1−Q(2χ, 2

2−β , 2κ)
)
,

Q(w, v, µ) =
∞∑

n=0

(
(µ/2)ne−µ/2

n!

Γ(v/2 + n,w/2)

Γ(v/2 + n)

)
,

χ =
2e(2−β)x

δ2(2− β)2t
,

κ =
2e(2−β)k

δ2(2− β)2t
,

(46)

3Here and in Section 6.2, we define log 0 := lim
xց0 log x = −∞.
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where Γ(a) and Γ(a, b) denote the complete and incomplete Gamma functions respectively. Thus, the exact

implied volatility σ can be obtained by solving (23) numerically. In Figure 1 we plot our third order implied

volatility approximation σ(3) and the exact implied volatility σ. For comparison, we also plot the implied

volatility expansion of Hagan and Woodward (1999)

σHW =
δ

f1−β

(
1 +

(1− β)(2 + β)

24

(
ex − ek

f

)2

+
(1− β)2

24

δ2t

f2(1−β)
+ · · ·

)
, f =

1

2
(ex + ek). (47)

Relative errors of the two approximations are given in Figure 2. From the Figures, it is clear that our

third order expansion σ(3) gives a better approximation of the true implied volatility than does the implied

volatility expansion σHW of Hagan and Woodward (1999). The difference between σ(3) and σHW is most

noticeable at strikes for which |k − x| > 0.5.

We are interested in finding the range of strikes and maturities over which our implied volatility expansion

accurately approximates the exact implied volatility. Thus, in Figure 3 we provide a contour plot of the

absolute value of the relative error |σ(3) − σ|/σ of our third order implied volatility approximation as a

function of time to maturity t and log-moneyness (k − x). From the Figure, we observe that the absolute

value of the relative error of less than 0.3% for most options satisfying (k−x) ∈ (−2.0, 2.0) and t ∈ (0.0, 5.0)

years.

6.2 Quadratic local volatility model

In the Quadratic local volatility model, the dynamics of the underlying S are given by

dSt =

(
δ

St

(eR − St)(e
L − St)

eR − eL

)
StdWt, S0 = s > 0, s < eL < eR.

Note that volatility increases as S → 0+, which is consistent with the leverage effect and which results in

a negative at-the-money skew in the model-induced implied volatility surface. The left-hand root eL of the

polynomial (eR − s)(eL − s) is an unattainable boundary for S. The origin, however, is attainable. In order

to prevent the process S from taking negative values,one typically specifies zero as an absorbing boundary.

Hence, the state space of S is [0, eL). In log notation X := logS, we have the following dynamics

dXt = −1

2

(
δ

eXt

(eR − eXt)(eL − eXt)

eR − eL

)2

dt+
δ

eXt

(eR − eXt)(eL − eXt)

eR − eL
dWt, X0 = x := log s. (48)

The generator of X is given by

A =
1

2

(
δ

ex
(eR − ex)(eL − ex)

eR − eL

)2

(∂2x − ∂x).

Thus, from (3) we identify

a(x, y) =
1

2

(
δ

ex
(eR − ex)(eL − ex)

eR − eL

)2

, b(x, y) = 0, c(x, y) = 0, α(x, y) = 0.
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We fix a time to maturity t and log-strike k. Using the formulas from Appendix C, as well as the Mathematica

notebook provided on the authors’ websites we compute explicitly

σ0 =
δ

ex
(eR − ex)(eL − ex)

eR − eL
,

σ1 =

(
a1,0
2σ0

)
(k − x),

σ2 =

(
−
t
(
12 + tσ2

0

)
a21,0

96σ0
+

1

6
tσ0a2,0

)
+

(
−3a21,0 + 4σ2

0a2,0

12σ3
0

)
(k − x)2,

σ3 =
−t

192σ3
0

((
−12 + tσ2

0

)
a31,0 + 4σ2

0

(
8 + tσ2

0

)
a1,0a2,0 − 48σ4

0a3,0
)
(k − x)

+
1

12σ5
0

(
3a31,0 − 5σ2

0a1,0a2,0 + 3σ4
0a3,0

)
(k − x)3,

(49)

where

a1,0 =
δ2 (− sinh(L+R− 2x) + sinh(L− x) + sinh(R− x))

cosh(L−R)− 1
,

a2,0 =
1

4
δ2 (2 cosh(L+R− 2x)− cosh(L− x)− cosh(R− x)) csch2

(
L−R

2

)
,

a3,0 =
eL+Rδ2 (−4 sinh(L+R− 2x) + sinh(L− x) + sinh(R− x))

3 (eL − eR)
2 .

The exact price of a call option is computed in Andersen (2011) Lemma 3.1. Assuming k < L we have:

u(t, x) = ek1N(−d(1)− )− ex2N(d
(2)
+ )− ex1N(−d(1)+ ) + ek2N(d

(2)
− ), d

(i)
± =

xi − ki ± 1
2δ

2t√
δ2t

, (50)

ek1 =
(eL − ek)(eR − ex)

eR − eL
, ex1 =

(eL − ex)(eR − ek)

eR − eL
,

ek2 =
(eR − ek)(eR − ex)

eR − eL
, ex2 =

(eL − ex)(eL − ek)

eR − eL
.

Thus, the exact implied volatility σ can be obtained by solving (23) numerically.

In Figure 4 we plot our third order implied volatility approximation σ(3) and the exact implied volatility

σ. Relative error of the approximation is given in Figure 5. In order to visualize the range of strikes and

maturities over which our implied volatility expansion accurately approximates the exact implied volatility,

we provide in Figure 6 a contour plot of the absolute value of the relative error |σ(3) − σ|/σ of our third

order implied volatility approximation as a function of time to maturity t and log-moneyness (k − x).

From Figure 6, we observe a relative error of less than 1% for nearly all strikes k maturities t such that

(k−x) ∈ (−1.5, 1.5) and t < 4. A relative error of less than 3% is observed for nearly all strikes k maturities

t such that (k − x) ∈ (−1.5, 1.5) and t < 10.

6.3 Heston stochastic volatility model

Perhaps the most well-known stochastic volatility model is that of Heston (1993). In the Heston model, the

dynamics of the underlying S are given by

dSt =
√
ZtStdWt, S0 = s > 0,
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dZt = κ(θ − Zt)dt+ δ
√
ZtdBt, Z0 = z > 0,

d〈W,B〉t = ρdt.

Although it is not required, one typically sets ρ < 0 in order to capture the leverage effect. In log notation

(X,Y ) := (logS, logZ) we have the following dynamics

dXt = −1

2
eYtdt+ e

1
2YtdWt, X0 = x := log s,

dYt =
(
(κθ − 1

2δ
2)e−Yt − κ

)
dt+ δ e−

1
2YtdBt, Y0 = y := log z,

d〈W,B〉t = ρdt.

(51)

The generator of (X,Y ) is given by

A =
1

2
ey
(
∂2x − ∂x

)
+
(
(κθ − 1

2δ
2)e−y − κ

)
∂y +

1

2
δ2e−y∂2y + ρ δ∂x∂y.

Thus, using (3), we identify

a(x, y) =
1

2
ey, b(x, y) =

1

2
δ2e−y, c(x, y) = ρ δ, α(x, y) =

(
(κθ − 1

2δ
2)e−y − κ

)
.

