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Abstract We propose a general class of non-constant volatility models with depen-
dence on the past. The framework includes path-dependent volatility models such
as that by Hobson and Rogers and also path dependent contracts such as options of
Asian style. A key feature of the model is that market completeness is preserved.
Some empirical analysis, based on the comparison with standard local volatility and
Heston models, shows the effectiveness of the path dependent volatility. In particular,
it turns out that, when large market movements occur, the tracking errors of Heston
minimum-variance hedging are up to twice the hedging errors of a path dependent
volatility model.

Keywords Option pricing · Kolmogorov equations · Volatility modeling

JEL Classification CO2

Mathematics Subject Classification (2000) 35K65 · 91B28

P. Foschi
Dipartimento Matemates, Università di Bologna,
Viale Filopanti 5, 40126 Bologna, Italy
e-mail: paolo.foschi2@unibo.it

A. Pascucci (B)
Dipartimento di Matematica, Università di Bologna,
Piazza di Porta S. Donato 5, 40126 Bologna, Italy
e-mail: pascucci@dm.unibo.it

123



P. Foschi, A. Pascucci

1 Introduction

In the Black–Merton–Scholes option pricing theory (Black and Scholes 1973;
Merton 1973), the underlying asset is modeled as a geometric Brownian motion whose
dynamic under the risk neutral measure is given by

dSt = r St dt + σ St dWt . (1.1)

In (1.1) r denotes the locally riskless interest rate and σ is the volatility. Under the
assumption that both the parameters are constant, model (1.1) leads to closed for-
mulas for plain vanilla options. Nowadays the Black and Scholes formula is widely
used in practice, to the extent that prices of call and put options are usually quoted in
terms of the so-called Black and Scholes implied volatility. However it is also appar-
ent that the prices at which derivatives are traded are inconsistent with the assump-
tion of a constant volatility: indeed especially after the market crash of 1987, the
strong empirical evidences of the stochastic nature of the volatility stimulated the
development of more realistic models. The overall aim of a non-constant volatility
model is twofold: on one hand, to produce prices of plain vanilla options which agree
with the observed volatility surfaces and to price exotic options consistently; on the
other hand, to find the correct replicating strategy in order to improve the hedging
performance.

The first task is usually not difficult to achieve: from a theoretical point of view, any
model which depends on a sufficiently large number of parameters can be calibrated
to fit (or at least approximate) market prices. But it should be emphasized that any
calibration procedure depends on the quantity and quality of the available data: in
particular, since only option prices corresponding to a finite number of maturities and
strikes are quoted, generally the fitting of prices cannot usually be done in a unique
way. Then the essential and hard problem is to determine the “correct” hedging strat-
egy: indeed it is well-known that the hedge parameters are strongly model-dependent
even for call and put options (cf. Davis 2004; Cont 2006).

In a local volatility (henceforth LV) model the volatility is supposed to be a deter-
ministic function of the time and current price of the underlying asset. The main
advantages are that the market is complete and in principle it is possible to spec-
ify the volatility function in such a way that option prices given by the model agree
with market prices. On the other hand the empirical study by Dumas et al. (1998)
shows that, for hedging purposes, the local volatility underperforms an ad-hoc use of
the Black and Scholes model (which consequently should be preferable for its parsi-
mony). The conclusion in Dumas et al. (1998) is that, as far as one aims to preserve
market completeness, a volatility model depending on the whole past trajectory of the
asset (instead of the current price alone) should be investigated.

The first results in this direction were obtained by Hobson and Rogers who pro-
posed in 1998 a volatility model defined in terms of the difference between the current
price and an exponentially weighted average of past prices. Precisely, in a Wiener
space with one-dimensional Brownian motion W , we denote by St the stock price and
by Mt and Dt , respectively, the trend and the deviation processes defined by
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Mt = λe−λt

t∫

−∞
eλs Zsds, λ > 0 (1.2a)

and

Dt = Zt − Mt , (1.2b)

where Zt = log(e−r t St ) is the log-discounted price process. The function eλs in (1.2)
is called the average weight: the parameter λ describes the rate at which past prices
are discounted.

