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1. Introduction

Several extensions of the Black-Scholes model [3] have appeared in the literature (see,
for a survey, Epps [6]) aiming to capture the characteristic observed patterns of the im-
plied volatility given by the market. Here we are concerned with the seemingly promising
model proposed by Hobson and Rogers [8] who assume that the volatility is a determin-
istic function of the history of the spot process. The merit of the model is twofold: first,
it is potentially able to reproduce smiles, skews of different directions, and volatility term
structures. Second, it preserves the completeness of the market since no exogenous source
of risk is added, so that the classical arbitrage pricing and hedging theory apply. In par-
ticular, there are unique preference-independent prices for claims given in terms of the
expectation under an equivalent martingale measure or as solutions to a PDE in three
variables. Indeed incorporating the dependence on past prices entails an additional state
variable on which the derivative’s price depends: then, as in the case of Asian or look-back
options, the associated PDE is of degenerate parabolic type.

In this paper we focus on the analytical and numerical treatment of the Hobson-
Rogers model in the framework of Kolmogorov PDEs. Degenerate equations of Kolmog-
orov type naturally arise in the problem of pricing path-dependent contingent claims.
The simplest significant example is given by Asian-style derivatives: if we assume that the
stock price St is a standard geometric Brownian motion with volatility σ , then the price
U of a geometric average Asian option is a solution to the equation
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∂tU + rS∂SU +
1
2
σ2S2∂SSU + log(S)∂AU = rU , (1.1)

where A denotes the path-dependent variable and r is the risk-free rate (see, e.g., [2, 18]).
By an elementary change of variables, (1.1) can be reduced to the following PDE in R3:

�u := ∂xxu+ x∂yu− ∂tu= 0. (1.2)

Although (1.2) is strongly degenerate due to the lack of diffusion in the y-direction,
Kolmogorov [9] constructed an explicit fundamental solution to (1.2) of Gaussian type,
which is a C∞ function outside the diagonal (cf. (2.11)). Consequently (1.2) has a closed
form solution and is hypoelliptic, that is, every distributional solution to (1.2) is a C∞

function.
Starting from these considerations, two of the authors proved in [4] theoretical results

about the convergence of non-Euclidean finite difference schemes for the pricing PDE in
the Hobson & Rogers model. The aim of this paper is to refine and improve those results:
we recall that the lack of a homogeneous structure for the Hobson & Rogers PDE was
one of the main concerns in [4] (see the comments after Remark 3.7 below). In the next
section we propose an ad hoc change of variables which solves that problem: as a major
benefit we obtain efficient finite-differences schemes. Secondly, we study the discretiza-
tion of the PDE in a bounded domain and we show that no boundary conditions on
the y-variable are required to uniquely solve the related Cauchy-Dirichlet problem. This
is a considerable advantage since there are no clear financial motivations for imposing
conditions on the option price u(x, y, t) for fixed x. In the forthcoming paper [7], these
techniques are used to test the performance of the Hobson & Rogers model on a set of S
& P 500 options data.

This paper is organized as follows: in the next section, we briefly introduce the the-
ory of Kolmogorov PDEs and describe their link with uncertain volatility models. Then,
in Section 3 we consider the numerical solution to the option pricing problem in the
Hobson-Rogers model by finite-differences schemes: our main goal is to provide some
new non-Euclidean schemes which seem to be particularly efficient when compared with
the classical ones. Finally in Section 4 we present some empirical results.

2. Hobson-Rogers model and Kolmogorov equations

In this section we cast the Hobson & Rogers model in the framework of Kolmogorov
PDEs. In order to make the presentation self-contained we briefly review some of the
main results regarding this class of evolutionary equations.

For a fixed maturity T and a probability space (Ω,�,P) with one-dimensional Brow-
nian motion B, we denote by St the underlying price and by Dt the deviation of prices
from the trend, defined by

Dt = Zt −
∫ +∞

0
λe−λτZt−τdτ, λ > 0, (2.1)
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where Zt = log(e−rtSt). In (2.1), the parameter λ amounts to the rate at which past prices
are discounted. In [8] Hobson and Rogers assume that St is an Itô process satisfying

dSt = μ
(
Dt
)
Stdt+ σ

(
Dt
)
StdBt, (2.2)

where μ and σ are deterministic functions and σ is positive. Existence and uniqueness
of the solution (St,Dt) to the system of SDEs (2.1)-(2.2) are guaranteed by the usual
Lipschitz assumptions on μ and σ .