We fix a time to maturity t and log-strike k. Using the formulas from Appendix C as well as the Mathematica

notebook provided on the authors’ websites, we compute explicitly

σ0 = ey/2,

σ1 =
1

8
e−y/2t

(
−δ2 + 2 (−ey + θ)κ+ eyδρ

)
+

1

4
e−y/2δρ(k − x),

σ2 =
(−e−3y/2

128
t2
(
δ2 − 2θκ

)2
+

ey/2

96
t2
(
5κ2 − 5δκρ+ δ2

(
−1 + 2ρ2

))

+
e
−y/2192t

(
−4tθκ2 − tδ3ρ+ 2tδθκρ+ 2δ2

(
8 + tκ+ ρ2

)) )

+
1

96
e−3y/2tδρ

(
5δ2 + 2 (ey − 5θ)κ− eyδρ

)
(k − x) +

1

48
e−3y/2δ2

(
2− 5ρ2

)
(k − x)2,

σ3 =
(
− e−5y/2t3

(
δ2 − 2θκ

)3

1024
+

ey/2t3(−2κ+ δρ)
(
6κ2 − 6δκρ+ δ2

(
−6 + 5ρ2

))

1536
(52)

+
e−3y/2t2

(
δ2 − 2θκ

) (
4tθκ2 + tδ3ρ− 2tδθκρ+ δ2

(
16− 2tκ+ 20ρ2

))

3072

+
1

768
e−y/2t2

(
3δ2ρ2(−2κ+ δρ) + tκ

(
δ2 − 2θκ

)
(−κ+ δρ)

) )

+
(7t2δρe−5y/2

512

(
δ2 − 2θκ

)2
+
t2δρe−y/2

384

(
−3κ2 + δ

(
δ + 3κρ− 2δρ2

))

− e−3y/2

768
tδρ
(
20tθκ2 + 5tδ3ρ− 10tδθκρ+ 2δ2

(
8− 5tκ+ 9ρ2

)) )
(k − x)

+
e−5y/2tδ2

384

(
ey(−2κ+ δρ)

(
−2 + 7ρ2

)
−
(
δ2 − 2θκ

) (
−8 + 23ρ2

))
(k − x)2

+
e−5y/2δ3ρ

96

(
−5 + 8ρ2

)
(k − x)3.

The characteristic function of Xt is computed explicitly in Heston (1993)

η(t, x, y, λ) := logEx,ye
iλXt = iλx+ C(t, λ) +D(t, λ)ey,
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C(t, λ) =
κθ

δ2

(
(κ− ρδiλ+ d(λ))t− 2 log

[
1− f(λ)ed(λ)t

1− f(λ)

])
,

D(t, λ) =
κ− ρδiλ+ d(λ)

δ2
1− ed(λ)t

1− f(λ)ed(λ)t
,

f(λ) =
κ− ρδiλ+ d(λ)

κ− ρδiλ− d(λ)
,

d(λ) =
√
δ2(λ2 + iλ) + (κ− ρiλδ)2.

Thus, the price of a European call option can be computed using standard Fourier methods

u(t, x, y) =
1

2π

∫

R

dλr e
η(t,x,y,λ)ĥ(λ), ĥ(λ) =

−ek−ikλ

iλ+ λ2
, λ = λr + iλi, λi < −1. (53)

Note, since the call option payoff h(x) = (ex − ek)+ is not in L1(R), its Fourier transform ĥ(λ) must be

computed in a generalized sense by fixing an imaginary component of the Fourier variable λi < −1. Using

(53) the exact implied volatility σ can be computed to solving (23) numerically. In Figure 7 we plot our

third order implied volatility approximation σ(3) and the exact implied volatility σ. For comparison, we

also plot the small-time near-the-money implied volatility expansion of Forde, Jacquier, and Lee (2012) (see

Theorem 3.2 and Corollary 4.3)

σFJL =
(
g20 + g1 t+ o(t)

)1/2
, (54)

g0 = ey/2
(
1 +

1

4
ρδ(k − x)e−y +

1

24

(
1− 5ρ2

2

)
δ2(k − x)2e−2y

)
+ O((k − x)3),

g1 = − δ
2

12

(
1− ρ2

4

)
+

eyρδ

4
+
κ

2
(θ − ey) +

1

24
ρδe−y(δ2ρ2 − 2κ(θ + ey) + ρδey)(k − x)

+
δ2e−2y

7680

(
176δ2 − 480κθ − 712ρ2δ2 + 521ρ4δ2 + 40ρ3δey + 1040κθρ2 − 80κρ2ey

)
(k − x)2

+ O((k − x)3), ρ =
√
1− ρ2.

Relative errors of the two approximations are given in Figure 8. It is clear from the Figures that our third

order implied volatility expansions σ(3) provides a better approximation of the true implied volatility σ than

does the implied volatility expansion σFJL. The improvement marked by σ(3) is particularly noticeable at

the largest strikes and at longer maturities.

We are interested in learning the range of strikes and maturities over which our implied volatility expan-

sion accurately approximates the exact implied volatility. Thus, in Figure 9 we provide a contour plot of

the absolute value of the relative error |σ(3) − σ|/σ of our third order implied volatility approximation as a

function of time to maturity t and log-moneyness (k− x). From the Figure, we observe an absolute relative

error of less than 2% for most options satisfying (k − x) ∈ (−0.75, 0.75) and t ∈ (0.0, 2.7) years.

6.4 3/2 stochastic volatility model

We consider now the 3/2 stochastic volatility model. The risk-neutral dynamics of the underlying S in this

setting are given by

dSt =
√
ZtStdWt, S0 = s > 0,
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dZt = Zt

(
κ(θ − Zt)dt+ δ

√
ZtdBt

)
, Z0 = z > 0,

d〈W,B〉t = ρdt.

As in all stochastic volatility models, one typically sets ρ < 0 in order to capture the leverage effect. The 3/2

model is noteworthy in that it does not fall into the affine class of Duffie, Pan, and Singleton (2000), and yet

it still allows for European option prices to be computed in semi-closed form (as a Fourier integral). Notice

however that the characteristic function (given in (57) below) involves special functions such as the Gamma

and the confluent hypergeometric functions. Therefore, Fourier pricing methods are not an efficient means

of computed prices. The importance of the 3/2 model in the pricing of options on realized variance is well

documented by Drimus (2012). In particular, the 3/2 model allows for upward-sloping implied volatility of

variance smiles while Heston’s model leads to downward-sloping volatility of variance smiles, in disagreement

with observed skews in variance markets.

In log notation (X,Y ) := (logS, logZ) we have the following dynamics

dXt = −1

2
eYtdt+ e

1
2YtdWt, X0 = x := log s,

dYt =

(
κ(θ − eYt)− 1

2
δ2eYt

)
dt+ δ e

1
2YtdBt, Y0 = y := log z,

d〈W,B〉t = ρdt.

(55)

The generator of (X,Y ) is given by

A =
1

2
ey
(
∂2x − ∂x

)
+

(
κ(θ − ey)− 1

2
δ2ey

)
∂y +

1

2
δ2ey∂2y + ρ δ ey∂x∂y.