Hobson and Rogers assume that St is an Itô process, solution to the stochastic
differential equation (SDE)

dSt = µ(Dt )St dt + σ(Dt )St dWt . (1.3)

In (1.3), µ and σ > 0 are deterministic functions satisfying usual hypotheses in order
to guarantee that the system of SDEs (1.2)–(1.3) has a solution. A key feature of the
model is that the process (St , Dt ) is Markovian (cf. Lemma 3.1 in Hobson and Rogers
1998). Thus, the price U of an option with maturity T , is given by

U (St , t) = e−r(T −t)K u(r(T − t) + log(St/K ), Mt − log K , T − t),

where u = u(x, y, t) is the solution to the following Cauchy problem:

σ 2(x − y)

2
(∂xx u − ∂x u) + (x − y)λ∂yu − ∂t u = 0, in R

2 × [0, T ], (1.4)

u(x, y, 0) = (ex − 1)+ for (x, y) ∈ R
2.

(1.5)

Path dependent volatility models are supported by the empirical evidence about
the dependence of the volatility with respect to the deviation D: Fig. 1 plots
implied volatilities against adjusted log-moneyness for options on the S&P 500 index
in the years 2003–2004. The implied volatilities are grouped by ranges of values
of D. It is immediate to observe on the figure that implied volatilities increase as
the D decreases (see also the empirical analysis in Platania and Rogers 2005, Sect. 2).
This enlightens the well-known negative correlation between volatility and market
prices.

We emphasize that no additional source of risk has been added in the Hobson and
Rogers (henceforth, HR) model: therefore, unlike many other non-constant volatility
models, the market is complete and the arbitrage argument which underlies the Black
and Scholes theory is preserved. While keeping the market completeness, the HR
model is able to approximate observed volatility surfaces (see the analysis in Hobson
and Rogers 1998 and Di Francesco et al. 2006).
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Fig. 1 Effects of the deviation from the trend on marked implied volatilities. The implied volatilities are
plotted against adjusted log-moneyness log(er(T −t)St /K )/

√
T − t and grouped by different ranges of Dt

as shown by the bar in the top of each panel. Data from the S&P 500 index options, years 2003–2004

We also remark that a path dependent volatility incorporates information on the past
and then, once it is calibrated to the market, the model somehow “knows” the behaviour
of investors in different market circumstances and can also keep into account of the
positive or negative trend of the asset. For instance, unlike standard local or stochastic
volatility models, in case of a sudden fall of the market a path dependent volatility
model is designed to automatically increase the level of volatility in order to undertake
the market dynamics in a more natural way. This is the reason why it seems that path
dependent volatility models do not need to be continuously re-calibrated (which is
a well-known disadvantage of local volatility models) and have better out-of-sample
performances (see analysis in Foschi and Pascucci 2005).

Thanks to these fine features, the HR model raised some interest among academics
and practitioners: the problem of parameters calibration (λ in the average weight and
the volatility function σ ) was studied by Platania and Rogers (2005), Figà-Talamanca
and Guerra (2006). Di Francesco and one of the authors studied the numerics of the
model: we explicitly remark that the PDE in (1.4) is not uniformly parabolic even if
it is hypoelliptic by Hörmander’s theorem (Hörmander 1967). In particular the con-
vergence of finite difference schemes does not follow by standard arguments but it is
proved in Di Francesco as a consequence of some a priori estimates for solutions to
(1.4)–(1.5) provided in Di Francesco and Pascucci (2005).

Recently the free boundary and optimal stopping problems for American options
in the HR model were studied in Pascucci (2007) and Di Francesco et al. (2007). An
extension to the framework of term-structure modeling was given by Chiarella and
Kwon (2000). Hahn et al. (2007) considered the HR dynamic in a portfolio optimi-
zation problem. Hubalek et al. (2004) proposed a generalization to better fit market
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smiles. The robustness of the HR model with respect to the data and parameters was
studied by Blaka Hallulli and Vargiolu (2005). Trifi (2006) shows that the HR model
is the continuous time limit of an ARCH-type model.

Next we mention some of the weak points of the HR model. As noted in Blaka
Hallulli and Vargiolu (2005), some mathematical and economical concerns arise from
the definition of the deviation process D in (1.2). Indeed D involves the path of the
underlying asset on all its past ]-∞, t[. The requirement of an infinite horizon in the
past obviously raises practical problems since only finite time series are available so
that misspecifications in the model are unavoidable. To overcome this problem, in
Blaka Hallulli and Vargiolu (2005) the following extension of the HR model has been
proposed: the volatility is specified as

σ(St ) = σ(St , Yt , St−τ )

where

Yt =
t∫

t−τ

e−λ(t−v) f (Sv)dv

where f is a strictly monotone function and τ is a given delay parameter (see also
Gushchin and Küchler 2004). Unfortunately the conclusion in Blaka Hallulli and
Vargiolu (2005) is that if τ is finite then the previous model cannot admit a Markovian
realization so that it loses any appeal.