The main advantage of the Hobson-Rogers model is that no exogenous source of risk
has been included. Then the complete market setting is preserved and usual no-arbitrage
arguments provide unique option prices. In particular the derivative’s price can be rep-
resented as the conditional expectation of the payoff under the (unique) P-equivalent
risk-neutral measure. On the other hand, the deviation (2.1) enters as an additional state
variable on which the option price depends. Then the drawback is that the augmented
PDE associated to the model is of degenerate type. Indeed, let

UT−t = f
(
St,Dt, t

)
(2.3)

denote the price of a contingent claim at time T − t. By the Feynman-Kac formula the
function f satisfies the PDE in R3:

σ2(D)
2

(
S2∂SS f + ∂DD f + 2S∂DS f − ∂D f

)
+ rS∂S f − λD∂D f − ∂t f = r f . (2.4)

In the case of a European put option with strike K , we also have the condition

f (S,D,0)= (K − S)+. (2.5)

Equation (2.4) is of degenerate type since the quadratic form associated with its second-
order part is represented by the singular matrix

σ2

2

(
S2 S
S 1

)
. (2.6)

Nevertheless Hobson and Rogers remark that under the further hypothesis that σ is a
smooth (C∞) function, Hörmander’s theorem on hypoelliptic PDEs applies and problem
(2.4)-(2.5) has a classical solution.

Here we make the additional remark that (2.4) belongs to the noteworthy subclass of
Hörmander PDEs today called of Kolmogorov or Ornstein-Uhlenbeck type. For this class
a very satisfactory theory has been developed and many sharp results are available even
under few regularity assumptions (see [10] for an exhaustive survey on this topic). We
aim to show that the theory of Kolmogorov PDEs provides the natural framework for the
study of the Hobson-Rogers model from both analytical and a numerical viewpoints.

For what follows, it is convenient to rewrite (2.4) in the following form:

a
(
∂xxu− ∂xu

)
+ x∂yu− ∂τu= 0, (2.7)
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where u= u(x, y,τ) is determined by the transformation

f (S,D, t)= Ke−rtu
(

log
(
S

K

)
+ rt,e−λt

(
log
(
S

K

)
+ rt−D

)
,1− e−λt

)
, (2.8)

and we have set

a(x, y,τ)= σ2
(
x− y/(1− τ)

)
2λ(1− τ)

, τ ∈ [0,1− e−λT
]
. (2.9)

By this change of variables, problem (2.4)-(2.5) is equivalent to the forward Cauchy prob-
lem for (2.7) in the strip R2× [0,1− e−λT] with initial condition

u(x, y,0)= (1− ex
)+

, (x, y)∈R2. (2.10)

Transformation (2.8) seems to be more convenient than the one proposed by Hobson and
Rogers (cf. [8, Section 4.2]). This will be apparent in the next section where we investigate
the numerical approximation. From a qualitative viewpoint, we note that the derivative
∂xu in (2.7) does not affect the main properties of the equation since it is, roughly speak-
ing, “dominated” by the second-order part ∂xxu. Then we may consider (2.7) as a per-
turbation of the Kolmogorov-type equation (1.2) with constant diffusion term. We recall
that Kolmogorov [9] constructed explicitly a fundamental solution to (1.2). Precisely, we
have

Γ�(z;ζ)=
√

3
2π(t− τ)2

exp
(
− (x− ξ)2

4(t− τ)
− 3

(t− τ)3

(
y−η− t− τ

2
(x+ ξ)

)2)
, (2.11)

for t > τ and Γ�(z;ζ) = 0 for t ≤ τ is the fundamental solution to � with pole at ζ =
(ξ,η,τ) and evaluated in z = (x, y, t). We also recall that operator � has the remarkable
property of being invariant with respect to the non-Euclidean left translations in the law

(x, y, t)∗ (ξ,η,τ)= (x+ ξ, y +η− xτ, t+ τ), (2.12)

and homogeneous of degree two with respect to the dilations

δs(x, y, t)= (sx,s3y,s2t
)
, s > 0, (2.13)

in the sense that

�
(
u◦ δs

)= s2(�u)◦ δs. (2.14)

Then it is natural to introduce in R3 the δs-homogeneous norm

∥∥(x, y, t)
∥∥= (x6 + y2 + |t|3)1/6

, (2.15)

and the following notion of �-Hölder continuity. Let α∈]0,1[ and Q be an open subset
of R3; we say that a function u : Q → R is �-Hölder continuous of order α (in short,
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u∈ Cα
�(Q)) if

|u|α,Q := sup
Q
|u|+ sup

z,ζ∈Q
z 	=ζ

∣∣u(z)−u(ζ)
∣∣∥∥ζ−1∗ z

∥∥α (2.16)

is finite. We remark explicitly that

Cα(Q)⊆ Cα
�(Q)⊆ Cα/3(Q), (2.17)

where Cα(Q) denotes the space of Hölder continuous functions in the usual sense (see,
e.g., [11]). Moreover we say that u∈ C2+α

� (Q) if u∈ Cα
�(Q) and

sup
Q

∣∣∂xu∣∣+
∣∣∂xxu∣∣α,Q + |Yu|α,Q <∞, (2.18)

where Yu= x∂yu− ∂tu is the first-order part of (1.2).