Thus, using (3), we identify

a(x, y) =
1

2
ey, b(x, y) =

1

2
δ2ey, c(x, y) = ρ δ ey, α(x, y) = κ(θ − ey)− 1

2
δ2ey.

We fix a time to maturity t and log-strike k. Using the formulas from Appendix C as well as the Mathematica

notebook provided on the authors’ websites, we compute explicitly

σ0 = ey/2,

σ1 = −1

8
ey/2t

(
−2θκ+ ey

(
δ2 + 2κ− δρ

))
+

1

4
ey/2δρ(k − x),

σ2 = ey/2
(

5

96
t2θ2κ2

)
+ e3y/2

(
− 1

96
t
(
18tθκ2 − 9tδθκρ+ δ2

(
−8 + 9tθκ+ 7ρ2

)))

+ e6y/2
(

1

384
t2
(
13δ4 + 52κ2 − 26δ3ρ− 52δκρ+ 4δ2

(
−1 + 13κ+ 4ρ2

)))

+
1

96
ey/2tδρ

(
6θκ− 7ey

(
δ2 + 2κ− δρ

))
(k − x)− 1

48
ey/2δ2

(
−2 + ρ2

)
(k − x)2, (56)

σ3 =
1

3072

(
ey/2

(
24t3θ3κ3

)
+ e3y/2

(
−12t2θκ

(
22tθκ2 − 11tδθκρ+ δ2

(
−16 + 11tθκ+ 14ρ2

)))

+ e5y/2
(
− 240t2δ4 − 480t2δ2κ− 40t3δ2θκ+ 130t3δ4θκ+ 520t3δ2θκ2 + 520t3θκ3 + 240t2δ3ρ

− 260t3δ3θκρ− 520t3δθκ2ρ+ 180t2δ4ρ2 + 360t2δ2κρ2 + 160t3δ2θκρ2 − 180t2δ3ρ3
)
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+ e7y/2
(
−t3

(
δ2 + 2κ− δρ

) (
35δ4 + 140κ2 − 70δ3ρ− 140δκρ+ 2δ2

(
−16 + 70κ+ 29ρ2

))) )

+
1

1536

(
ey/2

(
20t2δθ2κ2ρ

)
+ e3y/2

(
−12tδρ

(
14tθκ2 − 7tδθκρ+ δ2

(
−4 + 7tθκ+ 3ρ2

)))

+ e5y/2
(
t2δρ

(
45δ4 + 180κ2 − 90δ3ρ− 180δκρ+ 4δ2

(
−4 + 45κ+ 14ρ2

))) )
(k − x)

+
1

384
ey/2tδ2

(
ey
(
δ2 + 2κ− δρ

) (
−8 + ρ2

)
− 2θκ

(
−2 + ρ2

))
(k − x)2.

To the best of our knowledge, the above formula is the first explicit implied volatility expansion for the 3/2

model. The characteristic function of Xt is given, for example, in Proposition 3.2 of Baldeaux and Badran

(2012). We have

Ex,ye
iλXt = eiλx

Γ(γ − α)

Γ(γ)

(
2

δ2z

)α
M

(
α, γ,

−2

δ2z

)
, z =

ey

κθ
(eκθt − 1), γ = 2

(
α+ 1− p

δ2

)
,(57)

α = −
(
1

2
− p

δ2

)
+

((
1

2
− p

δ2

)2

+ 2
q

δ2

)1/2

, p = −κ+ iδρλ, q =
1

2
(iλ+ λ2),

where Γ is a Gamma function and M is a confluent hypergeometric function. Thus, the price of a European

call option can be computed using standard Fourier methods

u(t, x, y) =
1

2π

∫

R

dλr ĥ(λ)Ex,ye
iλXt , λ = λr + iλi, λi < −1, (58)

where ĥ(λ) is given in (53). Using (58) the exact implied volatility σ can be computed to solving (23)

numerically.

In Figure 10 we plot our third order implied volatility approximation σ(3) and the exact implied volatility

σ. Relative error of the approximation is given in Figure 11. In order to visualize the range of strikes and

maturities over which our implied volatility expansion accurately approximates the exact implied volatility,

we provide in Figure 12 a contour plot of the absolute value of the relative error |σ(3)−σ|/σ of our third order

implied volatility approximation as a function of time to maturity t and log-moneyness (k−x). From Figures

12, we observe a relative error of less than 1% for nearly all strikes k maturities t such that (k−x) ∈ (−1.0, 0.8)

and t < 1.5 years. A relative error of less than 3% is observed for nearly all strikes k maturities t such that

(k − x) ∈ (−1.0, 0.8) and t < 2.5 years.

6.5 SABR local-stochastic volatility

The SABR model of Hagan, Kumar, Lesniewski, and Woodward (2002) is a local-stochastic volatility model

in which the risk-neutral dynamics of S are given by

dSt = ZtS
β
t dWt, S0 = s > 0,

dZt = δZtdBt, Z0 = z > 0,

d〈W,B〉t = ρdt.

Modeling the non-local component of volatility Z as a geometric Brownian motion results in a true implied

volatility smile (i.e., upward sloping implied volatility for high strikes); this is in contrast to the CEV
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model, for which the model-induced implied volatility is monotone decreasing (for β < 1). In log notation

(X,Y ) := (logS, logZ) we have, we have the following dynamics:

dXt = −1

2
e2Yt+2(β−1)Xtdt+ eYt+(β−1)XtdWt, X0 = x := log s,

dYt = −1

2
δ2dt+ δ dBt, Y0 = y := log z,

d〈W,B〉t = ρdt.

(59)

The generator of (X,Y ) is given by

A =
1

2
e2y+2(β−1)x(∂2x − ∂x)−

1

2
δ2∂y +

1

2
δ2∂2y + ρ δ ey+(β−1)x∂x∂y.

Thus, using (3), we identify

a(x, y) =
1

2
e2y+2(β−1)x, b(x, y) =

1

2
δ2, c(x, y) = ρ δ ey+(β−1)x, α(x, y) = −1

2
δ2.

We fix a time to maturity t and log-strike k. Using the formulas from Appendix C as well as the Mathematica

notebook provided on the authors’ websites, we compute explicitly

σ0 = ey+(β−1)x, σ1 = σ1,0 + σ0,1, σ2 = σ2,0 + σ1,1 + σ0,1, σ3 = σ3,0 + σ2,1 + σ1,2 + σ0,3, (60)

where

σ1,0 =
1

2
(k − x)(−1 + β)σ0,

σ0,1 =
1

4
δ (2(k − x)ρ+ tσ0 (−δ + ρσ0)) ,

σ2,0 =
1

96
(−1 + β)2σ0

(
8(k − x)2 + tσ2

0

(
4− tσ2

0

))
,

σ1,1 = − 1

48
t(−1 + β)δσ0

(
6(k − x)δ − 2(6 + 5k − 5x)ρσ0 + tρσ3

0

)
,

σ0,2 =
1

96
tδ2σ0

(
32 + 5tδ2 − 12ρ2 + 2tσ0

(
−7δρ+

(
−2 + 6ρ2

)
σ0
))