As a further remark, the average weight λe−λt in (1.2) could not be flexible enough
to take into account of the special properties of the underlying process that may arise,
for instance, from stagionality effects, fusions of stocks, capitalization changes. This
will also be verified later in Sect. 4.

In this paper we focus on these problems: we propose a simple generalization of the
HR model and introduce a new class of models for asset prices with volatility depen-
dent on the past. Our idea is to consider a more flexible deviation process defined in
terms of a generic average weight, possibly corresponding to a finite time horizon.
We call this the path dependent volatility (henceforth PDV) model. The notion of
PDV model is sufficiently general to include the HR model and also path dependent
derivatives such as Asian style options.

The paper is organized as follows. In Sect. 2, we introduce the PDV volatility and
prove some results about the absence of arbitrage and completeness of the market in
the framework of PDEs and martingales theories. In Sect. 3, we analyze some suit-
able transformations of the pricing PDE which seem to be more convenient for the
numerical approximation. In Sect. 4, the path dependent volatility model is validated
against market data and the performance compared with those of standard HR, LV
and Heston stochastic volatility models. Section 5 contains conclusions and further
research directions.
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2 Path dependent volatility

In order to introduce the PDV model, we consider an average weight ϕ which is a non-
negative, piecewise continuous and integrable function on ]-∞, T ]. We also assume
that ϕ is strictly positive in [0, T ] and we set

�(t) =
t∫

−∞
ϕ(s)ds. (2.1)

We remark explicitly that ϕ may have compact support: in that case the domain of
integration in (2.1) is bounded. Moreover we denote by r the risk free rate and Bt = er t .

Next we define the average process as

Mt = 1

�(t)

t∫

−∞
ϕ(s)Zsds, t ∈ ]0, T ],

or equivalently

dMt = ϕ(t)
�(t) (Zt − Mt ) dt, (2.2)

where Zt = log(e−r t St ) denotes the log-discounted price process whose dynamics,
under the physical measure, is assumed to be

dZt = µ(Zt − Mt )dt + σ(Zt − Mt )dWt , (2.3)

and µ, σ are bounded, Hölder continuous functions and σ is uniformly strictly positive.
Under these assumptions, it is known that (2.3)–(2.2) has a unique weak solution and
the couples (Z , M) and (Z , D) are Markovian processes. Typical specifications of
the average weights are given by the following examples:

– ϕ(t) = eP(t) max{Q(t), 0} where P, Q are suitable polynomial functions: the HR
model corresponds to P(t) = λt and Q(t) = 1;

– ϕ(t) = 1 for t ∈ [0, T ] and null elsewhere: this corresponds to the geometric
average of an Asian option;

– ϕ piecewise linear function.

Next we consider a self-financing strategy

dVt = αt dSt + βt dBt ,

and prove that the market is arbitrage free and complete. Precisely in the sequel we
restrict ourselves to a Markovian setting: we set

αt = α(t, Zt , Mt ), βt = β(t, Zt , Mt )
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where α, β are suitably regular, deterministic functions and we denote by

Vt = α(t, Zt , Mt )St + β(t, Zt , Mt )Bt (2.4)

the value of the portfolio. Moreover we set

f (t, Zt , Mt ) = B−1
t Vt (2.5)

the discounted value of V . The next theorem characterizes the self-financing property.

