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Abstract

In this note we consider a semilinear Cauchy problem on a nilpotent Lie group. We
extend a classical result by Fujita about the global existence and the blow-up of
solutions.

1. Introduction. The aim of this note is to extend to the case of nilpotent Lie groups
some classical results [4], [15] concerning global existence and blow-up of solutions to a
semilinear Cauchy problem. We assume that (RN , ◦) is a Lie group with stratified Lie

algebra G =
s0⊕

j=1
Gj . Let {X1, . . . , Xm} be a basis of G1 and let L be the second order

differential operator in RN+1

L =
m∑

j=1

X2
j − ∂t. (1.1)

We refer to Section 2 where more precise hypotheses and additional definitions and no-
tations are given. We stress that L is an hypoelliptic operator since the vector fields
X1, . . . , Xm verify Hörmander condition (2.1). In this paper, we consider the following
semilinear Cauchy problem{

Lu = −up in RN×]0, T [
u(x, 0) = a(x) x ∈ RN .

(1.2)

Here p > 1, (x, t) denotes the point in RN × R and the initial data a is a continuous,
bounded, non-negative and non identically zero function. We study problem (1.2) via the
integral equation

u(x, t) =
∫

RN

Γ(x, t; y, 0)a(y)dy+

t∫
0

∫
RN

Γ(x, t; y, s)up(y, s)dyds ≡ u0(x, t)+Φu(x, t), (1.3)
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where Γ(·, ·; y, s) denotes the fundamental solution of L with pole in (y, s). More precisely,
we call a solution of (1.2) a function u ∈ C ∩ L∞(RN × [0, T [; [0,+∞[) which solves the
integral equation (1.3) in the strip RN × [0, T [. A function u which is a solution of (1.2)
for every positive T is said a global solution of (1.2). We remark that, actually, a solution
of (1.2) is a smooth positive function in RN×]0, T [ and it is a solution of (1.2) in the
classical sense.

In the following statement Q denotes the homogeneous dimension of (RN , ◦) (see
(2.3)). Our main result reads

Theorem 1.1 Let p∗ = 1 + 2
Q . If 1 < p ≤ p∗ then no global solution of (1.2) exists for

any initial data. If p > p∗ and if the initial data a is suitably small (see (3.13)) then there
exists a unique global solution to (1.2).

The simplest example of nilpotent stratified Lie group is (RN ,+). In this case L in (1.1)
is the heat operator and the theorem is a classical result by Fujita [4] for p 6= p∗ and
by Hayakawa [5] for p = p∗. Actually, our method is closely inspired by the papers [4],
[15] and it relies on the remarkable global estimates (2.7) and (2.8) of the fundamental
solution given by Varopoulos [13].

A classical example of non-abelian stratified Lie group is the Heisenberg group Hn =
(R2n+1, ◦). The group law in Hn is given by

(x, y, s) ◦ (x′, y′, s′) =
(

x + x′, y + y′, s + s′ +
1
2
(x · y′ − x′ · y)

)
,

for every (x, y, s), (x′, y′, s′) ∈ R2n+1. In this case

L =
(
∂x −

y

2
∂s

)2
+
(
∂y +

x

2
∂s

)2
− ∂t

is a degenerate parabolic operator in R2n+2. The homogeneous dimension of Hn is Q =
2n + 2.

Fujita’s results have been extended in several directions over the past years. In [7] and
[12] a wide survey of the related literature is presented. Recently, in [9], the author has
considered problem (1.2) with L in a class of Kolmogorov-Fokker-Planck type operators.

The paper is organized as follows. In Section 2 we present the necessary background
material concerning homogeneous structures on nilpotent stratified Lie groups. In Section
3 we prove Theorem 1.1.

Acknowledgments. This paper forms a part of my Tesi di Dottorato di Ricerca [10]. I am very
grateful to my adviser Professor E. Lanconelli for proposing the problem and for his guidance.

2



2. Notations and preliminary results. By reader’s convenience and in order to
present a reasonably self-contained exposition, in this section we briefly recall some known
facts about stratified Lie groups. More details about this topic can be found, for example,
in [10] and in [2], [11], [14].