Remark 2.1. Roughly speaking, one should consider ∂x and Y , respectively, as a first- and
second-order derivatives intrinsic to �. These are the main directional derivatives of the
degenerate (1.2) in the sense that they allow to recover the other lacking directions. For
instance, ∂y can be obtained as the commutator of ∂x and Y :

∂y = ∂xY −Y∂x, (2.19)

therefore it should be considered as a third-order derivative in the intrinsic sense.

In some way � plays for (2.7) a role analogous to that of constant-coefficients oper-
ators in the classical theory of elliptic or parabolic PDEs (actually, a constant coefficient
operator is nothing more than a translation-invariant operator). Then many results can
be extended from (1.2) to (2.7) by perturbation arguments. In particular the next theo-
rem, proved in [5, 15], ensures the existence of a unique classical solution to the Cauchy
problem for (2.7) under minimal regularity assumptions.

Theorem 2.2. Assume that a ∈ Cα
�(R2×]0,T[) for some α ∈]0,1[, T > 0, and a ≥ c for

some positive constant c. Then (2.7) has a fundamental solution Γ and for every bounded
φ ∈ C(R2), the function

u(x, y, t)=
∫
R2
Γ(x, y, t;ξ,η,0)φ(ξ,η)dξ dη (2.20)

belongs toC2+α
� (R2×]0,T[) and is the unique bounded, classical solution to the Cauchy prob-

lem for (2.7) with initial condition u(x, y,0)= φ(x, y).

We also recall that global estimates of Γ (and its derivatives) in terms of Γ� are proved
in [12, 16]; then sharp estimates of the solution u in (2.20) and of its derivatives are
available. In particular we recall the following Gaussian-type estimate of Γ:

Γ(z;ζ)≤ CΓc�(z;ζ), ∀z,ζ ∈R3, (2.21)
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where C, c are positive constants and Γc� denotes the (explicitly known) fundamental
solution to the Kolmogorov operator c∂xxu+ x∂yu− ∂tu.

The non-Euclidean differential-geometrical structure naturally associated to the Kol-
mogorov equation (1.2) also gives some insight for the numerical approximation of the
solution. We recall that in the paper by Barucci et al. [2] the price of a geometric average
Asian option is represented in terms of the solution to the Kolmogorov equation (1.2)
and the non-Euclidean finite-differences scheme proposed in [17] is used for the numer-
ical solution. In the next section we adapt this approach to the Hobson-Rogers model and
perform a comparison among different numerical methods.

We close this section recalling that nonlinear Kolmogorov equations have been con-
sidered for pricing options with memory feedback by Peszek [14] and for a stochastic
differential utility problem by Antonelli and Pascucci [1], Pascucci and Polidoro [13].

3. Finite-difference schemes for the Hobson-Rogers model

We consider the numerical solution of the option pricing PDE (2.4) by finite-difference
methods. For simplicity we assume r = 0. A standard approach consists in approximating
the derivatives ∂S, ∂D, and ∂t by finite differences: we refer to this as an Euclidean finite-
difference scheme. In view of Remark 2.1, it seems very natural to study the Kolmogorov
equation (2.7) by approximating its main directional derivatives ∂x and Y = x∂x − ∂t
rather than the usual Euclidean derivatives: we call this a Kolmogorov finite-difference
scheme. It turns out that this last scheme allows a better comprehension of the discrete
structure of the equation and provides very efficient approximations: we refer to the
next section for a comparison of numerical methods. We recall that Kolmogorov finite-
difference schemes for (1.2) were first proposed by Polidoro and Mogavero [17] and ap-
plied to the Hobson-Rogers model by Di Francesco and Pascucci [4].

Solving options pricing PDEs by finite-difference methods requires the discretization
of the equation in a bounded region. Therefore a primary question arises about the choice
of the initial-boundary conditions. This specification seems to be unavoidable in the case
of an Euclidean finite-difference scheme and it is usually made relying upon financial con-
siderations. On the contrary, as we will see in Section 3.1, it is possible to derive bound-
ary conditions for Kolmogorov schemes in bounded domains by purely analytical con-
siderations. This is the first apparent advantage of Kolmogorov schemes over Euclidean
schemes.