− 1

24
tδ2ρ (δ − 3ρσ0) (k − x) +

δ2
(
2− 3ρ2

)

12σ0
(k − x)2,

σ3,0 = − 1

192
t(k − x)(−1 + β)3σ3

0

(
−12 + 5tσ2

0

)
,

σ2,1 =
1

384
t2(−1 + β)2δσ3

0

(
−12δ + 28ρσ0 + tσ2

0 (5δ − 7ρσ0)
)

− 13

192
t(−1 + β)2δρσ2

0

(
−4 + tσ2

0

)
(k − x)− 1

48
t(−1 + β)2δσ0 (δ − 3ρσ0) (k − x)2,

σ1,2 =
1

192
t2(−1 + β)δ2ρσ2

0

(
−28δ + 52ρσ0 + tσ2

0 (5δ − 7ρσ0)
)

+
1

192
t(−1 + β)δ2σ0

(
32 + 5tδ2 + 12ρ2 − 22tδρσ0 + 4t

(
−3 + 5ρ2

)
σ2
0

)
(k − x)

+
1

24
t(−1 + β)δ2ρ2σ0(k − x)2 +

(−1 + β)δ2
(
−2 + 3ρ2

)

24σ0
(k − x)3,

σ0,3 = −σ0
1

128
t2δ4

(
16 + tδ2 − 4ρ2

)
+ σ2

0

1

384
t2δ3ρ

(
104 + 19tδ2 − 36ρ2

)

24



+ σ3
0

1

192
t3δ4

(
8− 21ρ2

)
+ σ4

0

1

192
t3δ3ρ

(
−11 + 15ρ2

)

− 1

192
tδ3ρ

(
8 + 12x+ tδ2 − 12ρ2 + 6tσ0

(
δρ+

(
1− 2ρ2

)
σ0
))

(k − x)

− 1

16
tδ3ρ

(
−1 + ρ2

)
(k − x)2 +

δ3ρ
(
−5 + 6ρ2

)

24σ2
0

(k − x)3.

There is no formula for European option prices in the general SABR setting. However, for the special

zero-correlation case ρ = 0 the exact price of a European call is computed in Antonov and Spector (2012):

u(t, x) = e(x+k)/2
e−δ

2t/8

√
2πδ2t

{
1

π

∫ ∞

0

dV

∫ π

0

dφ
1

V

(
V

V0

)−1/2
sinφ sin(|ν|φ)
b− cosφ

exp

(
ξ2φ
2δ2t

)

+
sin(|ν|π)

π

∫ ∞

0

dV

∫ ∞

0

dψ
1

V

(
V

V0

)−1/2
sinhψ

b− coshψ
e−|ν|ψ exp

(
ξ2ψ
2δ2t

)}
+ (ex − ek)+,

ξφ = arccos

(
q2h + q2x + V 2 + V 2

0

2V V0
− qhqx
V V0

cosφ

)
,

ξψ = arccos

(
q2h + q2x + V 2 + V 2

0

2V V0
+
qhqx
V V0

coshψ

)
,

b =
q2h + q2x
2qhqx

, qh =
e(1−β)k

1− β
, qx =

e(1−β)x

1− β
, ν =

−1

2(1− β)
, V0 =

ey

δ
.

(61)

Thus, in the zero-correlation setting, the exact implied volatility σ can be obtained by using the above formula

and then by solving (23) numerically. In Figure 13 we plot our third order implied volatility approximation

σ(3) and the exact implied volatility σ. For comparison, we also plot the implied volatility expansion of

Hagan, Kumar, Lesniewski, and Woodward (2002)

σHKLW = δ
x− k

D(ζ)

{
1 + tδ2

[
2γ2 − γ21 + 1/f2

24

(
ey+βf

δ

)2

+
ργ1e

y+βf

4δ
+

2− 3ρ2

24

]}
, (62)

f =
1

2
(ex + ek),

ζ =
δ e−y

β − 1

(
e(1−β)k − e(1−β)x

)
,

γ1 = β/f,

γ2 = β(β − 1)/f2,

D(ζ) = log

(√
1− 2ρζ + ζ2 + ζ − ρ

1− ρ

)
.

Note that we use the “corrected” SABR formula, which appears in Obloj (2008). Relative errors of the two

approximations are given in Figure 14. From the Figures we observe that both expansions σ(3) and σHKLW

provide excellent approximations of the true implied volatility σ for options with maturities of ∼ 1.5 years

or less. However, for longer maturities t > 2.0, it is clear that σ(3) more closely approximates σ than does

σHKLW.

We are interested in learning the range of strikes and maturities over which our implied volatility expan-

sion accurately approximates the exact implied volatility. Thus, in Figure 15 we provide a contour plot of
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the absolute value of the relative error |σ(3) − σ|/σ of our third order implied volatility approximation as a

function of time to maturity t and log-moneyness (k− x). From the Figure, we observe an absolute relative

error of less than 2% for most options satisfying (k − x) ∈ (−1.5, 1.4) and t < 5.0 years.

7 Conclusions and future work

In this paper we consider general local-stochastic volatility models. In this setting, we provide a family of

approximations – one for each choice of the basis functions (i.e. Taylor series, Two-point Taylor series, L2

basis, etc.) – for (i) the transition density of the underlying (ii) European-style option prices and (iii) implied

volatilities. Our density expansions require no integration; every term can be written as a sum of Hermite

polynomials multiplied by a Gaussian density. The terms in our option price expansions are expressed as a

differential operator acting on the Black-Scholes price. Thus, to compute approximate prices, one requires

only a normal CDF. Our implied volatility expansion is explicit; it requires no special functions nor does it

require any numerical integration. Thus, approximate implied volatilities can be computed even faster than

option prices.

We carry out extensive computations using the Taylor series basis functions. In particular, we establish

the rigorous error bounds of our transition density expansion. We also implement our implied volatility

approximation under five separate model dynamics: CEV local volatility, Quadratic local volatility, Hes-

ton stochastic volatility, 3/2 stochastic volatility, and SABR local-stochastic volatility. In each setting we

demonstrate that our implied volatility expansion provides an excellent approximation of the true implied

volatility over a large range of strikes and maturities.

Looking forward, we are currently working to extend our density, pricing and implied volatility approx-

imations to Lévy-type local-stochastic volatility models. We are also examining how our approximation

techniques can be applied to a variety of exotic options. Finally, we are investigating how different basis

functions can be used advantageously in different settings.

A Proof of Proposition 7

The formal adjoint of an operator A in L2(R2, dxdy) is the operator A† such that

〈f,Ag〉 = 〈A†f, g〉, 〈u, v〉 :=
∫

R2

dxdy u(x, y)v(x, y), u, v ∈ S(R2).

Observe that

A
†
h =

h∑

l=0

φh−l,l(Dx,Dy)Bh−l,l(x, y),

which can be deduced by integrating by parts. Now, we note that

〈ψλ,ω,Ahu(t, ·, ·)〉 = 〈A†
hψλ,ω, u〉

=
h∑

l=0

〈φh−l,l(Dx,Dy)Bh−l,lψλ,ω, u(t, ·, ·)〉
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=

h∑

l=0

Bh−l,l(i∂λ, i∂ω)φh−l,l(λ, ω)〈ψλ,ω, u(t, ·, ·)〉

=

h∑

l=0

Bh−l,l(i∂λ, i∂ω)φh−l,l(λ, ω)û(t, λ, ω).