Let (RN , ◦) be a Lie group and let (G, [, ]) denote the Lie algebra of the ◦-left-invariant
vector fields with the usual Lie bracket. We assume the two following hypotheses:

(H1) G is nilpotent of step s0, i.e. G(s0) 6= {0} and G(s0+1) = {0}, where G(1) ≡ G and
G(k+1) ≡ [G,G(k)] for k ≥ 1;

(H2) G is stratified, i.e. G admits a direct sum decomposition

G =
s0⊕

k=1

Gk

such that Gk+1 = [G1,Gk] for 1 ≤ k < s0;

For a fixed basis {X1, . . . , Xm} of G1, we consider the differential operator

L =
m∑

j=1

X2
j − ∂t.

L is an hypoelliptic operator since, by (H2), the vector fields X1, . . . , Xm verify the
classical Hörmander condition (see [6])

rank L(X1, . . . , Xm)(x) = N, ∀x ∈ RN , (2.1)

where L(X1, . . . , Xm) denotes the Lie algebra generated by X1, . . . , Xm.

We define in RN a distance d suitable for the study of L: the Carnot-Caratheodory
(or control) distance. Condition (2.1) allows to prove that it is always possible to join
two points x, y ∈ RN by a curve that stays tangent to the fields X1, . . . , Xm. Let us
denote by C(T ) the class of all absolutely continuous curves γ : [0, T ] −→ RN that almost
everywhere satisfy

γ′(t) =
m∑

j=1

aj(t)Xj(γ(t))

for some aj , 1 ≤ j ≤ m, a.e. continuous functions such that

m∑
j=1

a2
j (t) ≤ 1, ∀t ∈ [0, T ].

Then, for every x, y ∈ RN , we define

d(x, y) = inf{T | ∃γ ∈ C(T ) s.t. γ(0) = x, γ(T ) = y}.
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It was proved in [1] that d(x, y) < ∞ for every x, y ∈ RN and that, actually, d is a
distance. Moreover, for every compact subset K of RN , there exist constants C1, C2 such
that

C1‖x− y‖ ≤ d(x, y) ≤ C2‖x− y‖
1

s0 , ∀x, y ∈ K,

where ‖ ·‖ denotes the Euclidean norm. More details about distances associated to vector
fields can be found in [8].

We define a family of dilations (δλ)λ>0 of RN by setting, for 1 ≤ j ≤ s0 and λ > 0,

δλ(v) = λjv, ∀v ∈ exp(Gj).

For every λ > 0, δλ is a Lie automorphism of (RN , ◦). In particular, we have

δλ(x ◦ y) = δλ(x) ◦ δλ(y), ∀x, y ∈ RN , λ > 0.

Moreover, the differential dδλ ≡ Dλ defines a family of Lie automorphisms of G adapted
to its stratification, in the sense that

Dλ(X)(h) = λjX(δλ(h)) ∀X ∈ Gj , h ∈ RN , λ > 0. (2.2)

In particular the principal part of L is homogeneous of degree two w.r.t. (Dλ)λ>0.

For every λ > 0, the Jacobian determinant of δλ equals λQ where

Q =
s0∑

j=1

j · dimGj . (2.3)

Therefore it seems natural to call Q homogeneous dimension of RN w.r.t. (δλ)λ>0. Clearly
Q ≥ N .

There is a remarkable link between the control distance d and the homogeneous Lie
group structure on RN . Indeed, we have

d(h ◦ x, h ◦ y) = d(x, y) ∀x, y, h ∈ RN ,

d(0, δλ(x)) = λd(0, x) ∀x ∈ RN , λ > 0.

By setting
|x| = d(0, x), x ∈ RN , (2.4)

we define a homogeneous norm on RN , i.e. a function | · | ∈ C(RN ; [0,+∞[) such that

i) |x| = 0 if and only if x = 0;

ii) |x| = |x−1|;

iii) |δλ(x)| = λ|x|.