3.1. A Euclidean finite-difference scheme. We consider problem (2.4)-(2.5) for the price
of a European put option with strike K . We solve (2.4) in the bounded cylinder

]
Ke−μ,Keμ

[×]− ν,ν[×]0,T[, (3.1)

for some μ,ν > 0, subject to the following set of initial-boundary conditions: if f denotes
the solution, we obviously impose the initial condition

f (S,D,0)= (K − S)+, for (S,D)∈ ]Ke−μ,Keμ
[×]− ν,ν[. (3.2)
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Moreover we assume

f
(
Ke−μ,D, t

)= K , f
(
Keμ,D, t

)= 0, for (D, t)∈]− ν,ν[×]0,T[. (3.3)

Finally, let pBS(S,σ ,T − t,K) denote the Black-Scholes price of a put option with time to
expiry T − t, strike K , underlying price S and volatility σ ; we assume that

f (S,±ν, t)= pBS
(
S,σ(±ν),T − t,K

)
for (S, t)∈ ]Ke−μ,Keμ

[×]0,T[. (3.4)

We consider the following transformation which slightly simplifies the problem:

f (S,D, t)= Ku
(

log
(
S

K

)
,D,λt

)
. (3.5)

Then (2.4) (for r = 0) becomes

Lu := σ2(y)
2λ

(
∂θθu− ∂θu

)− y∂yu− ∂tu= 0, (3.6)

for u= u(x, y, t) defined in the cylinder

Q =]−μ,μ[×]− ν,ν[×]0,λT[. (3.7)

In (3.6) ∂θu= ∂xu+ ∂yu denotes the directional derivative of uwith respect to θ = (1,1,0).
The initial-boundary conditions for u read as follows: the initial condition (3.2) cor-

responds to

u(x, y,0)= (1− ex
)+

, (x, y)∈ [−μ,μ]× [−ν,ν]. (3.8)

Condition (3.3) becomes

u(−μ, y, t)= 1, u(μ, y, t)= 0, (y, t)∈]− ν,ν[×]0,λT[. (3.9)

Moreover, in view of the classical Black-Scholes formula, (3.4) corresponds to

u(x,±ν, t)=Φ
(
σ2(±ν)t/(2λ)− x

σ(±ν)
√
t/λ

)
− exΦ

(−σ2(±ν)t/(2λ)− x

σ(±ν)
√
t/λ

)
, (3.10)

for (x, t) ∈]− μ,μ[×]0,λT[, where Φ(·) is the standard normal cumulative distribution
function. We explicitly remark that the function u is independent of K , therefore by (3.5)
it provides option prices for different strikes.

We consider an explicit finite-differences scheme on the uniform grid

G= {(ix,ky ,nt
) | i,k,n∈ Z}, (3.11)

and we approximate L in (3.6) by the following discrete operator:

LGu(z)= σ2(y)
2λ

(
D2

θ,x
u(z)−Dθ,xu(z)

)− yDy,xu(z)−Dt,t u(z), (3.12)
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where z = (x, y, t) and

D2
θ,x

u(z)= u
(
x+x, y +x, t

)− 2u(z) +u
(
x−x, y−x, t

)
2

x
,

Dθ,xu(z)= u
(
x+x, y +x, t

)−u
(
x−x, y−x, t

)
2x

,

Dy,xu(z)= u(z)−u
(
x, y− sign(y)x, t

)
sign(y)x

,

Dt,t u(z)= u
(
x, y, t+t

)−u(z)
t

.

(3.13)

Operator LG is well defined on the grid G withx =y and approximates L in the sense
that

∥∥Lu−LGu
∥∥
L∞(Q∩G) ≤ C

(x +t
)
, (3.14)

for some positive constant C depending on the L∞-norms of σ , ∂3
θu, ∂4

θu, ∂2
yu, and ∂2

t u on
Q. Note that, in view of Remark 2.1, ∂4

θ has to be considered as a derivative of order twelve
(in the intrinsic sense) whose existence is guaranteed assuming that σ has derivatives of
order ten �-Hölder continuous functions.

By standard arguments, we can prove the following convergence result.

Theorem 3.1. Let u be the solution to the Cauchy-Dirichlet problem for (3.6) in the cylinder
Q subject to conditions (3.8)–(3.10). Let uG denote the solution to the correspondent discrete
problem for LG in Q∩G with the same initial-boundary conditions. Assume Δx ≤ 2 and the
following stability condition:

t ≤ λ

ληΔx + supσ2
2

x. (3.15)

Then

∥∥u−uG
∥∥
L∞(Q∩G) =O

(x
)
, asx −→ 0+. (3.16)

