
Sovereign CDS calibration under a hybrid Sovereign Risk Model

Gian Luca De Marchi1 Marco Di Francesco2 Sidy Diop3 Andrea Pascucci4

This version: November 14, 2018

Abstract

The European sovereign debt crisis, started in the second half of 2011, has posed the problem

for asset managers, trades and risk managers to assess sovereign default risk. In the reduced

form framework, it is necessary to understand the interrelationship between creditworthiness

of a sovereign, its intensity to default and the correlation with the exchange rate between

the bond’s currency and the currency in which the CDS spread are quoted. To do this, we

propose a hybrid sovereign risk model in which the intensity of default is based on the jump to

default extended CEV model. We analyze the differences between the default intensity under

the domestic and foreign measure and we compute the default-survival probabilities in the

bond’s currency measure. We also give an approximation formula to CDS spread obtained by

perturbation theory and provide an efficient method to calibrate the model to CDS spread

quoted by the market. Finally, we test the model on real market data by several calibration

experiments to confirm the robustness of our method.
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credit default swap; hybrid credit-equity model; Constant Elasticity of Variance model;

asymptotic expansion; Foreign exchange rate;

1. Introduction

Recent dynamic of sovereign credit risk in Europe has determined some significant doubts on the paradigm

considering a Euro area government bond as a risk free investment. Consequently for investors the

identification and pricing of sovereign bonds becomes a crucial issue. Main factors determining this

structural change are the following:
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• lack of a common economic and financial policy, with investors’ perception that the economic and

political convergence of the Euro area still required a long time;

• target to stabilize government deficits constantly disregarded by governments with the impossibility

of financing infrastructural investments and difficulties in reforming the social security system;

• slowdown in economic growth and interdependence between financial sector crisis and sovereign risk

for some countries;

• contagion effect triggered by the PSI in Greece and hence extended to the entire Euro system

(aggravated by the downgrading of rating agencies) with a consequent increase in the risk premium

requested by investors.

In the second half of 2011, following the escalation of the sovereign debt crisis in the Euro area and the

contagion of tensions from the peripheral countries (Greece, Ireland and Portugal) to the core countries of

the euro area, foreign demand for eurozone debt has suffered a major collapse involving the liquidation

of outstanding positions in particular by institutional investors. The central element that led to this

substantial change in terms of asset allocation was the perception that only a few eurozone countries

could be considered risk free; in addition, there was the growing fear of the Euro break-up which helped

to stimulate the dynamics of cross-border capital outflows.

During the period July - October 2011, foreign investors sold Eurozone fixed income instruments

for around 88 bln euro against a 320 bln euro inflow in the first half of 2011. Japanese investors sold

almost 98% of the Greek bonds and 61% of the Portuguese bonds; in the same period the sale of Italian

bonds was almost 10.5%. Starting from Lehman default event (September 2008), government bonds

spreads have suffered a dramatic widening phase both in countries with weak public sector finance and in

countries considered to be safer. The volatility of the government bonds spread seems to reflect not only

the perceived default risk of the issuers but also some other new relevant factors:

• Aggregate risk (change in monetary policy, global uncertainty, risk aversion);

• Liquidity risk;

• Country specific risk;

• Contagion and systematic risk;

• Exchange rate risk.

The lack of models for the assessment of component represented in the spread risk (eg Break up

Euro scenario) and the lack of measures deemed sufficiently robust to quantify sovereign risk have led

most investors to a hyper-prudent assessment of the situation, based on worst case hypotheses, negatively

distorting the dynamics of spreads.

Default statistics currently used to calibrate corporate credit ratings are not applicable to sovereign

risk. Furthermore, as reported in Moody’s Investor Service Sovereign Default and Recovery Rates study
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[14], there are very limited number of developed countries default events in the last 30 years (Greece

in March 2012 and December 2012, Cyprus in July 2013) and consequently it is not possible to infer a

consistent rating migration rates matrix for those countries. Also statistics on recovery rates available on

defaulted sovereign bonds are estimated mainly with reference to emerging countries; the average recovery

rates reported by Moody’s in the sovereign default study is higher than the recovery rates for the two

defaults of Greece in 2012 and for the one of Cyprus in 2013.

The need for banks and financial institutions to assess the risk associated with government bonds

exposures has posed the problem for asset managers, traders and risk managers to determine how to assess

sovereign default risk. There is no a specific standard in models used to assess the sovereign default risk

and practitioners make use of consolidated models developed for corporate bonds. The two main families

of models used to price and assess the risk of corporate and sovereign bonds are reduced-form models

and structural models. Whereas reduced-form models are based on the specification of the risk-neutral

default intensity and the fractional loss model, the structural models focus on the behavior of the assets

of the issuer and the relative volatility compared to the value of the liabilities. Structural models have

varied widely in their implementation, starting from the original models developed by Black and Scholes

(1973) and Merton (1974) and moving to more complex specifications making assumptions concerning

the capital structures of the issuers and including different types of debts and other form of liabilities.

While in structural models the default time is usually a predictable stopping time, defined as the first

hitting time to a certain barrier by the asset process, in the reduce form the default time is a totally

unpredictable stopping time modeled as the first jump of a Poisson process with stochastic intensity.

In the reduced form models, thanks to one of the fundamental property of jumps in Poisson process,

the survival probabilities can be computed as a discount factors, and so it is a common market practice to

compute these probabilities from credit default swap market instead from bond market. Moreover, the

market of sovereign credit default swaps (SCDS) contracts has grown very fast in the last decade and has

become very liquid, clean and standardized. So, the market of SCDS offers a consistent data framework

set to estimate the default-survival probabilities. Furthermore estimates retrieved from CDS market prices

allow practitioners to exclude the issue to represent the liquidity component of bonds spreads.

In this paper we consider fixed Loss Given Default, that is a standard practice in the market and

supported by historical observation. Unlike corporate CDS contracts, SCDS are usually denominated in a

difference currency than the currency of the underling bonds. This is due to avoid the risk of depreciation

of the bond’s currency in case of a credit event. In fact, if SCDS were denominated in the same currency

as the bond, the recovery value would be significantly distorted by exchange rate fluctuation. So, for

example, the market convention is to trade Euro CDS in US dollar and US CDS in Euro. The different

currency between SCDS and bonds market makes impossible to use the usual bootstrap technique to

compute the default-survival probabilities in the bond’s currency measure as for a corporate firm. Moreover,

the assumption that the foreign and domestic hazard rate are identical is not realistic and contradicts
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market observations. So, the joint evolution of the domestic hazard rate and the FX rate between the two

currencies must be modeled.

One of the motivation of this work has been to better understand the interrelationship between the

creditworthiness of a sovereign, its intensity to default and the exchange rate between its bond’s currency

and the currency in which SCDS contracts are quoted. We analyze the differences between the default

intensity under the domestic and foreign measure and we compute the default-survival probabilities in the

bond’s currency measure. Finally, we test our calibration to the valuation of sovereign bonds even during

the period of sovereign crisis.

We start by providing a robust and efficient method to calibrate a hybrid sovereign risk model to

SCDS market. We first present a model for the intensity of default of a sovereign government based on

the jump to default extended CEV (Constant Elasticity Variance) model introduced in [3] in 2006 by

establishing the link with the exchange rate. Then we give an approximation formula to the SCDS spread

obtained from perturbation theory.