We Fourier transform equation (15). Focusing first on the left-hand side, and using the above result we have

〈ψλ,ω, (−∂t +A0)un(t, ·, ·)〉 = −∂t〈ψλ,ω, un(t, ·, ·)〉+ 〈A†
0ψλ,ω, un(t, ·, ·)〉 = (−∂t + φ0,0(λ, ω)) ûn(t, λ, ω).

Next, for the right-hand side of (15) we compute

−
n∑

h=1

〈ψλ,ω,Ahun−h(t, ·, ·)〉 = −
n∑

h=1

h∑

l=0

Bh−l,l(i∂λ, i∂ω)φh−l,l(λ, ω)ûn−h(t, λ, ω).

Thus, we have the following ODE (in t) for û0(t, λ, ω)

(−∂t + φ0,0(λ, ω)) û0(t, λ, ω) = 0, û0(0, λ, ω) = Ĥ(λ, ω). (63)

Likewise, for ûn(t, λ, ω) we have the following ODE in t

(−∂t + φ0,0(λ, ω)) ûn(t, λ, ω) = −
n∑

h=1

h∑

l=0

Bh−l,l(i∂λ, i∂ω)φh−l,l(λ, ω)ûn−h(t, λ, ω),

ûn(0, λ, ω) = 0.




n ≥ 1. (64)

The solutions of (63) and (64) are given by (17) and (18) respectively.

B Proof of Theorem 9

Throughout this Appendix, we shall use the following identity repeatedly:

û0(s, λ, ω) = eiλx+iωyû0(t, λ, ω)
1

eiλx+iωy+(t−s)φ0,0
. (65)

We begin by computing u1(t, x, y). We have

u1(t, x, y)

1
=

1

2π

∫

R2

dλdω eiλx+iωy û1(t, λ, ω)

2
=

1

2π

∫

R2

dλdω

∫ t

0

ds
1∑

i=0

eiλx+iωy+(t−s)φ0(λ,ω)B1−i,i(i∂λ, i∂ω)φ1−i,i(λ, ω)û0(s, λ, ω)

3
=

1

2π

∫

R2

dλdω

∫ t

0

ds

1∑

i=0

û0(s, λ, ω)φ1−i,i(λ, ω)B1−i,i(−i∂λ,−i∂ω)eiλx+iωy+(t−s)φ0,0(λ,ω)

4
=

1

2π

∫

R2

dλdω eiλx+iωyû0(t, λ, ω)

∫ t

0

ds

1∑

i=0

φ1−i,i(λ, ω)
B1−i,i(−i∂λ,−i∂ω)eiλx+iωy+(t−s)φ0,0(λ,ω)

eiλx+iωy+(t−s)φ0,0(λ,ω)
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5
=

1

2π

∫

R2

dλdω eiλx+iωyû0(t, λ, ω)

∫ t

0

dsΦ1(s, t, x, y, λ, ω,−i∂λ,−i∂ω)

6
=

1

2π

∫

R2

dλdω eiλx+iωyû0(t, λ, ω)L1(t, x, y, λ, ω)

7
= L1(t, x, y,Dx,Dy)u0(t, x, y),

where L1(t, x, y, λ, ω) is given in (19). Because we shall repeat the above steps for higher order terms, we

describe the above computation in detail. In the first equality we have expressed u1 as an inverse Fourier

transform of û1. In the second equality we have used Proposition 7 to write out û1 explicitly. In the third

equality we have used integration by parts to replace B1−i,i(i∂λ, i∂ω) acting on φ1−i,i(λ, ω)û0(s, λ, ω) by its

adjoint B1−i,i(−i∂λ,−i∂ω) acting on eiλx+iωy+(t−s)φ0,0(λ,ω). In the fourth equality we have used (65). In

the fifth equality we have used (20) to recognize the inner-most integrand as Φ1(s, t, x, y, λ, ω,−i∂λ,−i∂ω).
In the sixth step we have used (19) to recognize the inner-most integral as L1(s, t, x, y, λ, ω). Lastly, in

the seventh equality, we have used (5) and the fact that L1(s, t, x, y, λ, ω) is the symbol of the differential

operator L1,0(s, t, x, y,Dx,Dy).

Now, we move on to u2(t, x, y). We have

u2(t, x, y)

=
1

2π

∫

R2

dλdω eiλx+iωyû2(t, λ, ω)

=
1

2π

∫

R2

dλdω

∫ t

0

ds

2∑

i=0

eiλx+iωy+(t−s)φ0,0(λ,ω)B2−i,i(i∂λ, i∂ω)φ2−i,i(λ, ω)û0(s, λ, ω)
}
=: uA2

+
1

2π

∫

R2

dλdω

∫ t

0

ds

1∑

i=0

eiλx+iωy+(t−s)φ0,0(λ,ω)B1−i,i(i∂λ, i∂ω)φ1−i,i(λ, ω)û1(s, λ, ω)
}
=: uB2

Comparing with the expression for u1, we see that uA2 is given by

uA2 = LA2 (t, x, y,Dx,Dy)u0(t, x, y),

LA2 (t, x, y, λ, ω) :=

∫ t

0

dsΦ2(s, t, x, y, λ, ω,−i∂λ,−i∂ω).

For uB2 , we compute

uB2 =
1

2π

∫

R2

dλdω

∫ t

0

ds

∫ s

0

dr

1∑

i=0

1∑

j=0

eiλx+iωy+(t−s)φ0,0(λ,ω) · · ·

B1−i,i(i∂λ, i∂ω)φ1−i,i(λ, ω)e
(s−r)φ0,0(λ,ω)B1−j,j(i∂λ, i∂ω)φ1−j,j(λ, ω)û0(r, λ, ω)

=
1

2π

∫

R2

dλdω

∫ t

0

ds

∫ s

0

dr
1∑

i=0

1∑

j=0

û0(r, λ, ω)φ1−j,j(λ, ω) · · ·

B1−j,j(−i∂λ,−i∂ω)e(s−r)φ0,0(λ,ω)φ1−i,i(λ, ω)B1−i,i(−i∂λ,−i∂ω)eiλx+iωy+(t−s)φ0,0(λ,ω)

=
1

2π

∫

R2

dλdω eiλx+iωyû0(t, λ, ω)

∫ t

0

ds

∫ s

0

dr · · ·
1∑

j=0

φ1−j,j(λ, ω)
B1−j,j(−i∂λ,−i∂ω)eiλx+iωy+(t−r)φ0,0(λ,ω)

eiλx+iωy+(t−r)φ0,0(λ,ω)
· · ·
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1∑

i=0

φ1−i,i(λ, ω)
B1−i,i(−i∂λ,−i∂ω)eiλx+iωy+(t−s)φ0,0(λ,ω)

eiλx+iωy+(t−s)φ0,0(λ,ω)
· · ·

=
1

2π

∫

R2

dλdω eiλx+iωyû0(t, λ, ω) · · ·
∫ t

0

ds

∫ s

0

drΦ1(r, t, x, y, λ, ω,−i∂λ,−i∂ω)Φ1(s, t, x, y, λ, ω,−i∂λ,−i∂ω)

= LB2 (t, x, y,Dx,Dy)u0(t, x, y),

where

LB2 (t, x, y, λ, ω) :=

∫ t

0

ds

∫ s

0

drΦ1(r, t, x, y, λ, ω,−i∂λ,−i∂ω)Φ1(s, t, x, y, λ, ω,−i∂λ,−i∂ω).