Moreover | · | satisfies the triangle inequality

|x ◦ y| ≤ |x|+ |y| ∀x, y ∈ RN . (2.5)
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We denote by
Bd(x, r) = {y | d(x, y) < r}

the d-ball of center x and radius r > 0. Since the Lebesgue measure is a Haar measure in
(RN , ◦), we have that

|Bd(x, r)| = rQ|Bd(0, 1)|. (2.6)

The following polar coordinates formula holds:

∫
Bd(0,r)

f(|x|)dx = Q|Bd(0, 1)|
r∫

0

f(ρ)ρQ−1dρ,

for every measurable function f .

Let Γ(·, ·) = Γ(·, ·; 0, 0) denote the fundamental solution to the operator L in (1.1)
with pole in (0, 0). Let us recall that Γ is a positive solution of Lu = 0 in RN×]0,+∞[,
Γ(·, t) = 0 for t ≤ 0 and ‖Γ(·, t)‖1 = 1 for every t > 0.

The following remarkable global estimates of Γ and XjΓ hold (see [13]): there exists
a positive constant C such that

1

Ct
Q
2

exp
(
−C

|x|2

t

)
≤ Γ(x, t) ≤ C

t
Q
2

exp
(
−|x|

2

Ct

)
, (2.7)

and

|XjΓ(x, t)| ≤ C

t
Q+1

2

exp
(
−|x|

2

Ct

)
, (2.8)

for every x ∈ RN and t > 0.

3. Proof of Theorem 1.1. The aim of this section is the proof of Theorem 1.1. The
following estimate of the solutions of (1.2) is the key step in proving the non-existence
part of Theorem 1.1.

Lemma 3.1 If u is a solution to (1.2) then

tup−1
0 (0, t) ≤ 1

p− 1
, ∀t ∈ [0, T [, (3.1)

where u0 is defined by

u0(x, t) =
∫

RN

Γ(x, t; y, 0)a(y)dy.

Proof. For fixed t, 0 < t < T , and ε > 0, we set

Vε(x, s) = Γ(0, t + ε;x, s), (x, s) ∈ RN × [0, t],
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and
Jε(s) =

∫
RN

Vε(x, s)u(x, s)dx s ∈ [0, t].

We claim that
d

ds
Jε(s) =

∫
RN

Vε(x, s)up(x, s)dx, s ∈]0, t[. (3.2)

Let us prove (3.2). We first observe that Vε ∈ C∞(RN × [0, t]; ]0,+∞[) and ‖Vε(·, s)‖1 = 1
for every s ∈ [0, t]. We also remark that X∗

j = −Xj , 1 ≤ j ≤ m, and Γ∗(x, t; y, s) =
Γ(y, s;x, t) is a fundamental solution of L∗, formal adjoint of L. Therefore

L∗Vε =

 m∑
j=1

X2
j + ∂s

Vε = 0 (3.3)

in RN×]0, t[.

Now, we consider a cut-off function ρ ∈ C∞
0 (R; [0, 1]) such that ρ(τ) = 1 for |τ | ≤ 1

and ρ(τ) = 0 for |τ | ≥ 2. We set, for n ∈ N,

χn(x) = ρ

(
|x|
n

)
= ρ

(∣∣∣δ 1
n
(x)
∣∣∣) , x ∈ RN , (3.4)

and
J (n)

ε (s) =
∫

RN

Vε(x, s)u(x, s)χn(x)dx, s ∈ [0, t].

In (3.4), |·| denotes the homogeneous norm defined in (2.4). By the monotone convergence
theorem, we have

lim
n→∞

J (n)
ε (s) = Jε(s), ∀s ∈ [0, t].