Our approach is similar to [2] where the authors presented a model that captures the link between

the sovereign default intensity and the foreign exchange rate by adding a constant in case of credit event

to this exchange rate process. As shown in [5], the introduction of a jump in the dynamic of FX rate

is necessary since a purely diffusion-based correlation between the exchange rate the hazard rate is not

able to explain market observations. The default intensity is described by the the exponential of some

Ornstein-Uhlenbeck processes. Our paper differs from [2] in several aspects: first we provide a hybrid

model that captures the default intensity of the sovereign. Second, to approximate the SCDS spread, we

employ a recent methodology introduced in [11, 15], which consists in an asymptotic expansion of the

solution to the pricing partial differential equation. This approach of describing the sovereign default

intensity with a hybrid model has been introduced in [10]. The authors are also inspired by the JDCEV

model [3] which has been originally proposed for assessing corporate credit risks.

This paper is organized as follows. In Section 2 we set the notations and introduce the model. In

Section 3 we recall the definitions, properties on SCDS spread and provide an explicit approximation

formula. Section 4 contains the numerical test: we calibrate the model to Italian USD-quoted CDS contracts

assessing in two different periods: at the outbreak of the government crisis at the end of 2011, in which the

Italian CDS spreads reached the maximum, and at the present date. In Appendix, to show the robustness

and the accuracy of our method, we present other several calibration tests, at the same dates as for Italian

USD-quoted CDS spreads, for other European sovereign CDS spreads (France, Spain, Portugal).

2. Model and Set-up

In this section, we follow the approach in [10] to capture the dynamics of the default intensity by

considering an hybrid model. This approach is inspired by the work [3] introduced in 2006 and establishes
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the dependency of the default intensity of the sovereign to its solvency. This latter is an indicator taking

into account macro-economical factors like the public debt of the GDP (Gross Domestic Product) ratio,

the surplus to GDP, interest rate on the sovereign bonds, GDP growth rate, etc... In what follows we

model this solvency by a continuous-time process S. Consider the filtered probability space (Ω,G,G,Q)

with finite time horizon T <∞. The filtration G = (Gt)t∈[0,T ] is assumed to satisfy the usual conditions,

GT = G and is generated by the Brownian motions W 1
t and W 2

t and some discontinuous stochastic process

Dt. Let ε be an exponentially distributed random variable independent of the Brownian motions W 1
t and

W 2
t with parameter 1 (i.e. ε ∼ Exp(1)).

Let X be a stochastic process defined as

dXt =

(
rd (t)− 1

2
σ2 (t,Xt) + λ (t,Xt)

)
dt+ σ (t,Xt) dW 1

t ,

where rd is deterministic taking values in R. We assume that the time- and state-dependent functions

σ = σ(t,X) and λ = λ(t,X) are positive, bounded and continuously differentiable. Let L be a real positive

constant with L < eX0 . Let ζ be defined as

ζ = inf{t > 0 | eXt ≤ L} ∧ inf{t ≥ 0 |
∫ t

0

λ(s,Xs)ds ≥ ε} (2.1)

By definition, ζ is G-stopping time.

Assumption 2.1. (1) The market is modelled by the filtered probability space (Ω,G,G,Q) defined

above where Q := Qd is a domestic spot risk-neutral martingale measure and G represents the

quantity of informations of the market and to which all processes are adapted.

(2) The time to default of the sovereign is the stopping time ζ defined in (2.1) and we define the

solvency S of the sovereign as follows:

St = S0e
Xt1{ζ>t}, S0 > 0.

Default happens when the solvency becomes worthless in one of these two ways. Either the process

eX falls below L via diffusion or a jump-to-default occurs from a value greater than L, where L

represents a threshold of the sovereign debt crisis. In what follows, we denote by F = {Ft, t ≥ 0}
the filtration generated by the sovereign solvency and by D = {Dt, t ≥ 0} the filtration generated

by the process Dt = 1{ζ≤t}. Eventually, G = {Gt, t ≥ 0}, Gt = Ft ∨Dt is the enlarged filtration.

(3) The rate of exchange between foreign currency cf and domestic currency cd is denoted by Zt ≥ 0,

ri are the short-term interest rates and Bi (t) = e
∫ t
0
ri(τ)dτ the instantaneous bank accounts in the

respective currencies ci, i = d, f .

We assume that the rate of exchange Z, defining the value of unit of the foreign currency cf in the
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domestic currency cd, satisfies a SDE of the form

dZt = µZt Zt−dt+ η Zt−dW 2
t + γ Zt−dDt, with dW 1

t dW 2
t = ρdt, (2.2)

where η > 0 and γ ∈ (−1, ∞) is the devaluation/revaluation rate of the FX process. The dynamics (2.2)

captures the dependency between the sovereign default risk and the rate of exchange, first through the cor-

relation ρ between the Brownian motion W 1 and W 2 and then via the coefficient of devaluation/revaluation

γ. Indeed, there is a jump on the rate of exchange at the time of default ζ by

∆Zζ = γZζ−

That is at ζ, the foreign currency cf is revalued/devalued with respect to the domestic currency cd in a

jump fraction γ of the pre-default value of Z. Therefore the price in cd of the foreign instantaneous bank

account at time t is Bf (t)Zt. By Itôrevaluate formula and (2.2)

d (Bf (t)Zt) = Bf (t) dZt + rf (t)Bf (t)Ztdt (2.3)

= rf (t)Bf (t)Ztdt+ µZt Bf (t)Ztdt+ ηBf (t)ZtdW
2
t + γBf (t)ZtdDt

= Bf (t)Zt
((
rf (t) + µZt + γ (1−Dt)λ (t,Xt)

)
dt+ ηdW 2

t + γdMt

)
where the process dMt = dDt − dAt is a martingale with At =

∫ t
0

(1−Ds)λ (s,Xs) ds the compensator of

Dt.

Proposition 2.2. If the rate of exchange between the foreign and domestic currencies obeys a stochastic

differential equation (2.2), and if the riskless short-term rates of return in the domestic and foreign

currencies are respectively ri, i = d, f , then under Qd

µZt = rd (t)− rf (t)− γ (1−Dt)λ (t,Xt) .

Therefore, the exchange rate is given by

Zt = Z0 exp

(∫ t

0

(rd (s)− rf (s)− γ (1−Ds)λ (s,Xs)) ds− 1

2
η2t+ ηW 2

t + γDt

)
, (2.4)

Proof. Under Qd, the discounted value in cd of the foreign bank account must be a martingale. But the

dynamics of the discounted value
Bf (t)
Bd(t)Zt at time t is, by equation (2.3)

d

(
Bf (t)

Bd (t)
Zt

)
= −rd (t)

Bf (t)

Bd (t)
Ztdt+

1

Bd (t)
d (Bf (t)Zt)

=
Bf (t)

Bd (t)
Zt
((
rf (t)− rd (t) + µZt + γ (1−Dt)λ (t,Xt)

)
dt+

(
ηdW 2

t + γdMt

))
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Since the term
(
ηdW 2

t + γdMt

)
is a martingale, then we must have

rf (t)− rd (t) + µZt + γ (1−Dt)λ (t,Xt) = 0.