Pulling both terms uA2 and uB2 together, we have

u2(t, x, y) = uA2 + uB2 =
(
LA2 (t, x, y,Dx,Dy) + LB2 (t, x, y,Dx,Dy)

)
u0(t, x, y)

= L2(t, x, y,Dx,Dy)u0(t, x, y),

Next, we examine u3. We have

u3(t, x, y)

=
1

2π

∫

R2

dλdω eiλx+iωyû3,0(t, λ, ω)

=
1

2π

∫

R2

dλdω

∫ t

0

ds

3∑

i=0

eiλx+iωy+(t−s)φ0,0(λ,ω)B3−i,i(i∂λ, i∂ω)φ3−i,i(λ, ω)û0(s, λ, ω)
}
=: uA3

+
1

2π

∫

R2

dλdω

∫ t

0

ds

2∑

i=0

eiλx+iωy+(t−s)φ0,0(λ,ω)B2−i,i(i∂λ, i∂ω)φ2−i,i(λ, ω)û1(s, λ, ω)
}
=: uB3

+
1

2π

∫

R2

dλdω

∫ t

0

ds
1∑

i=0

eiλx+iωy+(t−s)φ0,0(λ,ω)B1−i,i(i∂λ, i∂ω)φ1−i,i(λ, ω)û2(s, λ, ω)
}
=: uC3

Comparing with uA2 and uB2 we recognize

uA3 = LA3,0(t, x, y,Dx,Dy)u0(t, x, y),

LA3 (t, x, y, ω, λ) :=

∫ t

0

dsΦ3(s, t, x, y, λ, ω,−i∂λ,−i∂ω)

uB3 = LB3 (t, x, y,Dx,Dy)u0(t, x, y),

LB3,0(t, x, y, λ, ω) :=

∫ t

0

ds

∫ s

0

drΦ1(r, t, x, y, λ, ω,−i∂λ,−i∂ω)Φ2(s, t, x, y, λ, ω,−i∂λ,−i∂ω).

For uC3 , we compute

uC3 =
1

2π

∫

R2

dλdω

∫ t

0

ds

∫ s

0

dr

1∑

i=0

2∑

j=0

eiλx+iωy+(t−s)φ0,0(λ,ω)

B1−i,i(i∂λ, i∂ω)φ1−i,i(λ, ω)e
(s−r)φ0,0(λ,ω)B2−j,j(i∂λ, i∂ω)φ2−j,j(λ, ω)û0(s, λ, ω)
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+
1

2π

∫

R2

dλdω

∫ t

0

ds

∫ s

0

dr

∫ r

0

dq

1∑

i=0

1∑

j=0

1∑

h=0

eiλx+iωy+(t−s)φ0,0(λ,ω)

B1−i,i(i∂λ, i∂ω)φ1−i,i(λ, ω)e
(s−r)φ0,0(λ,ω)B1−j,j(i∂λ, i∂ω)φ1−j,j(λ, ω)

e(r−q)φ0,0(λ,ω)B1−h,h(i∂λ, i∂ω)φ1−h,h(λ, ω)û0(s, λ, ω)

= LC3 (t, x, y,Dx,Dy)u0,

where

LC3 (t, x, y, λ, ω) :=

∫ t

0

ds

∫ s

0

drΦ2(r, t, x, y, λ, ω,−i∂λ,−i∂ω)Φ1(s, t, x, y, λ, ω,−i∂λ,−i∂ω)

+

∫ t

0

ds

∫ s

0

dr

∫ r

0

dqΦ1(q, t, x, y, λ, ω,−i∂λ,−i∂ω)Φ1(r, t, x, y, λ, ω,−i∂λ,−i∂ω)

Φ1(s, t, x, y, λ, ω,−i∂λ,−i∂ω).

Pulling all three terms uA3 , u
B
3 and uC3 together, we see that

u3 = uA3 + uB3 + uC3

=
(
LA3 (t, x, y,Dx,Dy) + LB3 (t, x, y,Dx,Dy) + LC3 (t, x, y,Dx,Dy)

)
u0(t, x, y),

= L3(t, x, y,Dx,Dy)u0(t, x, y),

Now, we compare (below, for simplicity, we remove the arguments x, y, λ, ω, −i∂λ and −i∂ω)

L1(t) =

∫ t

0

dt1 Φ1(t1, t),

L2(t) =

∫ t

0

dt1 Φ2(t1, t) +

∫ t

0

dt1

∫ t1

0

dt2 Φ1(t2, t)Φ1(t1, t),

L3(t) =

∫ t

0

dt1 Φ3(t1, t) +

∫ t

0

dt1

∫ t1

0

dt2 (Φ1(t2, t)Φ1(t1, t) + Φ1(t2, t)Φ1(t1, t))

+

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 Φ1(t3, t)Φ1(t2, t)Φ1(t1, t).

From the above pattern, one guesses

L4(t) =

∫ t

0

dt1 Φ4(t1, t) +

∫ t

0

dt1

∫ t1

0

dt2 (Φ3(t2, t)Φ1(t1, t) + Φ1(t2, t)Φ3(t1, t) + Φ2(t2, t)Φ2(t1, t))

+

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3
(
Φ2(t3, t)Φ1(t2, t)Φ1(t1, t) + Φ1(t3, t)Φ2(t2, t)Φ1(t1, t)

+ Φ1(t3, t)Φ1(t2, t)Φ2(t1, t)
)

+

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4 Φ1(t4, t)Φ1(t3, t)Φ1(t3, t)Φ1(t1, t).

And, indeed, one can easily check that this is correct. The general expression for Ln is that given in Theorem

9. Indeed, one can check that the expression given for un in Theorem 9 satisfies Cauchy problem (15).
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C Implied volatility expressions

Assuming basis functions Bn,h(x
′, y′) = (x′ − x̄)n(y′ − ȳ)h with (x̄, ȳ) = (X0, Y0) := (x, y) we compute,

explicitly

σ0 =
√
2a0,0, σ1 = σ1,0 + σ0,1, σ2 = σ2,0 + σ1,1 + σ0,2,

where

σ1,0 =

(
a1,0
2σ0

)
(k − x), σ0,1 =

(
ta0,1 (c0,0 + 2α0,0)

4σ0

)
+

(
a0,1c0,0
2σ3

0

)
(k − x),

and

σ2,0 =

(
−
t
(
12 + tσ2

0

)
a21,0

96σ0
+

1

6
tσ0a2,0

)
+

(
−3a21,0 + 4σ2

0a2,0

12σ3
0

)
(k − x)2

σ1,1 =

(
t
(
8σ2

0a1,1c0,0 + a0,1
((
4− tσ2

0

)
a1,0c0,0 − 8σ2

0c1,0
))

48σ3
0

)