Next, we prove that d
dsJ

(n)
ε converges uniformly in [0, t] to the right hand side of (3.2) as

n goes to infinity. Indeed, we have

d

ds
J (n)

ε =
∫

RN

(u∂sVε + Vε∂su) χndx

=
∫

RN

Vεu
pχndx +

∫
RN

uχn∂sVε + Vεχn

m∑
j=1

X2
j u

 dx

≡ I
(n)
1 + I

(n)
2 .
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Using the upper estimate of the fundamental solution, we obtain that, for some positive
constant C,

0 ≤
∫

RN

Vε(x, s)up(x, s)dx− I
(n)
1 (s) (3.5)

≤ ‖u‖p
∞

∫
RN

C

(t + ε− s)
Q
2

exp
(
−C

|x|2

t + ε− s

)
(1− χn(x))dx −→ 0 (3.6)

by the dominated convergence theorem, as n tends to infinity uniformly in s.

Concerning I
(n)
2 , by (3.3) and by some integration by parts, we get

I
(n)
2 =

m∑
j=1

∫
RN

(uVεX
2
j χn + 2uXjVεXjχn)dx.

We observe that, by (2.2),

Xjχn(x) =
1
n

(Xjχ1)(δ 1
n
(x)). (3.7)

Thus, by the estimate (2.8), for some positive constant C, we have∣∣∣∣∣∣
∫

RN

u(x, s)XjVε(x, s)Xjχn(x)dx

∣∣∣∣∣∣ ≤ ‖u‖∞
∫

RN

C

ε
Q+1

2

exp
(
− |x|2

C(t + ε)

)
|Xjχn(x)| dx =

(by (3.7) and by changing variable of integration y = δ 1
n
(x))

=
CnQ−1‖u‖∞

ε
Q+1

2

∫
RN

exp
(
− |δn(y)|2

C(t + ε)

)
|(Xjχ1)(y)|dy

≤ CnQ−1‖u‖∞‖Xjχ1‖∞
ε

Q+1
2

∫
RN

exp
(
− |δn(y)|2

C(t + ε)

)
dy

(by changing the variable of integration x = δn(y))

=
1
n

C‖u‖∞‖Xjχ1‖∞
ε

Q+1
2

∫
RN

exp
(
− |x|2

C(t + ε)

)
dx

 .

In the same way one can handle the term∫
RN

uVεX
2
j χndx,
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in order to show that I
(n)
2 converges uniformly to 0 as n goes to infinity. This concludes

the proof of (3.2).

By means of Hölder’s inequality, from (3.2) we get

d

ds
Jε ≥ (Jε)p. (3.8)

Finally, integrating (3.8) on [0, t] and letting ε go to zero, we obtain (3.1).
�

Proof of Theorem 1.1.
[The case 1 < p < p∗] Let u be a solution of (1.2). It is non-restrictive to consider the
case a(0) > 0, so we can choose a0, δ > 0 such that a(x) ≥ a0 for x ∈ Bd(0, δ). Thus, for
every t ∈ [δ, T [, we have

u0(0, t) ≥ a0

∫
Bd(0,δ)

Γ(y−1, t)dy

(by the lower estimate of the fundamental solution)

≥ a0

C1t
Q
2

∫
Bd(0,δ)

exp
(
−C1

|y|2

δ

)
dy =

C2

t
Q
2

, (3.9)

for some positive constants C1, C2 depending only on L. Combining (3.1) with (3.9), one
has that, if 1 < p < p∗, then u cannot be a global solution.

[The case p = p∗] By contradiction, we suppose that there exists a global solution u to
(1.2). From (3.1) for p = p∗, by the lower estimate of the fundamental solution, we get∫

RN

exp
(
−C1

|y−1 ◦ x|2

t

)
a(y)dy ≤ C1t

Q
2 u0(x, t) ≤ C2, (3.10)

for some positive constants C1, C2 depending only on L. Thus, as t tends to infinity in
(3.10), by the monotone convergence theorem, we obtain

‖a‖1 ≤ C2.