Proposition 2.3. Let Qf be the risk-neutral foreign martingale measure. Then Qd and Qf are mutually

absolutely continuous; that is they are related by the likelihood ratio(
dQf
dQd

)
GT

= exp

(
ηW 2

T + γMT −
1

2
η2T

)
Proof. Consider a contingent claim whose value at time t in cf is Vt. The price V0 of the claim at time

t = 0 in cf is the discounted expected value of its price, in cf , at time T , where the expectation is

computed under Qf , the risk-neutral foreign martingale measure:

V0 = e−
∫ T
0
rf (s)dsEf [VT ] . (2.5)

Let Ut be the time-t price of the claim in cd. Then Ut = VtZt, where Zt is the rate of exchange between

cf and cd. Since the claim is a tradable asset, its price in cd must be a martingale under Qd. In particular

the time-zero price is the discounted expected value of the time-T price:

U0 = e−
∫ T
0
rd(s)dsEd [UT ]

V0Z0 = e−
∫ T
0
rd(s)dsEd [VTZT ]

V0 = e−
∫ T
0
rf (s)dsEd

[
VT

ZT
Z0

e−
∫ T
0

(rf (s)−rd(s))ds

]
.

Comparing equations (2.5) and (2.6) shows that

Ef [VT ] = Ed
[
VT

ZT
Z0

e−
∫ T
0

(rf (s)−rd(s))ds

]
.

Since it holds for any non-negative GT -measurable random variable VT , it follows from (2.4) that(
dQf
dQd

)
GT

=
ZT
Z0

e−
∫ T
0
rf (s)−rd(s)ds = exp

(
ηW 2

T + γMT −
1

2
η2T

)
.

Set Yt = log (Zt). By Ito formula, the dynamics of Y is given by

dYt =

(
µZt −

1

2
η2

)
dt+ η dW 2

t + γ dDt
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=

(
rd (t)− rf (t)− 1

2
η2 − γ (1−Dt)λ (t,Xt)

)
dt+ η dW 2

t + γ dDt.

As in [3], we define the volatility of the solvency and the intensity of default respectively by

σ(t,X) = a(t)e(β−1)X (2.6)

and

λ(t,X) = b(t) + c σ(t,X)2 = b(t) + c a(t)2e2(β−1)X , (2.7)

where β < 1 and a(t) > 0 are the so-called elasticity parameter and scale function, while b(t) ≥ 0 and

c ≥ 0 govern the sensitivity of the default intensity with respect to the solvency. Under Qd, we assume the

following risk-neutral dynamics for the solvency St = {St, t ≥ 0}:

St = S0e
Xt (1−Dt) , S0 > 0,

dXt =
(
rd (t)− 1

2σ
2 (t,Xt) + λ (t,Xt)

)
dt+ σ (t,Xt) dW 1

t ,

dYt =
(
rd (t)− rf (t)− 1

2η
2 − γ (1−Dt)λ (t,Xt)

)
dt+ η dW 2

t + γ dDt,

dDt = γ (1−Dt)λ (t,Xt) dt+ dMt, with M a martingale,

dW 1
t dW 2

t = ρdt,

ζ = inf{t > 0 | eXt ≤ L} ∧ inf{t ≥ 0 |
∫ t

0
λ (t,Xt) ≥ ε}.

(2.8)

Since our market model is incomplete, similarly to what is usually done in interest rate modeling, we

adopt a martingale approach and assume that the solvency is a martingale. Even if our framework is

different, the martingale approach is also reminiscent of Carr&Linetsky’s model [3] where S represents the

price of a traded asset.

3. Sovereign Credit Default Swap spread

A CDS is an agreement between two parties, called the protection buyer and the protection seller, typically

designed to transfer to the protection seller the financial loss that the protection buyer would suffer if

a particular default event happened to a third party, called the reference entity. The protection seller

delivers a protection payment to the protection buyer at the time of the default event. In exchange the

protection buyer makes periodic premium payments at time intervals α at the credit default swap rate up

to the default event or the expiry maturity, whichever comes first. The protection payment is the specified

percentage (1 − δ) of the CDS notional amount N (=1 by assumption), called loss-given-default. The

valuation problem is to determine the arbitrage-free CDS rate R that makes the present value of the CDS
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contract equal to zero. This rate equates the present value of the protection payoff to the present value of

all the premium payments.

By Sovereign, we understand, from the definition given by the International Swaps and Derivatives

Association (ISDA), “any state, potential subdivision or government, or any agency, instrumentality,

ministry, department or other authority ( including ... central bank) thereof”. In this paper, for simplicity,

we consider sovereign governments. Hence a sovereign Credit Default Swap is a CDS where the reference

entity is a government. e.g Eurozone States Members. From ISDA, a credit event in sovereign CDS

contracts is induced among others by

• Failure to pay : a sovereign fails to make a payment on its obligations (principle, coupons, etc..) in

an amount at least as large as the payment requirement beyond the period allowed;

• Restructuring : a sovereign alters the principle amount, coupon, currency, maturity or the ranking

in priority of repayment of an obligation;

• Repudiation/moratorium: a sovereign refuses to honor its obligation and declares a moratorium.

Here we assume that the premium and protection payments are settled in the foreign currency cf .

Hence their values PV are given by

PV (Protection leg) = Ef
[
e−

∫ ζ
t
rf (τ)dτ (1− δ)1{ζ≤T}|Gt

]
= (1− δ)Ed

[
Bf (t)

Bf (ζ)

Bf (ζ)ZζBd (t)

Bf (t)ZtBd (ζ)
1{ζ≤T}|Gt

]
(by change of measure)

= (1− δ)Ed
[
ZζBd (t)

ZtBd (ζ)
1{ζ≤T}|Gt

]
= (1− δ)Ed

[
eYζ−Yte−

∫ ζ
t
rd(τ)dτ1{ζ≤T}|Gt

]
= 1{ζ>t} (1− δ)

∫ T

t

Ed
[
eYs−Yt−

∫ s
t

(rd(τ)+λ(τ,Xτ ))dτλ(s,Xs)|Ft
]

ds,

PV (Premium leg) =

M∑
i=1

Ef
[
e−

∫ ti
t rf (τ)dτ T

MRt1{ζ>ti}|Gt
]

=

M∑
i=1

Ed
[
eYti−Yte−

∫ ti
t rd(τ)dτ T

MRt1{ζ>ti}|Gt
]

= T
MRt1{ζ>t}

M∑
i=1

Ed
[
eYti−Yt−

∫ ti
t (rd(τ)+λ(τ,Xτ ))dτ |Ft

]
.