Remark 3.2. An implicit method can be developed by using the backward differences

u(z)−u
(
x, y, t−t

)
t

(3.17)

instead of the forward differences Dt,t u(z) in LG. Even if this approach has the advantage
of being unconditionally stable (i.e., the time step t can be chosen independently of
x), however it is very computationally expensive. Indeed the numerical computation
of uG requires, at each time step, the solution of a linear system of order (2I + 1)2, where
I = 2μ/x. This becomes onerous in terms of memory and computational time when the
spatial grid spacing diminishes.
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3.2. An explicit Kolmogorov finite-difference scheme. We approximate problem (2.7)–
(2.10) by a Cauchy-Dirichlet problem for

�u := a
(
∂xxu− ∂xu

)
+ x∂yu− ∂τu= 0 (3.18)

with a defined in (2.9), in the cylinder

Q = {(x, y,τ) | |x| < μ, |y| < ν, 0 < τ < τ0
}

, (3.19)

where μ,ν > 0 and τ0 = 1− e−λT . By transformation (2.8), this corresponds to the initial-
boundary value problem for (2.4) in the twisted region

{
(S,D, t) | Ke−μ < S < Keμ, 0 < t < T , −νeλt < D− log

(
S

K

)
< νeλt

}
. (3.20)

In the sequel we denote by

∂PQ= ∂Q∩ {(x, y,τ) | τ < τ0
}

(3.21)

the parabolic boundary of Q.
We consider an explicit Kolmogorov scheme on the uniform grid

G= {(ix,ky ,nτ
) | i,k,n∈ Z}, (3.22)

and we discretize � in (3.18) by approximating the main directional derivatives as fol-
lows:

∂xxu(z) ∼ D2
x
u(z)= u

(
x+x, y, t

)− 2u(z) +u
(
x−x, y,τ

)
2

x
, (3.23a)

∂xu(z) ∼ Dxu(z)= u
(
x+x, y,τ

)−u
(
x−x, y,τ

)
2x

, (3.23b)

Yu(z) ∼ Yτ u(z)= u(z)−u
(
x, y− xτ ,τ +τ

)
τ

. (3.23c)

Position (3.23c) forces to set

y =xτ , (3.24)

since in this case the discrete operator defined by

�Gu= a
(
D2
x
u−Dxu

)
+Yτ u= 0 (3.25)

is well defined on the grid G. Moreover �G approximates � in the sense that

∥∥�u−�Gu
∥∥
L∞(Q∩G) ≤ C

(2
x +τ

)
, (3.26)

for some positive constant C depending on the L∞-norms of a, ∂3
xu, ∂4

xu, and Y 2u on Q.
Therefore estimate (3.26) involves the intrinsic derivatives of u up to the fourth order: this
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should be compared with the analogous result for the Euclidean scheme in the previous
section.

We first show a general result about the convergence of the scheme (3.23) and then
address the problem of the specification of the initial-boundary conditions for (3.18). By
Remark 3.5, it is possible to assume that the vertices (±μ,±ν,0) belong to the grid G so
that the discrete Cauchy-Dirichlet problem is well posed. Following [17], we prove the
following.

Lemma 3.3 (maximum principle). Assume Δx ≤ 2 and the stability condition

τ ≤ 2
x

2supa
. (3.27)

Let v be defined in G∩Q such that

�Gv ≥ 0, in G∩Q, (3.28)

v ≤ 0, in G∩ ∂PQ. (3.29)

Then v ≤ 0 in G∩Q.

Proof. Denoting

vni,k = v
(
ix,ky ,nτ

)
, (3.30)

we have that (3.28) is equivalent to

vni,k ≤ vn−1
i,k+i

(
1− 2an−1

i,k+i
τ

2
x

)
+ an−1

i,k+i
τ

2
x

((
1− x

2

)
vn−1
i+1,k+i +

(
1 +

x

2

)
vn−1
i−1,k+i

)
. (3.31)

The thesis follows by an elementary inductive argument. �

By means of the maximum principle it is standard to prove the following convergence
result.

Theorem 3.4. Let u (resp., uG) denote the solution to the (discrete) Cauchy-Dirichlet prob-
lem for (3.18) (resp., (3.25)) in Q (resp., Q∩G) with given initial-boundary conditions.
Assume the stability condition (3.27). Then

∥∥u−uG
∥∥
L∞(Q∩G) =O

(2
x

)
, asx −→ 0+. (3.32)

Remark 3.5. It is easy to choose μ, ν, τ0, and a grid G such that conditions (3.24) and
(3.27) hold and the vertices (±μ,±ν,0) belong to G. Suppose that μ and τ0 are given: we
fix a natural number m and set ν = mμτ0. Moreover we put x = μ/I and τ = τ0/N
where I ,N ∈N and N ≥ 2τ0 supa/2

x so that the stability condition holds. Finally, we set
y =xτ . Then we have

G∩Q = {(ix,ky ,nτ
) | |i| ≤ I , |k| ≤mNI , 0≤ n≤N

}
. (3.33)
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We now consider the problem of the specification of the initial-boundary conditions.
Clearly we impose the initial condition

u(x, y,0)= (1− ex
)+

, for x ∈ [−μ,μ], y ∈ [−ν,ν]. (3.34)

Moreover we set

u(−μ, y,τ)= 1, u(μ, y,τ)= 0, for y ∈]− ν,ν[, τ ∈ ]0,τ0
[
. (3.35)

A reason for conditions (3.35) is given by the following proposition whose proof is post-
poned to the end of the section.

