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Abstract

We consider a wide class of second order hypoelliptic partial differential opera-
tors with non-negative characteristic form. We prove the existence and some basic
properties of a global fundamental solution.

1. Introduction. We are concerned with a second order partial differential operator
of the following type

L =
N∑

i,j=1

aij(z)∂xi∂xj +
N∑

j=1

bj(z)∂xj − ∂t (1.1)

where z = (x, t) is the point of RN+1, A = (aij) is a N × N symmetric and positive
semidefinite matrix and the coefficients aij , bj , 1 ≤ i, j ≤ N , are smooth functions. We
also assume the following hypotheses:

(H.1) L is hypoelliptic;

(H.2) a11(z) 6= 0 for every z ∈ RN+1;

(H.3) L is the heat operator out of a compact subset F0 of RN+1.

The aim of this paper is to prove that the operator L has a global fundamental
solution Γ in RN+1 satisfying some basic qualitative properties of particular interest in
potential theory. Before presenting our main results, we would like to briefly comment
our hypotheses.

A sufficient condition for (H.1) is the following classical Hörmander’s condition (see
[6] and [10])
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(H) rank L(X1, . . . , XN , Y − ∂t)(z) = N + 1 ∀z ∈ RN+1.

In (H), L(X1, . . . , XN , Y − ∂t) denotes the Lie algebra generated by the vector fields

Xi =
N∑

j=1

aij∂xj , i = 1, . . . , N and Y − ∂t =
N∑

j=1

bi∂xj − ∂t.

It is well-known ([4], [10], [8], [1]) that, in general, Hörmander’s condition (H) is not
necessary for hypoellipticity. For instance, the operator

Lp = ∂2
x1

+ exp(−|x1|
p
2 )∂2

x2
− ∂t, (x1, x2, t) ∈ R3, −1 < p < 0,

is hypoelliptic (for example, as an immediate consequence of Theorem 1.1 of [1]) although
(H) fails for x1 = 0. Condition (H.2) simply ensures that L is uniformly non-totally
degenerate. Finally, (H.3) yields an exponential decay of Γ at infinity. We explicitly
remark that this hypothesis does not affect the analysis of the local properties of L.

Our first result is the following theorem which will be proved in Section 2.

Theorem 1.1 There exists a fundamental solution Γ of L having the following properties:
(i) Γ is a non-negative function which is smooth away from the diagonal of RN+1 ×

RN+1;
(ii) for every fixed z ∈ RN+1, Γ(·; z) and Γ(z; ·) are locally integrable;
(iii) for every test function ϕ, the following identities hold:

L

∫
RN+1

Γ(·; ζ)ϕ(ζ)dζ = −ϕ, (1.2)

∫
RN+1

Γ(·; ζ)Lϕ(ζ)dζ = −ϕ; (1.3)

(iv) Γ(x, t; ξ, τ) = 0 if t ≤ τ ;
(v) for every ζ ∈ RN+1, LΓ(·; ζ) = −δζ , where δζ denotes the Dirac measure supported

in {ζ};
(vi) if we define

Γ∗(z; ζ) := Γ(ζ; z), ∀z, ζ ∈ RN+1,

then Γ∗ is a fundamental solution of L∗, the formal adjoint of L, satisfying the dual
statements of (iii)-(v).

In Section 3, by using hypothesis (H.3) and by suitably modifying some classical results
about caloric functions, we prove the following asymptotic behavior of Γ.

Theorem 1.2 For every ζ = (ξ, τ) ∈ RN+1 and for every ε > 0 there exists a compact
set F ⊆ RN+1 and a positive constant C such that

Γ(z; ζ) ≤ CK(z; ζε) ∀z ∈ F, (1.4)

where ζε = (ξ, τ − ε) and K denotes the fundamental solution of the heat operator H in
RN+1.
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An analogous result clearly holds for the fundamental solution Γ∗ of L∗. Therefore, and
in view of Theorem 1.1-(vi), we can exchange the role of z and ζ in Theorem 1.2. From
the proof, it will also result that if z belongs to a fixed compact set M , then the constant
in (1.4) can be chosen so as to depend only on M . We stress that this result, although
not unexpected, requires several non-trivial modifications of classical uniqueness results
for the heat equation.