It follows that the CDS spread at time t is given by

Rt =
1{ζ>t} (1− δ)

∫ T
t
Ed
[
eYs−Yt−

∫ s
t

(rd(τ)+λ(τ,Xτ ))dτλ(s,Xs)|Ft
]

ds

1{ζ>t}
T
M

∑M
i=1E

d
[
eYti−Yt−

∫ ti
t (rd(τ)+λ(τ,Xτ ))dτ |Ft

] ,
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and therefore

R ≡ R0 =
(1− δ)

∫ T
0
Ed
[
eYs−Y0−

∫ s
0

(rd(τ)+λ(τ,Xτ ))dτλ(s,Xs)
]

ds

T
M

∑M
i=1E

d
[
eYti−Y0−

∫ ti
0 (rd(τ)+λ(τ,Xτ ))dτ

] . (3.1)

Remark 3.1. We see from (3.1) that R is a ratio of terms involving expectations of the form

f(t,Xt, Yt, Dt) := Ed
[
eYT−Yt−

∫ T
t

(rd(τ)+λ(τ,Xτ ))dτh (XT , YT ) |Ft
]
.

By Feynman-Kac formula these expectations can be expressed in terms of solutions of suitable parabolic

Cauchy problems. By Itô formula and the martingale property, we have

∂tf (t, x, y, d) +

(
rd (t)− 1

2
σ (t, x)

2
+ λ (t, x)

)
∂xf (t, x, y, d) +

1

2
σ (t, x)

2
∂2
xf (t, x, y, d)

+

(
rd (t)− rf (t)− 1

2
η2 + γ (1− d)λ (t, x)

)
∂yf (t, x, y, d) +

1

2
η2∂2

yf (t, x, y, d) + ρησ (t, x) ∂xyf (t, x, y, d)

+ (1− d)λ (t, x) (f (t, x, y, 1)− f (t, x, y, 0)) +

(
−rf (t)− 1

2
η2 − λ (t, x)

)
f (t, x, y, d) = 0.

Set

u (t, x, y) = f (t, x, y, 1) and v (t, x, y) = f (t, x, y, 0)

so that

f (t, x, y, d) = 1{d=1}u (t, x, y) + 1{d=0}v (t, x, y) .

For the premium leg, the final conditions of u and v are

u (T, x, y) = f (T, x, y, 1) = 0

v (T, x, y) = f (T, x, y, 0) = h (x, y) = 1.

We have u ≡ 0 since u is solution to the PDE(
∂t +

(
rd (t)− 1

2
σ (t, x)

2
+ λ (t, x)

)
∂x +

1

2
σ (t, x)

2
∂2
x +

(
rd (t)− rf (t)− 1

2
η2

)
∂y+

+
1

2
η2∂2

y + ρησ (t, x) ∂xy +

(
−rf (t)− 1

2
η2 − λ (t, x)

))
u = 0, for t < T and x, y ∈ R

u (T, x, y) = 0 x, y ∈ R.
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Therefore, for computing the premium leg, one only needs to solve directly the PDE for v(
∂t +

(
rd (t)− 1

2
σ (t, x)

2
+ λ (t, x)

)
∂x +

1

2
σ (t, x)

2
∂2
x +

(
rd (t)− rf (t)− 1

2
η2 + γλ (t, x)

)
∂y+

+
1

2
η2∂2

y + ρησ (t, x) ∂xy +

(
−rf (t)− 1

2
η2 − 2λ (t, x)

))
v = 0, for t < T and x, y ∈ R

v (T, x, y) = 1 x, y ∈ R.

Analogously, to compute the protection leg, one solves the following PDE for u(
∂t +

(
rd (t)− 1

2
σ (t, x)

2
+ λ (t, x)

)
∂x +

1

2
σ (t, x)

2
∂2
x +

(
rd (t)− rf (t)− 1

2
η2

)
∂y+

+
1

2
η2∂2

y + ρησ (t, x) ∂xy +

(
−rf (t)− 1

2
η2 − λ (t, x)

))
u = 0, for t < T and x, y ∈ R

u (T, x, y) = λ (T, x) x, y ∈ R.

Hence to compute the CDS spread we have to solve two Cauchy problems with different operator A1 and

A2 and different terminal conditions:
(
∂t + A1

)
u (t, x, y) = 0, t < T, x, y ∈ R

u (T, x, y) = λ (T, x) , x, y ∈ R,
(3.2)

and 
(
∂t + A2

)
v (t, x, y) = 0, t < T, x, y ∈ R

v (T, x, y) = 1, x, y ∈ R,
(3.3)

where

A1 =
1

2
σ (t, x)

2
∂2
x + ρησ (t, x) ∂xy +

1

2
η2∂2

y +

(
rd (t)− 1

2
σ (t, x)

2
+ λ (t, x)

)
∂x

+

(
rd (t)− rf (t)− 1

2
η2

)
∂y −

(
rf (t) +

1

2
η2 + λ (t, x)

) (3.4)

and

A2 =
1

2
σ (t, x)

2
∂2
x + ρησ (t, x) ∂xy +

1

2
η2∂2

y +

(
rd (t)− 1

2
σ (t, x)

2
+ λ (t, x)

)
∂x

+

(
rd (t)− rf (t)− 1

2
η2 + γλ (t, x)

)
∂y −

(
rf (t) +

1

2
η2 + 2λ (t, x)

)
.

(3.5)

Problems (3.2) and (3.3) do not admit closed form solutions and therefore we use an asymptotic expan-

sion technique introduced in [11, 16] to derive explicit approximation formulas that can be implemented

for calibration purposes.
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Let us briefly recall the main ideas of the approximation procedure. Consider the following general

backward Cauchy problem (∂t + A)u (t, z) = 0, t < T, z ∈ Rd,

u (T, z) = h (z) , z ∈ Rd,
(3.6)

where A = A(t, z) is a (locally) parabolic differential operator of the form

A (t, z) =
∑
|α|≤2

aα (t, z)Dα
z , t ∈ R+, z ∈ Rd,

where

α = (α1, . . . , αd) , |α| =
d∑
i=1

α1 + . . .+ αd, D
α
z = ∂α1

z1 . . . ∂
αd
zd
.

In our specific setting, we will consider A to be the infinitesimal generator of the stochastic processes

(X, r) in (2.8), whose precise expression in given in (3.4) and (3.5).

Next, we consider the formal expansions A =
∑
n
An and u =

∑
n
un, where the un’s, for n ≥ 0, are

defined recursively by(∂t + A0)u0(t, z) = 0, t < T, z ∈ Rd,

u0(T, z) = h(z), z ∈ Rd,
(3.7)

and 
(∂t + A0)un(t, z) = −

n∑
k=1

Akun−k(t, z), t < T, z ∈ Rd,

un(T, z) = 0, z ∈ Rd,
(3.8)

where

An =
∑
|α|≤2

aα,n (t, z)Dα
z . (3.9)

In (3.9), (aα,n)0≤n≤N is the N -th order Taylor expansion of aα, in the spatial variables, around a fixed

point z̄. Notice that the functions aα,0 depend only on t: hence A0 is a heat operator with time-dependent

coefficients and can be written in the form

A0 =
1

2

d∑
i,j=1

Cij (t) ∂zizj +

d∑
i=1

mi (t) ∂zi + χ (t) ,

13



for some C = (Cij)i,j≤d ∈ Rd×d, m = (mi)i≤d ∈ Rd and γ ∈ R. By Duhamel’s principle, the solution u0

to the PDE (3.7) is

u0 (t, z;T ) = e
∫ T
t
γ(s,z)ds

∫
Rd

Γ0 (t, z;T, ξ)h (ξ) dξ, t < T, z ∈ Rd,

where Γ0 is the d-dimensional Gaussian density

Γ0 (t, z;T, ξ) =
1√

2πd detC (t, T )
exp

(
−1

2
〈C−1 (t, T ) (ξ − z −m (t, T )) , (ξ − z −m (t, T ))〉

)
,

with covariance matrix C(t, T ) and mean vector z +m(t, T ) given by

C(t, T ) =

∫ T

t

C(s)ds, m(t, T ) =

∫ T

t

m(s)ds.