+

(
t
(
4σ2

0a1,1 (c0,0 + 2α0,0) + a0,1
(
−5a1,0 (c0,0 + 2α0,0) + 2σ2

0 (c1,0 + 2α1,0)
))

24σ3
0

)
(k − x)

+

(
2σ2

0a1,1c0,0 + a0,1
(
−5a1,0c0,0 + σ2

0c1,0
)

6σ5
0

)
(k − x)2,

σ0,2 =
(
−
ta20,1b0,0

3σ3
0

−
t2a20,1b0,0

12σ0
+
ta0,2b0,0
σ0

+
3ta20,1c

2
0,0

8σ5
0

−
ta0,2c

2
0,0

3σ3
0

+
t2a0,2c

2
0,0

12σ0
− ta0,1c0,0c0,1

6σ3
0

+
t2a0,1c0,0c0,1

24σ0
−
t2a20,1c0,0α0,0

8σ3
0

+
t2a0,2c0,0α0,0

3σ0

+
t2a0,1c0,1α0,0

12σ0
−
t2a20,1α

2
0,0

8σ3
0

+
t2a0,2α

2
0,0

3σ0
+
t2a0,1c0,0α0,1

12σ0
+
t2a0,1α0,0α0,1

6σ0

)

+
(
−

3ta20,1c
2
0,0

8σ5
0

+
ta0,2c

2
0,0

3σ3
0

+
ta0,1c0,0c0,1

6σ3
0

−
3ta20,1c0,0α0,0

4σ5
0

+
2ta0,2c0,0α0,0

3σ3
0

+
ta0,1c0,1α0,0

6σ3
0

+
ta0,1c0,0α0,1

6σ3
0

)
(k − x)

+

(
−9a20,1c

2
0,0 + 2σ2

0

(
2a20,1b0,0 + 2a0,2c

2
0,0 + a0,1c0,0c0,1

)

12σ7
0

)
(k − x)2.

Higher order terms are too long to reasonably include in this text. However, σ3 and (for local volatility

models) σ4 can be computed easily using the Mathematica code provided free of charge on the authors’

websites.

http://explicitsolutions.wordpress.com

www.princeton.edu/~mlorig

www.math.unipd.it/~stefanop

www.dm.unibo.it/~pascucci
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Figure 1: Implied volatility in the CEV model (44) is plotted as a function of log-moneyness (k − x) for

four different maturities t. The solid line corresponds to the exact implied volatility σ, which we obtain by

computing the exact price u using (46) and then by solving (23) numerically. The dashed line (which is

nearly indistinguishable from the solid line) corresponds to our third order implied volatility approximation

σ(3), which we compute by summing the terms in (45). The dotted line corresponds to the implied volatility

expansion σHW of Hagan and Woodward (1999), which is computed using (47). In all four plots we use the

following parameters: β = 0.5, δ = 0.4, x = 0.0. Relative errors for the two approximations σ(3) and σHW

are given in Figure 2.
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Figure 2: Relative error (σApprox − σ)/σ is plotted as a function of log-moneyness (k − x) for four different

maturities t using two implied volatility approximations in the CEV model (44). The dashed line corresponds

to the relative error of our third order implied volatility approximation: σApprox = σ(3). The dotted line

corresponds to the relative error of the implied volatility approximation of Hagan and Woodward (1999):

σApprox = σHW. The exact implied volatility σ is obtained by computing the exact price u using (46)

and then by solving (23) numerically. Our third order implied volatility approximation σ(3) is computed

by summing the terms in (45). The implied volatility expansion σHW of Hagan and Woodward (1999) is

computed using (47). In all four plots we use the following parameters: β = 0.5, δ = 0.4, x = 0.0. Observe

that our third order implied volatility expansion σ(3) provides a better approximation of the true implied

volatility σ than does the implied volatility expansion σHW of Hagan and Woodward (1999) for nearly all

strikes and maturities.
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Figure 3: For the CEV model (44), we plot the absolute value of the relative error |σ(3) − σ|/σ of our third

order implied volatility approximation as a function of log-moneyness (k−x) and maturity t. The horizontal

axis represents log-moneyness (k − x) and the vertical axis represents maturity t. Ranging from darkest to

lightest, the regions above represent relative errors of < 0.1%, 0.1% to 0.2%, 0.2% to 0.3% and > 0.3%. The

exact implied volatility σ is obtained by computing the exact price u using (46) and then by solving (23)

numerically. Our third order implied volatility approximation σ(3) is computed by summing the terms in

(45). We use the following parameters: β = 0.5, δ = 0.4, x = 0.0.
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Figure 4: Implied volatility in the Quadratic local volatility model (48) is plotted as a function of log-

moneyness (k − x) for four different maturities t. The solid line corresponds to the exact implied volatility

σ, which we obtain by computing the exact price u using (50) and then by solving (23) numerically. The

dashed line (which is nearly indistinguishable from the solid line) corresponds to our third order implied

volatility approximation σ(3), which we compute by summing the terms in (49). In all four plots we use the

following parameters: L = 2.0, R = 15.0, δ = 0.02, x = 0.0. The relative error of the approximation σ(3) is

given in Figure 5.

38



t = 0.625 t = 1.25

-0.5 0.5

-0.0002

-0.0001

0.0001

0.0002

0.0003

0.0004

-1.0 -0.5 0.5 1.0

-0.0010

-0.0005

0.0005

0.0010

0.0015

t = 2.5 t = 5.0

-1.0 -0.5 0.5 1.0

-0.004

-0.002

0.002

0.004

0.006

-1.0 -0.5 0.5 1.0

-0.015

-0.010

-0.005

0.005

0.010

0.015

Figure 5: Relative error (σ(3) − σ)/σ of our third order implied volatility approximation is plotted as a

function of log-moneyness (k− x) for four different maturities t in the Quadratic local volatility model (48).

The exact implied volatility σ is obtained by computing the exact price u using (50) and then by solving

(23) numerically. Our third order implied volatility approximation σ(3) is computed by summing the terms

in (49). In all four plots we use the following parameters: L = 2.0, R = 15.0, δ = 0.02, x = 0.0.
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Figure 6: For the Quadratic local volatility model (48) we plot the absolute value of the relative error

|σ(3) − σ|/σ of our third order implied volatility approximation as a function of log-moneyness (k − x) and

maturity t. The horizontal axis represents log-moneyness (k−x) and the vertical axis represents maturity t.