Theorem 2.1 The following conditions are equivalent:

1. the portfolio in (2.4) is self-financing;
2. the function f in (2.5) solves the partial differential equation

σ 2(z − m)

2
(∂zz f − ∂z f ) + ϕ(t)

�(t)
(z − m)∂m f + ∂t f = 0 (2.6)

in ]0, T [×R
2, and the following relations hold

α(t, z, m) = e−z∂zf(t, z, m), β(t, z, m) = f(t, z, m) − ∂zf(t, z, m). (2.7)

Proof By the self-financing condition, it holds

d f = −r f dt + B−1
t (αdSt + βdBt ) =

(since βdBt = rβBt dt = r(Vt − αSt )dt)

= αB−1
t (dSt − r St dt) =

(since, by Itô formula, dSt = Bt eZt

(
dZt +

(
r + σ 2

2

)
dt

)
)

= αeZt

(
dZt + σ 2

2
dt

)
. (2.8)

On the other hand, by Itô formula and (2.2), we get

d f (t, Zt , Mt ) =
(

∂t f + σ 2

2
∂zz f + ϕ

�
(Zt − Mt )∂m f

)
dt + ∂z f dZt . (2.9)

Comparing (2.8) and (2.9), by the uniqueness of the representation of an Itô process,
we infer

∂z f (t, Zt , Mt ) = α(t, Zt , Mt )e
Zt . (2.10)

Now we recall that, since by assumption ϕ is strictly positive on [0, T ], the condi-
tions of the classical Hörmander’s theorem are satisfied and the process (Zt , Mt ) has
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a strictly positive density on R
2 for t > 0 (we also refer to the paper Di Francesco

and Pascucci (2005) by Di Francesco and one of the authors for a direct proof of this
result). Then (2.7) readily follows from (2.10). Analogously, by equating the dt-parts
of (2.8) and (2.9) and using (2.10), we obtain the PDE (2.6).

We do not prove the inverse implication which is straightforward. ��
Next we prove that in the PDV model the market is arbitrage-free and complete.

Corollary 2.2 For any contingent claim H = H(ST , MT ), with H ∈ L1
loc(R

2) and
H ≥ 0, there exists a unique self-financing and admissible1 strategy replicating H.
The strategy is determined by formulas (2.7) where f is the unique solution of the
Cauchy problem for Eq. (2.6) with final condition

f (T, z, m) = e−rT H(ez, m). (2.11)

In particular, the market is arbitrage-free and complete:

Ht := ert f (t, Zt , Mt ) (2.12)

is the arbitrage price of the claim H.

Proof The thesis is a direct consequence of Theorem 2.1 and of the existence and
uniqueness results for degenerate parabolic equations of Kolmogorov type [which
include (2.6)] proved by Di Francesco and Pascucci (2005) and by Polidoro (1995). ��

The previous results can also be proved by using the martingale theory. Note that
the dynamic of the stock price St is given by

dSt =
(

r + µ(Dt ) + σ 2(Dt )

2
St

)
dt + σ(Dt )St dWt

where the deviation process Dt = Zt − Mt satisfies the SDE

dDt =
(
µ(Dt ) − ϕ

�
Dt

)
dt + σ(Dt )dWt .

Then we set

θ(Dt ) = σ(Dt )

2
+ µ(Dt )

σ (Dt )

and consider the process

W̃t = Wt +
t∫

0

θ(Ds)ds.

1 Such that the value of the portfolio is non-negative.

123



Path dependent volatility

Under suitable conditions on the coefficients (cf. for instance the Appendix in Hobson
and Rogers 1998) the position

dQ

dP
= exp

⎛
⎝−1

2

t∫

0

θ2(Ds)ds −
t∫

0

θ(Ds)dWs

⎞
⎠

defines a probability measure Q on the filtration F t of W , which is equivalent to P
and such that W̃ is a Q-Brownian motion. Then under Q we have

dSt = r St dt + σ(Dt )St dW̃t

so that the discounted price e−r t St is a Q-martingale and the arbitrage price in (2.12)
of the contingent claim H can be written as

Ht = e−r(T −t)E Q (H | Ft ) .

3 Some convenient transformation

For an European call with strike K , the pricing PDE (2.6) is coupled with the final
condition

f (T, z, m) = e−rT (ez − K )+.

By the change of variables

f (t, z, m) = K u(T − t, z − log K , m − log K ) (3.1)

we obtain the equivalent Cauchy problem

σ 2(x−y)

2
(∂xx u − ∂x u) + ϕ(T − τ)

�(T − τ)
(x − y)∂yu − ∂τ u = 0,

τ ∈ ]0, T [, (x, y) ∈ R
2, (3.2)

u(0, x, y) = e−rT (
ex − 1

)+
, x ∈ R. (3.3)

Note that problem (3.2)–(3.3) is independent of K and therefore it allows to price all
call options with different strikes in a single run.