It turns out that, for any n ≥ 0, un can be computed explicitly, as the following result shows.

Theorem 3.2. For any n ≥ 1, the solution un to the Cauchy problem (3.8) is given by

un (t, z;T ) = Lzn (t, T )u0 (t, z;T ) , t < T, z ∈ Rd. (3.10)

In (3.10), Lzn(t, T ) denotes the differential operator acting on the z-variable and defined as

Lzn (t, T ) =

n∑
h=1

∫ T

t

ds1

∫ T

s1

ds2 . . .

∫ T

sh−1

dsh
∑
i∈In,h

Gzi1 (t, s1) . . .Gzih (t, sh) , (3.11)

where

In,h = {i = (i1, . . . , ih) ∈ Nh | i1 + i2 + . . .+ ih = n}

and the operators Gzn(t, s) are defined as

Gzn (t, s) =
∑
|α|≤2

aα,n (s,Mz (t, s))Dα
z ,

with

Mz (t, s) = z +m (t, s) + C (t, s)Dz.

Moreover, if operator A is uniformly parabolic with smooth coefficients then for any T0 > 0 the following

asymptotic estimate for the approximation error holds:∣∣∣∣∣u(t, z)−
N∑
n=0

un(t, z;T )

∣∣∣∣∣ ≤ CN (T − t)
N+2

2 , 0 ≤ t < T ≤ T0, z ∈ Rd, (3.12)
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where u is the solution of problem (3.6) and CN,T0
is a positive constant dependent on N and T0 but not

on T − t.

Proof. A complete proof is given in [11] and [15].

Corollary 3.3. Let RN denote the N-th order approximation of the SCDS spread in (3.1) obtained by

approximating the Cauchy problems (3.2) and (3.3) as in Theorem 3.2. Then there exist sequences of

differential operators
(
L

1,(x,y)
n

)
n≥0

and
(
L

2,(x,y)
n

)
n≥0

of the form of (3.11) and acting on (x, y) such that

RN =

(1− δ)
∫ T

0

N∑
n=0

L
1,(x,y)
n (0, s)u0 (0, x, y; s) ds

T
K

K∑
i=1

N∑
n=0

L
2,(x,y)
n (0, ti) v0 (0, x, y; ti)

, (3.13)

where

u0 (0, x, y, s) = e−
∫ s
0 (rf (τ)+ 1

2η
2+λ(τ,x))dτ

·
(
b (s) + c a (s)

2
exp

(
2 (β − 1)

(
x+

∫ s

0

(
rd (τ) +

(
β − 3

2

)
σ (τ, x)

2
+ λ (τ, x)

)
dτ

)))
v0 (0, x, y; s) = e−

∫ s
0 (rf (τ)+ 1

2η
2+2λ(τ,x))dτ .

Proof. By Theorem 3.2 there exists a sequence (L
1,(x,y)
n )n≥1 of differential operators such that the N -th

approximation of the solution u of (3.2) is given by

u (0, x, y; s) =

N∑
n=0

L1,(x,y)
n (0, s)u0 (0, x, y; s) ,

where

u0 (0, x, y; s) = e
∫ s
0
χ(τ,x,y)dτ

∫
R2

Γ0 (0, x, y; s, ξ1, ξ2)λ (s, ξ1) dξ1dξ2,

with

χ (τ, x, y) = −
(
rf (τ) +

1

2
η2 + λ (τ, x)

)
and Γ0 is the probability density of a two-dimensional Gaussian random variable (Ξ1,Ξ2) with covariance

and mean respectively given by

C (0, x, y; s) =

 ∫ s
0
σ (τ, x)

2
dτ ρη

∫ s
0
σ (τ, x) dτ

ρη
∫ s

0
σ (τ, x) dτ η2 ∗ s


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and

m (0, x, y; s) =
(
x+

∫ s
0

(
rd (τ)− 1

2σ (τ, x)
2

+ λ (τ, x)
)

dτ, y +
∫ s

0

(
rd (τ)− rf (τ)− 1

2η
2
)

dτ
)
.

We have ∫
R2

Γ0 (0, x, y; s, ξ1, ξ2)λ (s, ξ1) dξ1dξ2 =

∫
R

Γ̄0 (0, x; s, ξ1)λ (s, ξ1) dξ1,

where Γ̄0 is the marginal probability density function of the random Gaussian random variable Ξ1 with

variance and mean

C (0, x, y; s) =

∫ s

0

σ (τ, x)
2

dτ

and

m (0, x, y; s) = x+

∫ s

0

(
rd (τ)− 1

2
σ (τ, x)

2
+ λ (τ, x)

)
dτ.

It follows ∫
R

Γ̄0 (0, x; s, ξ1)λ (s, ξ1) dξ1 = b (s) + c a (s)

∫
R

Γ̄0 (0, x; s, ξ1) e2(β−1)ξ1dξ1

= b (s) + c a (s)Ed [Π] ,

where Π = e2(β−1)Ξ1 is a log-normal distributed random variable with mean

Ed [Π] = exp

(
2 (β − 1)m (0, x, y; s) + 4 (β − 1)

2 C (0, x, y; s)

2

)
= exp

(
2 (β − 1)

(
m (0, x, y; s) + (β − 1)C (0, x, y; s)

))
= exp

(
2 (β − 1)

(
x+

∫ s

0

(
rd (τ)− 1

2
σ (τ, x)

2
+ λ (τ, x)

)
dτ + (β − 1)

∫ s

0

σ (τ, x)
2

dτ

))
= exp

(
2 (β − 1)

(
x+

∫ s

0

(
rd (τ) +

(
β − 3

2

)
σ (τ, x)

2
+ λ (τ, x)

)
dτ

))
.

Hence

u0 (0, x, y, s) = e−
∫ s
0 (rf (τ)+ 1

2η
2+λ(τ,x))dτ×

×
(
b (s) + c a (s)

2
exp

(
2 (β − 1)

(
x+

∫ s

0

(
rd (τ) +

(
β − 3

2

)
σ (τ, x)

2
+ λ (τ, x)

)
dτ

)))
.

Analogously, we see from Theorem 3.2 that there exists a sequence (L
2,(x,y)
n )b≥n of differential operators
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such that the N -th approximation of the solution v of (3.3) is given by

v (0, x, y; s) =

N∑
n=0

L2,(x,y)
n (0, s) v0 (0, x, y; s) ,

where

v0 (0, x, y; s) = e
∫ s
0
χ(τ,x,y)dτ

∫
R2

Γ0 (0, x, y; s, ξ1, ξ2) dξ1dξ2 = e
∫ s
0
χ(τ,x,y)dτ

with

χ (τ, x, y) = −
(
rf (τ) +

1

2
η2 + 2λ (τ, x)

)
.