As a byproduct of these results, in Section 3, we also prove a uniqueness theorem for
solutions to the Cauchy problem{

Lu = 0 in RN×]0,∞[
u(·, 0) = 0 in RN .

(1.5)

Theorem 1.3 Let u ∈ C∞(RN×]0,+∞[)∩C(RN × [0,+∞[) be a solution to the Cauchy
problem (1.5). If one of the following conditions holds:

(i) u is non-negative;
(ii) for every T > 0 there exists γ > 0 such that

T∫
0

∫
RN

exp(−γ|x|2)|u(x, t)|dxdt <∞;

then u vanishes identically.

The last section of the paper is devoted to the proof of some further classical properties
of the fundamental solution Γ. The main results of this section are contained in the
following theorem.

Theorem 1.4 For every ζ ∈ RN+1

lim sup
z→ζ

Γ(z; ζ) = ∞. (1.6)

Moreover, for every x ∈ RN and t > τ , we have∫
RN

Γ(x, t; ξ, τ)dξ = 1. (1.7)

The following corollary is a straightforward consequence of Theorem 1.4.

Corollary 1.5 Let ϕ ∈ C0(RN ). A classical solution to the problemLu = 0 in RN×]0,∞[
lim

t→0+
u(x, t) = ϕ(x) ∀x ∈ RN ,

is given by

u(x, t) =
∫

RN

Γ(x, t; ξ, 0)ϕ(ξ)dξ (x, t) ∈ RN×]0,+∞[.
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In the forthcoming paper [9], we shall use the results of this note to obtain a monotonic
approximation theorem and a representation formula for L-superparabolic functions.

Acknowledgments. The main results of this paper were announced in [11].

2. Existence of the fundamental solution. In this section we prove Theorem 1.1.
We begin by giving two simple maximum principle results.

Proposition 2.1 (Weak maximum principle)
Let L be an operator of type (1.1). Let Ω be a bounded open subset of RN+1 and u ∈ C2(Ω)
such that Lu ≥ 0 and lim sup

z→ζ
u ≤ 0 for every ζ ∈ ∂Ω. Then u ≤ 0 in Ω.

Proof. It is an immediate consequence of Picone’s theorem. Indeed, if we set

w(z) = et, z ∈ Ω,

then w ∈ C2(Ω), w > 0 and Lw < 0 in Ω. �

Given a cylinder Q = O×]a, b[, where O is an open subset of RN and a < b, we set

∂rQ = (O × {a}) ∪ (∂O × [a, b]). (2.1)

We call ∂rQ the parabolic boundary of Q.

Proposition 2.2 (Maximum principle on cylindrical domains)
Let u ∈ C2(Q), where Q is an open cylinder in RN+1, and Lu ≥ 0 on Q. If lim sup

z→ζ
u ≤ 0

for every ζ ∈ ∂rΩ, then u ≤ 0 on Q.

Proof. Let ε and δ be suitably small positive constants. We consider the function

uε(z) = u(z) + εe−t, z ∈ Qδ =: Ω×]a, b− δ].

We show that uε has no maximum in Qδ. Indeed

Luε(z) = Lu(z) + εe−t > 0, ∀z ∈ Qδ. (2.2)

By contradiction, if z̄ ∈ Qδ is a maximum, then, for A positive semi-definite, Luε(z̄) ≤ 0,
but this contradicts (2.2). Hence, for every z ∈ Qδ and ε > 0, we have

u(z) ≤ uε(z) ≤ lim sup
∂rQδ

uε = lim sup
∂rQδ

u+ εe−a ≤ εe−a.

Since ε is arbitrary, we obtain

u(z) ≤ 0, ∀z ∈ Qδ.

We conclude by letting δ go to 0. �

The following definition, as well as Theorems 2.5 and 2.7 below, are strongly inspired by
the classical paper [2].
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Definition 2.3 Let O be an open subset of RN . The point x0 ∈ ∂O is strongly L-regular
if there exists a L-non-characteristic outer normal to O in x0 , i.e. a vector ν 6= 0 such
that B(x0 + ν, |ν|) ∩O = ∅ and 〈A(x0, t)ν, ν〉 > 0 for every t ∈ R.