In view of the numerical approximation, we also consider the following further
change of variables:

t = g(τ ) := − log �(T − τ).

If u(τ, x, y) = v(g(τ ), x, y) then

∂τ u = ϕ(T − τ)

�(T − τ)
∂tv
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and Eq. (3.2) is equivalent to

a(x − y, t) (∂xxv − ∂xv) + (x − y)∂yv − ∂tv = 0, (3.4)

for t ∈ ] − log �(T ),− log �(0)[ and (x, y) ∈ R
2, where

a(x − y, t) = σ 2(x − y)

2 ϕ
�

(g−1(t))
.

For instance, in the HR model, ϕ
�

≡ λ and g(t) = λ(t − T ) so that the PDE has to be
solved for t ∈ [−λT, 0].

It is clear that in the case of constant volatility function σ in (2.3), the model reduces
to the classical Black and Scholes framework independently of ϕ. In the case of an
Asian option, the following change of variables

f (t, x, η) = u

(
t, x,

η

�(T − t)

)
, y = η

�(T − t)

seems to be convenient. Indeed we have

∂η f = 1

�(T − t)
∂yu, ∂t f = ϕ(T − t)

�2(T − t)
η∂yu + ∂t u,

and therefore u is solution to (3.2) if and only if

σ 2

2
(∂xx f − ∂x f ) + ϕ(T − τ)x∂η f − ∂t f = 0, t ∈ ]0, T [, (x, y) ∈ R

2. (3.5)

Note that ϕ ≡ 1 for a geometric average Asian option. We also remark that the explicit
expression of the fundamental solution to Eq. (3.5), even for a generic ϕ, is known
(cf. Barucci et al. 2001).

4 Empirical tests

In this section the PDV model is calibrated to real market data and compared with
some standard non-constant volatility models, namely: the standard HR (Hobson and
Rogers 1998), Dupire LV (Dupire 1997) and Heston (Heston 1993) stochastic volatility
models. For the calibration of each model we use a least squares approach.

We begin by defining the weight functionϕ(t) in terms of g′(t) = ϕ(T −t)/�(T −t)
(using the notation introduced in Sect. 3). In particular we choose g′(t) as a piecewise
linear function defined by

g′(t) =
K∑

i=0

αi si (t),
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β0 = 1/2, β1 = 1, β2 = 1/2
and β3 = 1

β3

1
2β0

where

s0(t) = s̃(t/δ)χ[0,δ) + χ(−∞,0),

sK (t) = s̃(t/δ − K )χ[T −δ,T ) + χ[T,∞),

si (t) = s̃(t/δ − i), for i = 2, . . . , K − 1

with δ = T/K ,

s̃(t) = (t + 1)χ[−1,0) + (1 − t)χ[0,1),

and χ is the indicator function. That is, si (t)(i = 2, . . . , K − 1) are the hat functions
centered at iδ with support [(i − 1)δ, (i + 1)δ], s1(t) and sK (t) are such that g′(t) is
constant outside [0, T ] as shown in Fig. 2.

The volatility function is defined as

σ 2(d) =
⎧⎨
⎩

1
2 max(σ 2

min + αr (d − d0)
2, 2σ 2

Max), if d ≥ d0

1
2 max(σ 2

min + αl(d − d0)
2, 2σ 2

Max), if d < d0.
(4.1)

An example of σ is shown in Fig. 3. Overall, the number of parameters to be calibrated
is K + 5: σ 2

min, αl , αr , d0 to specify the volatility function σ , and α0, α1, . . . , αK to
specify the weight ϕ.

The HR model used in the comparison is defined by the SDEs (1.2) and (1.3) where
σ is specified in (4.1). The original HR model, which has αl = αr and d0 = 0, is
slightly simpler. In this way we can compare the PDV and HR models on the same
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basis and test the added value of the new weighting scheme. Our previous investi-
gations Foschi and Pascucci (2005) have shown that a more general specification of
the volatility function does not considerably improve the fitting of the HR model to
market prices.

In the LV model, St is solution of the SDE

dSt = µt St dt + σ(St , t)St dWt . (4.2)

As shown by Dupire (1997), the LV function σ(St , t) can be theoretically computed
by knowing the option price as a function of strike and maturity. In practice, we chose
a piecewise linear function σ with knots at the observed strikes and maturities. We
calibrate σ by a least squares approach.