Corollary 3.4. Under the assumptions in Corollary 3.3, the following asymptotic estimate for the

approximation error holds: for any N ∈ N and T0 > 0 there exists a positive constant C such that

|R−RN | ≤ CT
N+2

2 , 0 < T ≤ T0.

Proof. Let

u (t, x, y; s) = Ed
[
eYs−Yt−

∫ s
t

(rd(τ)+λ(τ,Xτ ))dτλ(s,Xs)|Ft
]
,

uN (t, x, y; s) be its asymptotic approximation and

A = (1− δ)
∫ T

t

u (t, x, y; s) ds and AN = (1− δ)
∫ T

t

uN (t, x, y; s) ds.

By estimate (3.12), we have

|A−AN | ≤ |1− δ|
∫ T

t

|u (t, x, y; s)− uN (t, x, y; s)|ds

≤ |1− δ|
∫ T

t

CN |s− t|
N+2

2 ds ≤ |T − t|CN |T − t|
N+2

2

≤ |1− δ|CN |T − t|
N
2 +2

.

Analogously, by letting

v (t, x, y; s) = Ed
[
eYs−Yt−

∫ s
t

(rd(τ)+λ(τ,Xτ ))dt|Ft
]
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and vN (t, x, y; s) its asymptotic approximation, we have

|v (t, x, y; s)− vN (t, x, y; s)| ≤ CN |s− t|
N+2

2 .

We set

B =
|T − t|
M

M∑
i=[t]+1

v (t, x, y; ti) and BN =
|T − t|
M

M∑
i=[t]+1

vN (t, x, y; ti) ,

where [t] is the integer part of t. It follows

|B −BN | ≤
|T − t|
M

M∑
i=[t]+1

|v (t, x, y; s)− vN (t, x, y; ti)|

≤ |T − t|
M

M∑
i=[t]+1

CN |ti − t|
N+2

2

≤ CN |T − t|
N
2 +2

.

By simple algebra, if there is no default prior to t, we have

|Rt −RN | =
∣∣∣∣AB − AN

BN

∣∣∣∣ ≤ ∣∣∣∣AB
∣∣∣∣ ∣∣∣∣B −BNBN

∣∣∣∣+

∣∣∣∣A−ANBN

∣∣∣∣ ≤ CN
|BN |

|T − t|
N
2 +2

(∣∣∣∣AB
∣∣∣∣+ |1− δ|

)
,

which yields an asymptotic error estimate dependent on the L∞-norms of 1
BN

, 1
B and A. Now B is of the

form B = E
[
eZ
]

and we have

E
[
eZ
]
≥ E

[
eZ1|Z|≤%

]
≥ e−%P (|Z| ≤ %).

By Chebyshev inequality, for % > 0 sufficiently large

E
[
eZ
]
≥ e−%

(
1− E [|Z|]

%

)
> 0. (3.14)

Combining (3.14) above and the estimate (3.12), we get an analogous estimate for BN .

4. Sovereign CDS calibration and empirical test

In this section we apply the method developed in Section 3 to calibrate the model (2.8) to the sovereign

CDS spreads quoted by the market. We use quotation for Italian USD-quoted CDS provided by Bloomberg

database on the date November, 15th 2011 in order to check the robustness of our methodology. We use

the second-order approximation formula (3.13) for the SCDS. We consider SCDS contracts with maturity

from one up to four years and paid quarterly with recovery rate 40% at the event of default.
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Since formula (3.13) gives the approximation of the SCDS spread in the domestic currency cd (EUR)

and the market SCDS is in the foreign currency cf (USD), we consider the following formula introduced

in [2]:

R =
R̃

1 + γ
,

where R̃ is SCDS spread in the USD. This shows the link between the SCDS spreads in two currencies.

To add more flexibility to the model, we assume that the coefficients a(t) and b(t) in (2.7) are linearly

dependent on time: more precisely, we assume that

a(t) = a1t+ a2, b(t) = b1t+ b2,

for some constants a1, a2, b1, and b2. The problem of calibrating the model (2.8) is formulated as an

optimization problem. We want to minimize the error between the model CDS spread and the market

CDS spreads. Our approach is to use the square difference between market and model CDS spreads. This

leads to the nonlinear least square method

inf
Θ
F (Θ) , F (Θ) =

N∑
i=1

ωi|Ri − R̂i|2,

where N is the number of spreads used, ωi is a weight, R̂i is the market CDS spreads of the considered

reference entity observed at time t = 0 and Θ = (a1, a2, b1, b2, β, c, η, ρ, γ), with

a2 ≥ 0, a1 ≥ −
a2

T
, b2 ≥ 0, b1 ≥ −

b2
T
, c ≥ 0, η ≥ 0, β < 1, −1 < γ and − 1 < ρ < 1.

For the calibration, we use a global optimizer, NMinimize with the Differential Evolution method,

from Mathematica’s optimization toolbox on a PC with 1× Intel i7-6599U 2.50 GHz CPU and 8GB

RAM. First we calibrate our model to market data quoted at November, 15th, 2011, when the Italian

CDS spreads reached their maximum value. Table 1 shows the results of the calibration to Italian SCDS

contracts settled in USD and we can observe that the model gives very good fit to the real market data

with a computational time equals to 42.843 seconds.
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Table 1. Calibration to Italy USD CDS quoted as COB November, 15th, 2011

Times to maturity (Year) Market spreads (bps) Model spreads (bps) Rel. errors

1.25 639.604 635.126 -0.700104 %

1.5 634.042 625.153 -1.40199 %

1.75 617.96 616.34 -0.262173 %

2. 601.52 608.703 1.19417 %

2.25 592.68 602.265 1.61719 %

2.5 590.589 597.056 1.0951 %

2.75 592.193 593.121 0.156679 %

3. 594.44 590.514 -0.660437 %

3.25 594.935 589.305 -0.946293 %

3.5 593.917 589.579 -0.730527 %

3.75 592.288 591.44 -0.143137 %

4. 590.945 595.015 0.6887 %

a1 = 1.676, a2 = −0.419, β = −0.9, b1 = −0.007, b2 = 0.046, c = 0.0006, η =

0.0009 ρ = 0.225, γ = 1.532, 42.843 seconds

We follow the same process as above but this time we calibrate to Italian SCDS spreads quoted on

May, 05th 2017. Table 2 shows that the method still provides very good fit to real market data.