Proposition 3.6. Let u be the bounded solution to the Cauchy problem (2.7)–(2.10). Then

lim
x→−∞u(x, y,τ)= 1, lim

x→+∞u(x, y,τ)= 0, (3.36)

uniformly in (y,τ)∈R× [0,τ0].

Finally we show a simple way to avoid giving conditions on the lateral boundary {y =
±ν} of Q. Let us consider the grid in (3.33). We first remark that for a solution v to
�Gv = 0 in G∩Q, the value vni,k only depends on vn−1

i,k+i and vn−1
i±1,k+i (see (3.31)). More

generally, it is straightforward to determine the domain of dependence of the set of values

Vm =
{
vNi,k | |i| ≤ I , |k| ≤ (m− 1)NI

}
. (3.37)

Indeed, if we put

k(n) =max
{|k| |Vm depends on vni,k

}
, (3.38)

then, by (3.31), we have

k(n) = k(n+1) + I = ··· = k(N) + (N −n)I = I(mN −n). (3.39)

In particular k(0) = mNI , therefore Vm is independent on the value of v at the lateral
boundary y = ±ν. Let us note that this is true for every refinement of the grid, that is,
for every choice of N and I . In view of these remarks, in order to approximate the so-
lution u(x, y,τ0) for |y| ≤ (m− 1)μτ0, conditions on the lateral boundary {y = ±ν} are
superfluous. Alternatively, one can solve (3.18) in the prism

{
(x, y,τ) | |x| < μ, 0 < τ < τ0, |y| < μ

(
mτ0− τ

)}
, (3.40)

rather than in the whole cylinder Q.

Remark 3.7. Although attractive from an analytical viewpoint, the explicit Kolmogorov
scheme has a high computational cost. Indeed the stability condition (3.27) combined
with assumption (3.24) implies y = O(3

x) as x → 0. Thus, for instance, in a grid
with 102 x-nodes we have about 104 τ-nodes and 106 y-nodes. For this reason,
in the next section, we propose a first-order implicit scheme which combines the fine
analytical properties of Kolmogorov schemes with the numerical efficiency.
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Let us recall that an explicit Kolmogorov difference scheme for the Hobson-Rogers
model was first proposed in [4]. The starting point was the following PDE given in [8,
Section 4.3]:

σ2(x− y)
2

(
∂xxu− ∂xu

)
+ (x− y)∂yu− ∂tu= 0. (3.41)

Following the same approach used in [4], one may approximate the first-order term ∂θu,
where θ = (0,x− y,−1), by the difference

u(z)−u
(
z+Δtθ

)
Δt

. (3.42)

This approach has the drawback that the two points z and z +Δtθ cannot belong both
to a uniform grid G like in (3.22): this is essentially due to the lack of a homogeneous
structure for (3.41) analogous to that of the Kolmogorov equation (1.2). To overcome
this problem, Di Francesco and Pascucci propose to approximate ∂θu by the “corrected
difference”

ỸGu(x, y, t)= u(x, y, t)−u
(
x, y +Δt

(
x−Δx

[
y/Δx

])
, t−Δt

)
Δt

. (3.43)

It is shown in [4, Lemma 3.1] that ỸG is well defined on G when Δy = ΔxΔt. On the other
hand, the “correction” introduces an additional error of order Δx. Specifically, they show
that

∣∣∂θu(x, y, t)− ỸGu(x, y, t)
∣∣≤ Δx

∥∥uy

∥∥∞ +Δt

∥∥Y 2u
∥∥∞. (3.44)

Here, since transformation (2.8) leads to a homogeneous Kolmogorov equation, we con-
siderably improve the results in [4].

We close this section by proving Proposition 3.6.

Proof of Proposition 3.6. We only study the first limit, the second one being analogous.
We note that for every ε > 0 there exists a positive constant R= R(ε,τ0) such that

∫ +∞

−δ

∫
R
Γ(x, y,τ;ξ,η,0)dηdξ ≤ ε, (3.45)

for every δ > 0, x ≤−δ−R, and (y,τ)∈R× [0,τ0]. Indeed, by estimate (2.21), we have

∫ +∞

−δ

∫
R
Γ(x, y,τ;ξ,η,0)dηdξ ≤ C

∫ +∞

−δ

∫
R
Γc�(x, y,τ;ξ,η,0)dηdξ = (3.46)

(integrating in the variable η over R and denoting by Γc the fundamental solution of the
heat equation c∂xx − ∂τ)

C
∫ +∞

−δ
Γc(x,τ;ξ,0)dη ≤ ε (3.47)

if x ≤−δ−R and R is suitably large. This proves (3.45).