In the stochastic volatility model by Heston, St and σ 2
t , the price and the squared

volatility processes, respectively, are given, in the risk neutral measure, by the solution
of the SDE

dSt = rt St dt + σt St dŴt (4.3)

dσ 2
t = κ(σ 2∞ − σ 2

t )dt + γ σt

(
ρdŴt +

√
1 − ρ2d ˆ̂Wt

)
(4.4)

where dŴt and d ˆ̂Wt are two independent Brownian motions on the risk-neutral prob-
ability measure. The approach used to compute the prices of European options is the
computational method of Carr and Madan which uses a Fourier inversion technique
(Heston 1993; Carr and Madan 1999). In the experiments, the σ∞, the long-term vola-
tility, κ , the mean reversion speed, γ , the volatility of volatility, and ρ, the correlation,
are inferred from market prices.

4.1 Empirical results

The dataset consists in closing prices of options on futures on the FTSE-100 index
quoted at Euronext in the period March 22–May 19, 2006 and maturities on June,
September, December 2006 and March, June, September and December 2007. For
each day and each maturity the dataset contains the underlying future price [with val-
ues in the range 5,675–6,307], the Call and Put closing prices for strikes 4,025–6,725
and the corresponding implied volatilities. The underlying values have been corrected
for dividends, in order to have a common underlying for all the expirations and then
option prices are recomputed by using the dataset’s implied volatilities. Thus, after
the adjustment the underlying has a null drift in the equivalent martingale measure,
that is the interest and dividend rates are null. An example of the implied volatility
surface is shown in Fig. 4.

In the first set of experiments, the parameters of the four models are daily calibrated
to market prices by a least squares fitting of market prices as in Dumas et al. (1998)
and Foschi and Pascucci (2005). An example of the absolute pricing errors of the four
models on a specific date is reported in Fig. 5.
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Fig. 5 Pricing error surfaces for HR, Heston, PDV and Dupire models on March 31, 2006. Value of the
underlying is 5,964.5

A resume of the performances on each are reported in Figs. 6 and 7. These figures
plot for each day and for each model the residual mean squared errors (RMSE) and
residual mean squared percentage errors (RMSPE). In the computation of the RMSPE
options with price smaller than 5 have been discarded. As can be seen from Fig. 6 the
fitting of the LV model is, as expected, always almost perfect; that of standard HR
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Fig. 6 Root mean squared pricing errors of for each day in the test period
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Fig. 7 Root mean square of percentage errors in pricing
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May, 2006)
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Fig. 9 Evolution of Heston parameters with daily calibration on the test period

model is at least twice that of the remaining two models. The Heston model is slightly
better than the PDV; however the reverse happen when considering relative errors
(cf. Fig. 7).

In order to study the stability of the parameters on different samples, their evo-
lution is reported in Figs. 8, 9 and 10 for the HR, Heston and PDV models. Due to
its large number we do not report the evolution of Dupire’s local volatilities, but it is
well known they are not stable due to its over-parametrization and ill-posedness (cf.
Cont and BenHamida 2005). The parameters for the HR model are quite stable until
near the end of the sample, where the model flattens to standard Black and Scholes,
αl , αr 	 0. This change of regime happens also for the Heston and PDV models, but
a bit more in advance. These two models show spikes in the series of parameters on
the same day (cf. the graph of ρ in Fig. 9 and of αr in Fig. 10).

This behaviour of the three models can be explained by looking at the time series
of the underlying index which is shown in Fig. 11. Near the end of the sample, exactly
on May 12, the index level drops significantly: consequently the option market reacts
and the parameters of the three models try to adapt to market movements.

As a final and more significant experiment we compared the hedging performances
of the methods by considering the tracking error of the replicating portfolio suggested
by each model w.r.t. the evolution of each single call. Since a local volatility model is
generally over-determined and can be calibrated in different ways (see, for instance,
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Fig. 10 Evolution of parameters for the PDV model, with daily calibration on the test period

Fig. 11 Closing prices for the
FTSE-100 index on the period
22 March – 19 May, 2006
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Cont and BenHamida 2005) each one leading to different hedge ratios, we do not
consider the LV hedging performances that seem not to be significant.

As a first qualitative comparison, in Fig. 12 we plot the surface of the differences
between the Delta of each model and the sticky Delta, that is the Black and Scholes’
Delta computed at the corresponding implied volatility.