Table 2. Calibration to Italy USD CDS quoted as COB May, 30th 2017

Times to maturity (Year) Market spreads (bps) Model spreads (bps) Rel. errors

1.25 77.3576 78.4211 1.37482 %

1.5 88.3681 87.2096 -1.31098 %

1.75 97.1146 95.9589 -1.18998 %

2. 104.695 104.47 -0.214581 %

2.25 112.006 112.549 0.484716 %

2.5 119.142 120.03 0.745097 %

2.75 125.994 126.799 0.639194 %

3. 132.455 132.827 0.28089 %

3.25 138.435 138.193 -0.174581 %

3.5 143.918 143.137 -0.542769 %

3.75 148.906 148.123 -0.525512 %

4. 153.4 153.956 0.362541 %

a1 = −0.025, a2 = 0.1, β = −0.4, b1 = 0.252, b2 = 0.231, c = 0.521, η = 0.013, ρ =

−0.88, γ = −0.97, 23.7561 seconds

At time t = 0, the foreign survival probability of the SCDS is given by

pf0 (T ) = Ef
(
e−

∫ T
0
λf (τ,Xτ )dτ

)
= Ef

(
e−(1+γ)

∫ T
0
λ(τ,Xτ )dτ

)
,

where λf is the default intensity in the foreign economy and is linked to the domestic default intensity

by the relation λf (t,Xt) = (1 + γ)λ (t,Xt). The dynamics of the underlying process X in the foreign

risk-neutral measure Qf is

dXt =

(
rd (t)− 1

2
σ2 (t,Xt) + λ (t,Xt)− ρησ (t,Xt)

)
dt+ σ (t,Xt) dŴ 1

t ,
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where Ŵ 1 is given by

dŴ 1
t = dW 1

t −
d〈W 1, Z〉t

Zt
= dW 1

t − ρηdt.

By Feynman-Kac representation formula, pf0 (T ) = u (0, x;T ), where u is solution to the Cauchy problem(∂t + A)u (t, x) = 0, t < T, x ∈ R,

u (T, x) = 1, x ∈ R,

with

A =
1

2
σ (t, x)

2
∂2
x +

(
rd (t)− 1

2
σ (t, x)

2
+ λ (t, x)− ρησ (t, x)

)
∂x − λ (t, x) .

By Theorem 3.2, there exists a sequence of operator (Lxn)n≥0, acting on the variable x, such that

pf0 (T ) = u (0, x) ≈ uN (0, x;T ) =

N∑
n=0

Lxn (0, T )u0 (0, x;T ) , (4.1)

where u0 is given by

u0 (t, x;T ) = e−(1+γ)
∫ T
t
λ(s,x)ds.

In Graphs 3 and 2 we present a comparison between the expansion approximation method and Monte

Carlo simulation by computing the foreign survival probabilities (4.1) of Italy USD CDS quoted as COB

November, 15th, 2011 (Table 1) and Italy USD CDS quoted as COB May, 30th 2017 (Table 2). The Monte

Carlo is performed with 100000 iterations and a confident interval of 95%. As mentioned above with the

estimate (3.12), the convergence of the method is in the asymptotic sense. Up to four years maturity, the

method coincides with the Monte Carlo simulation. After then, we can see that the curves of the survival

probabilities (dashed line) start moving away from the Monte Carlo confidence intervals (blue line).
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Figure 2. SCDS foreign Survival Probabilities of Italy USD CDS quoted as COB November, 15th, 2011
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Figure 3. SCDS foreign Survival Probabilities of Italy USD CDS quoted as COB May, 30th 2017
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To show the accuracy of the method, we present in the Appendix 5 further calibration tests of the

model on SCDS of sovereigns belonging to Eurozone (see 5.2). In particular, we consider the same dates

used for the calibration tests to Italian CDS spreads, and we calibrate our model to French, Spanish and

Portuguese USD-quoted CDS spreads.

5. Appendix

5.1. Hazard processes and filtration enlargement

We collect some results on hazard rate and conditional expectation with respect to enlarged filtrations.

We present the key formula which relates the conditional expectation with respect to a “big” filtration to

the conditional expectation with respect to a “small” filtration. For more about filtration enlargement, we

refer for instance to [9].

Let ζ be a non-negative random variable on a probability space (Ω,G,Qd), such that Qd(ζ = 0) = 0

and Qd(ζ > t) > 0 for any t ≥ 0. We introduce a right-continuous process D defined as Dt = 1{ζ≤t}, and

we denote by D the filtration generated by D; that is Dt = σ(Du | u ≤ t). Let F = (Ft)t≥0 be a given
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filtration on (Ω,G,Qd) such that G := D∨F; that is we set Gt := Dt ∨Ft for every t ∈ R+. Since Dt ⊆ Gt
for any t, the random variable ζ is a stopping time with respect to G. The financial interpretation is that

the filtration F models the flow of observations available to the investors prior to the default time ζ. For

any t ∈ R+, we write Ft = Qd(ζ ≤ t|Ft), so that 1− Ft = Qd(ζ > t|Ft): notice that F is a bounded and

non-negative F-submartingale. We may thus deal with its right-continuous modification.

Definition 5.1. The F-hazard process of ζ, denoted by Γ, is defined through the formula 1− Ft = e−Γt

for every t ∈ R+.

Lemma 5.2. We have Gt ⊂ G∗t , where

G∗t := {A ∈ G | ∃B ∈ Ft A ∩ {ζ > t} = B ∩ {ζ > t}} .

Proof. Observe that Gt = Dt ∨ Ft = σ(Dt,Ft) = σ({ζ ≤ u} , u ≤ t,Ft). Also, it is easily seen that the

the class G∗t is a sub−σ-field of G. Therefore, it is enough to check that if either A = {ζ ≤ u} for u ≤ t or

A ∈ Ft, then there exists an event B ∈ Ft such that A ∩ {ζ > t} = B ∩ {ζ > t}. Indeed, in the former

case we may take B = ∅, in the latter B = A.

Lemma 5.3. For any G-measurable random variable Y we have, for any t ∈ R+

Ed
[
1{ζ>t}Y |Gt

]
= 1{ζ>t}

Ed [Y |Ft]
Qd(ζ > t|Ft)

= 1{ζ>t}e
ΓtEd

[
1{ζ>t}Y |Ft

]
. (5.1)

Proof. Let us fix t ∈ R+. In view of the Lemma 5.2. any Gt-measurable random variable coincides on the

set {ζ > t} with some Ft-measurable random variable. Therefore

Ed
[
1{ζ>t}Y |Gt

]
= 1{ζ>t}E

d [Y |Gt] = 1{ζ>t}X,

where X is an Ft-measurable random variable. Taking the conditional expectation with respect to Ft, we

obtain

Ed
[
1{ζ>t}Y |Ft

]
= Qd(ζ > t|Ft)X.

Proposition 5.4. Let Z be a bounded F-predictable process. Then for any t < s ≤ ∞

Ed
[
1{t<ζ≤s}Zζ |Gt

]
= 1{ζ>t}e

ΓtEd

[∫
]t,s]

ZudFu|Ft

]
. (5.2)

Proof. We start by assuming that Z is a piecewise constant F-predictable process, so that (we are
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interested only in values of Z for u ∈]t, s])

Zu =

n∑
i=0

Zti1]ti,ti+1](u),

where t = t0 < . . . < tn+1 = s and the random variable Zti is Fti -measurable. In the view of (5.1), for any

i we have

Ed
[
1{ti<ζ≤ti+1}Zζ |Gt

]
= 1{ζ>t}e

ΓtEd
[
1{ti<ζ≤ti+1}Zti |Ft

]
= 1{ζ>t}e

ΓtEd
[
Zti(Fti+1

− Fti)|Ft
]
.

In the second step we approximate an arbitrary bounded F-predictable process by a sequence of piecewise

constant F-predictable process.