Marco Di Francesco et al. 13

The thesis is a simple consequence of (3.45) and the fact that, by Theorem 2.2,
∫∫
R2
Γ(x, y,τ;ξ,η,0)dξ dη = 1, ∀x, y ∈R, τ > 0. (3.48)

Indeed, by the representation formula (2.20) and by (3.48), we have

1≥ u(z)=
∫∫
R2
Γ(z;ξ,η,0)(1− ξ)+dηdξ≥ (3.49)

(if δ is suitably large)

(1− ε)
∫ −δ
−∞

∫

R

Γ(z;ξ,η,0)dηdξ ≥ (1− ε)2, (3.50)

by (3.48) and (3.45) if x ≤−δ−R. �

3.3. An implicit Kolmogorov finite-difference scheme. In view of the previous section,
it is quite simple to derive an implicit Kolmogorov finite-difference scheme for (3.18). We
set Q as in (3.19) and consider a grid as in Remark 3.5. Then using the same notations of
Section 3.2, the discrete operator

�̂Gv
n
i,k = ani,k

(
vni+1,k − 2vni,k + vni−1,k

2
x

− vni+1,k − vni−1,k

2x

)
+
vn−1
i,k+i− vni,k
τ

(3.51)

is well defined on G (remember thaty =xτ) and approximates � in the sense that
∥∥�u−�Gu

∥∥
L∞(Q∩G) ≤ C

(x +τ
)
. (3.52)

We may consider the same set of initial-boundary conditions used in the previous section:
in particular it is straightforward to show that conditions at the lateral boundary {y =
±ν} do not affect the value of the solution in the prism (3.40).

Finally, by means of the following maximum principle it is not difficult to prove a

convergence result for �̂ analogous to Theorem 3.4.

Lemma 3.8 (maximum principle). Suppose that

�̂Gv ≥ 0, in G∩Q, (3.53)

v ≤ 0, in G∩ ∂PQ. (3.54)

Then v ≤ 0 in G∩Q.

Proof. By contradiction, suppose that M =maxG∩Q v = vni,k > 0. Then denoting

An
i,k = 1 + 2ani,k

τ

2
x

, (3.55)

by (3.53), we have

MAn
i,k = vni,kA

n
i,k ≤ vn−1

i,k+i + ani,k
τ

2
x

((
1− x

2

)
vni+1,k +

(
1 +

x

2

)
vni−1,k

)
≤ (3.56)
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(since vni,k is a maximum of v)

MAn
i,k, (3.57)

and we deduce that vn−1
i,k+i = vni+1,k = vni−1,k =M. If necessary, we repeat this argument until

we reach a point belonging to the parabolic boundary: then we clearly have a contradic-
tion and the lemma is proved. �

Remark 3.9. Notice that (vni,k)|i|≤I can be computed independently for different values of
k. Indeed, by (3.51), only points on the same line y = kx are related by the operator

�̂G at time t = nτ . Thus, the computation of vni,k, for |i| ≤ I and |k| ≤ J , reduces to the
solution of 2J + 1 independent tridiagonal linear systems of order 2I + 1 and it allows for
a highly efficient implementation (see also Remark 3.2).

4. Comparison of numerical approximations

We compare the numerical performances of the finite-difference schemes introduced in
the previous section. Specifically we consider the explicit Euclidean and implicit Kol-
mogorov schemes introduced in Sections 3.1 and 3.3, respectively.

In all the experiments, we have chosen

σ(D)= η
√

1 + εD2∧M (4.1)

as proposed in [8], where the parameters have been fixed to ε = 5, and λ = 1. Further-
more, we have chosen a unit strike K = 1, a zero interest rate r = 0, and a domain as in
(3.1) with μ= 2.0. For the Euclidean method, the time step length is chosen to ensure sta-
bility, while for the Kolmogorov scheme we have found experimentally that the number
of steps N = 50 is good compromise between precision and execution speed.

Tables 4.1–4.4 report numerical results for the prices of standard and digital European
put options computed by the two methods when S0 = K = 1.0 (at the money) and D0 =
0.1. The values computed by the Euclidean and the Kolmogorov methods are shown in
the second and fifth columns, respectively. The execution times in seconds of the two
methods are reported in the fourth and last columns and refer to experiments performed
on an Intel Pentium IV single CPU of 1.80 Ghz of clock.