For each model we proceed as follows. At the i th day, time ti , the model has been
calibrated to the market cross-section of prices. Then, for a given expiry T and a given
strike K we consider the portfolio composed by a short position on one Call Cti and a
long on the replicating portfolio Vti = αi Sti + βi Bti as in (2.4). That is, the portfolio
�ti = Vti − Cti , which has null value in case of perfect replication. Then, the next
day the portfolio has value given by αi Sti+1 +βi Bti+1 −Cti+1 , the corresponding profit
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Fig. 12 Difference between Delta and sticky Delta for HR, Heston and PDV models on 31 March, 2006.
Value of the underlying is 5,964.5

Fig. 13 Hedging error against
strike for maturity 16 June, 2006.
The errors are computed on the
period 22 March–19 May, 2006
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Fig. 14 Hedging error against
strike for maturity date 16 June,
2006. The errors are computed
on the period 22 March–5 May,
2006
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and losses are accumulated and a new portfolio �ti+1 is built. Recalling that we are
working on a dividend and interest rate free setting, the total profits and losses on the
period [t1, tn] are given by

C1 − Cn +
n−1∑
i=1

αi (Sti+1 − Sti ).

This procedure has been repeated for each model, for each strike, for the expira-
tions 16 June, 2006 and 15 December, 2006 and for the periods 22 March–5 May and
22 March–19 May. The two periods correspond to quiet and nervous market situa-
tions, respectively (see Fig. 11).These performance results are reported on Figs. 13,
14, 15 and 16. Standard delta-hedging have been used for HR and PDV models, while
minimum-variance delta hedging is used for Heston stochastic volatility model
(Alexander and Nogueira 2006).

Figure 13 shows the replication error of the hedging strategies until about one month
to expiration and after the fall of May 12. The HR model is the better for at-the-money
options and the Heston model is superior for out-of-the-money options. The PDV
model is between the two, but in both the cases is near to the best and the overall
performance is thus preferable to the other two.

The performances in a quiet market scenario reported in Fig. 14 are a bit mixed.
In this experiment the overall performances of Heston are slightly better than those of
PDV and HR models.

Fig. 15 Hedging error against
strike for maturity 15 December,
2006. The errors are computed
on the period 22 March–19 May,
2006
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Fig. 16 Hedging error against
strike for maturity 15 December,
2006. The errors are computed
on the period 22 March–5 May,
2006
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Similar, but less marked, results are reported in Figs. 15 and 16 where far from expi-
ration options are considered. In the nervous scenario the HR model is more protective
trying to limiting the losses, Heston model is not able to do that and the PDV model
lies between the two. On the contrary, in the quiet scenario, Heston has a slightly better
performance but the difference between the three models is not too strong.

5 Conclusions

In this paper we propose a generalization of the Hobson and Rogers model and intro-
duce a new class of models for asset prices with path dependent volatility (PDV).
Our idea is to consider a flexible weighting scheme, possibly corresponding to a finite
time horizon in the past. The model is complete since no new sources of randomness
are introduced and unique preference-independent prices for contingent claims are
defined.

In order to evaluate the performance of the PDV hedging strategies compared with
those produced by HR and Heston models, we test them in different market scenarios.
We consider the market reversal in May 2006 and examine the behaviours in the quiet
and nervous market scenarios before and after that reversal. It turns out that, regardless
of option maturity, in the quiet scenario the Heston model has a slightly better perfor-
mance, while in the nervous one, the HR model outperforms the others. In particular,
after sudden price movements the tracking errors of Heston minimum-variance delta
hedging are up to twice those of the HR model. The PDV model lies between the two,
but it is always near the best one. Resuming, the PDV model results to be flexible
enough to follows market movements without loosing the protective behaviour of the
HR model.

As a final remark, we note that market completeness can also be considered as a
drawback of HR and PDV models, since it can be barely considered a realistic assump-
tion. Indeed in a PDV model options are in principle redundant in that they can be
perfectly replicated by delta-hedging in the underlying asset. Then in this framework
trading strategies that hedge against volatility risk (for instance, vega-hedging using
traded options) are meaningless from a theoretical point of view. An obvious idea is
to investigate jump-diffusion or truly stochastic volatility models in the framework of
PDV and we aim to come back to this point in a forthcoming paper.
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