Ranging from darkest to lightest, the regions above represent relative errors of < 1%, 1% to 2%, 2% to 3%

and > 3%. The exact implied volatility σ is obtained by computing the exact price u using (50) and then

by solving (23) numerically. Our third order implied volatility approximation σ(3) is computed by summing

the terms in (49). We use the following parameters: L = 2.0, R = 15.0, δ = 0.02, x = 0.0.
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Figure 7: Implied volatility the Heston model (51) is plotted as a function of log-moneyness (k − x) for

four different maturities t. The solid line corresponds to the exact implied volatility σ, which we obtain by

computing the exact price u using (53) and then by solving (23) numerically. The dashed line corresponds to

our third order implied volatility approximation σ(3), which we compute by summing the terms in (52). The

dotted line corresponds to the implied volatility expansion σFJL of Forde, Jacquier, and Lee (2012), which

is computed using (54). In all four plots we use the following parameters: κ = 0.33, θ = 0.3, δ = 0.44,

ρ = −0.45 x = 0.0, y = log θ. Note that our third order approximation of implied volatility σ(3) captures

the at-the-money level and slope of the true implied volatility, as well as the smile effect, which is seen at

large strikes. Relative errors for the two approximations σ(3) and σFJL are given in Figure 8.
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Figure 8: Relative error (σApprox − σ)/σ is plotted as a function of log-moneyness (k− x) for four different

maturities t using two implied volatility approximations in the Heston model (51). The dashed line corre-

sponds to the relative error of our third order implied volatility approximation: σApprox = σ(3). The dotted

line corresponds to the relative error of the implied volatility approximation of Forde, Jacquier, and Lee

(2012): σApprox = σFJL. The exact implied volatility σ is obtained by computing the exact price u using

(53) and then by solving (23) numerically. Our third order implied volatility approximation σ(3) is computed

by summing the terms in (52). The implied volatility expansion σFJL of Forde, Jacquier, and Lee (2012)

is computed using (54). In all four plots we use the following parameters: κ = 0.33, θ = 0.3, δ = 0.44,

ρ = −0.45 x = 0.0, y = log θ. Independent of the strike an maturity, the plots demonstrate that our third

order implied volatility expansion σ(3) provides a better approximation to the true implied volatility σ than

does the implied volatility expansion σFJL of Forde, Jacquier, and Lee (2012). This difference in quality

between the two implied volatility expansions is most notable at higher strikes and longer maturities.
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Figure 9: For the Heston model (51), we plot the absolute value of the relative error |σ(3) − σ|/σ of our

third order implied volatility approximation as a function of log-moneyness (k − x) and maturity t. The

horizontal axis represents log-moneyness (k − x) and the vertical axis represents maturity t. Ranging from

darkest to lightest, the regions above represent relative errors of < 1%, 1% to 2%, 2% to 3% and > 3%. The

exact implied volatility σ is obtained by computing the exact price u using (53) and then by solving (23)

numerically. Our third order implied volatility approximation σ(3) is computed by summing the terms in

(52). We use the following parameters: κ = 0.33, θ = 0.3, δ = 0.44, ρ = −0.45 x = 0.0, y = log θ.
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Figure 10: Implied volatility in the 3/2 stochastic volatility model (55) is plotted as a function of log-

moneyness (k−x) for four different maturities t. The solid line corresponds to the exact implied volatility σ,

which we obtain by computing the exact price u using (58) and then by solving (23) numerically. The dashed

line corresponds to our third order implied volatility approximation σ(3), which we compute by summing

the terms in (56). In all four plots we use the following parameters: κ = 0.5, θ = 0.2, δ = 1.00, ρ = −0.8

x = 0.0, y = log θ. Relative error for the approximation σ(3) is given in Figure 11.
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Figure 11: Relative error (σ(3) − σ)/σ of our third order implied volatility approximation is plotted as a

function of log-moneyness (k − x) for four different maturities t in the 3/2 stochastic volatility model (55).

The exact implied volatility σ is obtained by computing the exact price u using (58) and then by solving

(23) numerically. Our third order implied volatility approximation σ(3) is computed by summing the terms

in (56). In all four plots we use the following parameters: κ = 0.5, θ = 0.2, δ = 1.00, ρ = −0.8 x = 0.0,

y = log θ.
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Figure 12: For the 3/2 stochastic volatility model (55), we plot the absolute value of the relative error

|σ(3) − σ|/σ of our third order implied volatility approximation as a function of log-moneyness (k − x) and

maturity t. The horizontal axis represents log-moneyness (k−x) and the vertical axis represents maturity t.

Ranging from darkest to lightest, the regions above represent relative errors of < 1%, 1% to 2%, 2% to 3%

and > 3%. The exact implied volatility σ is obtained by computing the exact price u using (53) and then

by solving (23) numerically. Our third order implied volatility approximation σ(3) is computed by summing

the terms in (52). We use the following parameters:κ = 0.5, θ = 0.2, δ = 1.00, ρ = −0.8 x = 0.0, y = log θ.
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Figure 13: Implied volatility the SABR model (59) is plotted as a function of log-moneyness (k − x) for

four different maturities t. The solid line corresponds to the exact implied volatility σ, which we obtain by

computing the exact price u using (61) and then by solving (23) numerically. The dashed line corresponds

to our third order implied volatility approximation σ(3), which we compute using (60). The dotted line

corresponds to the implied volatility expansion σHKLW of Hagan, Kumar, Lesniewski, and Woodward (2002),

which is computed using (62). In all four plots we use the following parameters: β = 0.4, δ = 0.25, ρ = 0.0,

x = 0.0, y = −0.8. For the two shortest maturities, both implied volatility expansions σ(3) and σHKLW

provide an excellent approximation of the true implied volatility σ. However, for the two longest maturities,

it is clear that our third order expansion σ(3) provides a better approximation to the true implied volatility

σ than does the implied volatility expansion σHKLW of Hagan, Kumar, Lesniewski, and Woodward (2002).

Relative errors for the two approximations σ(3) and σHKLW are given in Figure 14.
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Figure 14: Relative error (σApprox − σ)/σ is plotted as a function of log-moneyness (k − x) for four dif-

ferent maturities t using two implied volatility approximations in the SABR model (59). The dashed

line corresponds to the relative error of our third order implied volatility approximation: σApprox =

σ(3). The dotted line corresponds to the relative error of the implied volatility approximation of

Hagan, Kumar, Lesniewski, and Woodward (2002): σApprox = σHKLW. The exact implied volatility σ is

obtained by computing the exact price u using (61) and then by solving (23) numerically. Our third order

implied volatility approximation σ(3) is computed using (60). The implied volatility expansion σHKLW of

Hagan, Kumar, Lesniewski, and Woodward (2002) is computed using (62). In all four plots we use the fol-

lowing parameters: β = 0.4, δ = 0.25, ρ = 0.0, x = 0.0, y = −0.8. For the two shortest maturities, both

implied volatility approximations σ(3) and σHKLW have a relative error of less than 1% for all (k−x) ∈ (−1, 1).

However, for t = 2.5, the relative error of σ(3) remains less than 1% for all (k − x) ∈ (−1, 1) whereas the

relative error of σHKLW ranges from 1% to 4%. The improvement marked by σ(3) is even more pronounced

at t = 5.0.
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Figure 15: For the SABR model (59), we plot the absolute value of the relative error |σ(3) − σ|/σ of our

third order implied volatility approximation as a function of log-moneyness (k − x) and maturity t. The

horizontal axis represents log-moneyness (k − x) and the vertical axis represents maturity t. Ranging from

darkest to lightest, the regions above represent relative errors of < 1%, 1% to 2%, 2% to 3% and > 3%. The

exact implied volatility σ is obtained by computing the exact price u using (61) and then by solving (23)

numerically. Our third order implied volatility approximation σ(3) is computed by summing the terms in

(60). We use the following parameters: β = 0.4, δ = 0.25, ρ = 0.0, x = 0.0, y = −0.8.
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