Values computed by a Monte Carlo method are reported in the captions of the tables.
In order to produce figures stable up to the fourth significant digit, 3 · 107 replications
have been performed and this took about 34 minutes of CPU time. Relative percentage
errors of the results produced by the two finite difference methods are shown in columns
3 and 6.

Tables 4.1 and 4.3 report prices of options with small volatility and short time to ma-
turity, that is, η = 0.2 and T = 0.25. We also tested the robustness of the methods by
considering the more computationally cumbersome problem of high volatility (μ= 0.7)
and a bigger time to maturity (T = 0.75): the results are showed in Tables 4.2 and 4.4.

The data presented in the tables confirm the theoretical results presented in the pre-
vious sections. In particular, notice that in the experiments with discontinuous payoff

reported in Tables 4.3 and 4.4, the Euclidean method does not converge to the correct
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Table 4.1. Price of a European put option, with S0 = K = 1.0, D0 = 0.1, T = 0.25, and η = 0.2. Refer-
ence value: 0.0406.

I
Euclidean Kolmogorov

Price Err % Exec. time Price Err % Exec. time

50 0.0406 0.00 0.2 0.0399 1.72 4.9

100 0.0409 0.73 1.6 0.0406 0.00 19.5

150 0.0409 0.73 7.0 0.0406 0.00 43.8

200 0.0409 0.73 19.6 0.0407 0.24 81.8

250 0.0409 0.73 93.7 0.0407 0.24 134.3

Table 4.2. Price of a European put option, with S0 = K = 1.0, D0 = 0.1, T = 0.75, and η = 0.7. Refer-
ence value: 0.2656.

I
Euclidean Kolmogorov

Price Err % Exec. time Price Err % Exec. time

50 0.2699 1.62 5.1 0.2657 0.03 4.9

100 0.2690 1.28 52.2 0.2658 0.07 19.5

150 0.2687 1.17 230.8 0.2659 0.11 43.8

200 0.2686 1.13 706.7 0.2659 0.11 81.8

250 0.2685 1.09 1635.5 0.2659 0.11 134.3

Table 4.3. Price of a European digital put option, with S0 = K = 1.0, D0 = 0.1, T = 0.25, and η = 0.2.
Reference value: 0.5279.

I
Euclidean Kolmogorov

Price Err % Exec. time Price Err % Exec. time

50 0.5520 4.56 0.2 0.4460 15.51 4.9

100 0.5116 3.08 1.6 0.4879 7.57 19.5

150 0.4983 5.60 7.0 0.5013 5.03 43.8

200 0.4917 6.85 19.6 0.5081 3.75 81.8

250 0.4878 7.59 93.7 0.5121 2.99 134.3

Table 4.4. Price of a European digital put option, with S0 = K = 1.0, D0 = 0.1, T = 0.75, and η = 0.7.
Reference value: 0.6552.

I
Euclidean Kolmogorov

Price Err % Exec. time Price Err % Exec. time

50 0.4678 28.60 5.1 0.6409 2.18 5.1

100 0.4640 29.18 60.6 0.6485 1.02 20.8

150 0.4628 29.36 243.5 0.6510 0.64 47.2

200 0.4622 29.45 706.7 0.6522 0.45 84.9

250 0.4619 29.50 1635.5 0.6530 0.33 148.5
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price due to the influence of the boundary data. On the other hand, the Kolmogorov
scheme demonstrates a hint of convergence to the solution, even if not so rapidly.

Regarding the computational cost of the methods, it should be noticed that the num-
ber of steps (and thus the computational cost) required by the Euclidean scheme depends
on the volatility as well as on the time to expiration. Then, for simple problems like the
one reported in Table 4.1, an Euclidean scheme is quite acceptable (even if it should be
noted that, by reducing the grid spacing, we do not obtain any significant improvement of
precision). On the contrary, the other examples show that the Euclidean scheme is more
computationally expensive than the implicit Kolmogorov and not reliable (let us also re-
call Remark 3.2 and that implicit schemes of Euclidean type are particularly onerous).
This is particularly apparent in Table 4.4 which shows a persistent error of nearly 30% in
the Euclidean scheme, in addition to a high computational cost. This example enlightens
the advantage of the Kolmogorov scheme in not requiring the boundary conditions on
the lateral boundary {y =±ν}. Experiments on a Crank-Nicholson method based on the
Kolmgorov scheme have also been performed, but are not reported here because of their
numerical unreliability when dealing with discontinuous payoff.
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Piazza di Porta S. Donato 5, Bologna 40126, Italy
E-mail address: pascucci@dm.unibo.it

mailto:difrance@dm.unibo.it
mailto:foschip@csr.unibo.it
mailto:pascucci@dm.unibo.it