Regarding u(·, t) as initial value, we have

‖u(·, t)‖1 ≤ C2, ∀t ≥ 0. (3.11)

For fixed α > 0, we set v(·, t) = u(·, t + α). Once more using the estimates of the
fundamental solution, it is not difficult to verify that v dominates a Gaussian function.
Precisely, there exists a positive constant C3 such that

v(x, t) ≥ 1

C3(t + α)
Q
2

exp
(
−C3|x|2

t + α

)
, ∀(x, t) ∈ RN×]0,+∞[. (3.12)

8



Since v is a solution to the integral equation (1.3), by (3.12), we have

‖v(·, t)‖1 ≥
∫

RN

t∫
0

∫
RN

Γ(x, t; y, s)

(
1

C3(s + α)
Q
2

exp
(
−C3|y|2

s + α

))1+ 2
Q

dydsdx

(by Tonelli’s theorem and since ‖Γ(·, t− s)‖1 = 1 for t > s)

= C
−1− 2

Q

3

t∫
0

(s + α)−
Q
2
−1

∫
RN

exp
(
−
(

1 +
2
Q

)
C3|y|2

s + α

)
dyds

(performing the change of variable ξ = δ
(s+α)−

1
2
(y) and by a straightforward computation)

= C4 log
(

t + α

α

)
,

for some C4 > 0. On the other hand, obviously, estimate (3.11) also holds for the function
v. Thus we have a contradiction.

[The case p > p∗] We are looking for a solution in the class of bounded, continuous
functions. Therefore the uniqueness of the solution follows from standard arguments. We
refer, for example, to [3], Chap.2.

Concerning the existence, we claim that there exist some constants δ0, α > 0 such
that, if the following estimate of the initial data holds

a ≤ δ0Γ(·, α) (3.13)

then a global solution u to (1.2) exists. Moreover

u(x, t) ≤ MΓ(x, t + α), ∀(x, t) ∈ RN × [0,+∞[,

for some constant M > 0.
Indeed, we first observe that, if (3.13) holds, then for every (x, t) ∈ RN × [0,+∞[,

u0(x, t) ≤ δ0

∫
RN

Γ(y−1 ◦ x, t)Γ(y, α)dy = δ0Γ(x, t + α). (3.14)

Here we have used the so-called reproduction property of the fundamental solution. Next,
we define the recurrent sequence (un)n∈N as follows

un+1 = u0 + Φun,

where Φu is as in (1.3). The sequence (un)n∈N is monotone increasing as it can be easily
verified by induction. We want to show that it is possible to choose δ0, α > 0 in (3.13) in
such a way that

un(x, t) ≤ MΓ(x, t + α), ∀(x, t) ∈ RN × [0,+∞[, n ∈ N, (3.15)
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for some positive constant M . If (3.15) holds then, by the monotone convergence theorem,
u = sup

n∈N
un is the global solution of (1.2).

In order to prove (3.15), we set δn+1 = δ0 + δp
n, n ∈ N, and we claim that, for suitable

α,
un(x, t) ≤ δnΓ(x, t + α), (x, t) ∈ RN × [0,+∞[, n ∈ N. (3.16)

Now, for small δ0, (δn)n∈N is convergent. Therefore (3.15) follows from (3.16). We prove
(3.16) by induction.

For n = 1, we have

u1(x, t) ≤δ0Γ(x, t + α) + δp
0

t∫
0

∫
RN

Γ(x, t; y, s)Γp(y, s + α)dyds

≤δ1Γ(x, t + α),

since, by estimate (2.7) of the fundamental solution,

ΦΓ(x, t + α) =

t∫
0

∫
RN

Γ(x, t; y, s)Γp(y, s + α)dyds

≤
t∫

0

∫
RN

Γ(x, t; y, s)Γ(y, s + α)

(
C

(s + α)
Q
2

)p−1

exp
(
−(p− 1)|y|2

C(s + α)

)
dyds

(by the reproduction property of Γ)

≤ Γ(x, t + α)

+∞∫
0

(
C

(s + α)
Q
2

)p−1

ds ≤ Γ(x, t + α), (3.17)

since p > p∗ and by choosing α sufficiently great.
Finally, supposing that (3.16) holds for a fixed n ∈ N, we have

un+1(x, t) = u0(x, t) + Φun(x, t)
≤ δ0Γ(x, t + α) + δp

nΦΓ(x, t + α)

(by (3.17))
≤ δn+1Γ(x, t + α).

This proves (3.16) and thus concludes the proof of the theorem.
�
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