Corollary 5.5. Let Y be a G-measurable random variable. Then, for any t ≤ s, we have

Ed
[
1{ζ>s}Y |Gt

]
= 1{ζ>t}E

d
[
1{ζ>s}e

ΓtY |Ft
]
. (5.3)

Furthermore, for any Fs-measurable random variable Y we have

Ed
[
1{ζ>s}Y |Gt

]
= 1{ζ>t}E

d
[
eΓt−ΓsY |Ft

]
. (5.4)

If F (and thus Γ) is a continuous increasing process then for any F-predictable bounded process Z we have

Ed
[
1{t<ζ≤s}Zζ |Gt

]
= 1{ζ>t}E

d

[∫ s

t

Zue
Γt−ΓudΓu|Ft

]
. (5.5)

Proof. In view of (5.1), to show that (5.3) holds, it is enough to observe that 1{ζ>s} = 1{ζ>t}1{ζ>s}.

Equality (5.4) is a straightforward consequence of (5.3). Formula (5.5) follows from (5.2) since, when F is

increasing, dFu = e−ΓudΓu.

5.2. Further calibration tests
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Table 3. Calibration to France USD CDS quoted as COB November, 15th, 2011

Times to maturity (Year) Market spreads (bps) Model spreads (bps) Rel. errors

1.25 153.882 153.483 -0.259354 %

1.5 158.258 158.793 0.338311 %

1.75 164.035 164.256 0.134481 %

2. 170.14 169.811 -0.193172 %

2.25 175.829 175.417 -0.234125 %

2.5 181.045 181.057 0.0065774 %

2.75 186.464 186.75 0.153165 %

3. 192.24 192.557 0.164687 %

3.25 198.586 198.573 -0.00684314 %

3.5 205.021 204.883 -0.0673881 %

3.75 211.605 211.442 -0.0765624 %

4. 217.74 217.819 0.0363618 %

a1 = 0.432, a2 = −0.108, β = 0.683, b1 = −0.072, b2 = 0.30, c = 0.193, η = 0.0004 ρ =

−0.9, γ = −0.93, 61.5239 seconds

Table 4. Calibration to France USD CDS quoted as COB May, 30th 2017

Times to maturity (Year) Market spreads (bps) Model spreads (bps) Rel. errors

1.25 5.01852 4.99188 -0.530782 %

1.5 6.04391 6.10329 0.982472 %

1.75 7.28556 7.3094 0.327112 %

2. 8.64 8.59418 -0.530324 %

2.25 9.99688 9.93929 -0.576095 %

2.5 11.3472 11.3277 -0.172446 %

2.75 12.7118 12.748 0.285352 %

3. 14.14 14.1996 0.421312 %

3.25 15.6773 15.6954 0.115721 %

3.5 17.3094 17.2644 -0.26022 %

3.75 18.9923 18.9502 -0.221769 %

4. 20.775 20.8077 0.157203 %

a1 = 0.065, a2 = 0.471, β = 0.124 b1 = −0.001, b2 = 0.014, c = 0.9, η = 0.0007, ρ =

−0.562, γ = −0.98, 70.3331 seconds
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Table 5. Calibration to Portugal USD CDS quoted as COB November, 15th, 2011

Times to maturity (Year) Market spreads (bps) Model spreads (bps) Rel. errors

1.25 1528.93 1528.98 0.00320181 %

1.5 1566.41 1566.45 0.00226859 %

1.75 1582.78 1582.5 -0.0171276 %

2. 1579.19 1579.18 -0.000413216 %

2.25 1558.57 1559.08 0.0328364 %

2.5 1525.58 1525.28 -0.0192637 %

2.75 1481.35 1481.17 -0.0119442 %

3. 1430.24 1430.28 0.00246044 %

3.25 1375.66 1376.11 0.0328495 %

3.5 1322.47 1321.9 -0.0431385 %

3.75 1270.06 1270.35 0.0226679 %

4. 1223.28 1223.23 -0.00441993 %

a1 = −0.0461, a2 = 0.537, β = −0.9, b1 = 0.002, b2 = −0.0004, c = 1.4, η = 0.24 ρ =

−1, γ = −0.625, 176.651 seconds

Table 6. Calibration to Portugal USD CDS quoted as COB May, 30th 2017

Times to maturity (Year) Market spreads (bps) Model spreads (bps) Rel. errors

1.25 55.7676 55.6979 -0.125092 %

1.5 67.7586 67.9211 0.239858 %

1.75 80.3718 80.4249 0.066119 %

2. 92.975 92.7842 -0.205163 %

2.25 104.727 104.594 -0.126893 %

2.5 115.529 115.588 0.0511845 %

2.75 125.543 125.732 0.150762 %

3. 135.15 135.243 0.0689597 %

3.25 144.688 144.527 -0.111395 %

3.5 154.187 154.004 -0.118228 %

3.75 163.548 163.789 0.147295 %

4. 173.19 173.121 -0.0396327 %

a1 = 0.38, a2 = 0.6, β = 0.792, b1 = 0.14, b2 = 0.014, c = 0.40, η = 0.082, ρ =

−0.94, γ = −0.93, 109.415 seconds
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Table 7. Calibration to Spain USD CDS quoted as COB November, 15th, 2011

Times to maturity (Year) Market spreads (bps) Model spreads (bps) Rel. errors

1.25 443.089 444.35 0.284429 %

1.5 455.942 453.34 -0.570676 %

1.75 461.191 459.558 -0.354087 %

2. 462.81 463.641 0.179513 %

2.25 464.557 466.248 0.36401 %

2.5 466.775 467.989 0.259957 %

2.75 469.216 469.377 0.0342908 %

3. 471.4 470.788 -0.129838 %

3.25 473.03 472.411 -0.130945 %

3.5 474.222 474.184 -0.00813438 %

3.75 475.314 475.741 0.0899051 %

4. 476.525 476.398 -0.0266747 %

a1 = −0.026, a2 = 0.405, β = 0.6, b1 = 0.632, b2 = 1.121, c = 0.27, η = 0.046 ρ =

−0.95, γ = 0.96, 74.1205 seconds

Table 8. Calibration to Spain USD CDS quoted as COB May, 30th 2017

Times to maturity (Year) Market spreads (bps) Model spreads (bps) Rel. errors

1.25 33.5073 33.539 0.0943894 %

1.5 36.6139 36.5816 -0.0882728 %

1.75 39.678 39.6555 -0.0566982 %

2. 42.74 42.7256 -0.033727 %

2.25 45.7535 45.7599 0.0141303 %

2.5 48.7076 48.7374 0.0613144 %

2.75 51.6109 51.6578 0.0908932 %

3. 54.535 54.5491 0.0258058 %

3.25 57.5301 57.4621 -0.118242 %

3.5 60.4933 60.4315 -0.102142 %

3.75 63.2717 63.3699 0.155279 %

4. 65.87 65.8411 -0.0438072 %

a1 = 0.34, a2 = 0.11, β = 0.432, b1 = 0.155, b2 = 0.22, c = 0.211, η = 0.061, ρ =

−0.056, γ = −0.985, 61.9134 seconds
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