In the preceding definition, we have denoted by B(x0, r) the Euclidean ball in RN

centered at x0, with radius r > 0.
Our first step in the proof of Theorem 1.1 is the construction of an open covering

of RN whose elements are sets with strongly L-regular boundary. For every ε > 0 and
n ∈ N, we let

On = B(ne1, n+ εn) ∩B(−ne1, n+ εn), (2.3)

where e1 = (1, 0, . . . , 0) is the first versor of the canonical basis of RN .

Proposition 2.4 There exists ε > 0 such that (On)n∈N is an increasing sequence of open
sets with strongly L-regular boundary and such that

⋃
n∈N

On = RN .

Proof. By (H.2) and (H.3), there exists δ > 0 such that 〈A(z)ν, ν〉 > 0 for every z ∈ RN+1

and for every vector ν ∈ RN such that |ν − e1| < δ. For fixed n ∈ N, let x ∈ ∂On such
that x1 = 0. Then

ν =
x+ ne1
|x+ ne1|

is an outer normal to On in x. In order to prove that ∂On is strongly L-regular, it suffices
to verify that |ν − e1| < δ:

|ν − e1| = 2 sin
(
ν̂e1
2

)
= 2

√
1− cos ν̂e1

2
=

√
2(1− ν1)

=

√
2

(
1− n

n+ εn

)
=

√
2ε

1 + ε
< δ

if ε is suitably small. �

We set
Un,R = On×]−R,R [, n ∈ N, R > 0. (2.4)

In order to simplify the notation, for fixed n ∈ N and R > 0, in the next theorem we shall
denote by U the set Un,R in (2.4).

Theorem 2.5 If f ∈ C(U ∪ ∂rU), there exists a unique solution u ∈ C(U ∪ ∂rU) to the
Dirichlet problem

(PD)

{
Lu = −f (in the distribution sense)
u|∂rU = 0.
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Proof. The uniqueness of the solution immediately follows from the maximum principle
on cylindrical domains. We recall that, being L hypoelliptic, if Lw = 0 in the sense of
the distributions, then w ∈ C∞.
To prove the existence of the solution, we first assume that f ∈ C∞(U) and use a viscosity
argument. For every ε > 0, we consider the parabolic operator

Lε = L+ ε4RN

and denote by uε the solution to the problem (PD) related to Lε and f . For every ε > 0,
we have

‖uε‖∞ ≤ 2R‖f‖∞. (2.5)

Indeed, if
w(z) = −(t+R)‖f‖∞, z ∈ U,

then w ≤ 0 on U and Lεw = ‖f‖∞ ≥ 0. Therefore

Lε(uε + w) = −f + ‖f‖∞ ≥ 0 in U,

and uε + w ≤ 0 on ∂rU . From Proposition 2.2 we obtain

uε(z) ≤ (t+R)‖f‖∞ ≤ 2R‖f‖∞ ∀z ∈ U.

So (2.5) is proved. Therefore {uε | ε > 0} is a bounded subset of L∞(U). Hence
there exists a sequence (uεn)n∈N that converges in the weak dual topology to a function
u ∈ L∞(U) such that

‖u‖∞ ≤ 2R‖f‖∞. (2.6)

Besides, for every ϕ ∈ C∞
0 (U), we have

−〈f, ϕ〉 = 〈Lεnuεn , ϕ〉 = 〈uεn , L
∗ϕ〉+ εn〈uεn ,4ϕ〉, n ∈ N. (2.7)

We observe that
|〈uεn ,4ϕ〉| ≤ c, n ∈ N,

where c is a suitable constant. Thus, letting n go to infinity in (2.7), by using the
hypoellipticity of L, we have that Lu = −f in U in the classical sense.

We next show that u assumes the boundary data. Making use of Proposition 2.4, we
construct a barrier function ω at every point of the parabolic boundary of U , as follows:

(i) if z0 ∈ ∂On × [−R,R], we set

ω(z) = e−λ|x−(x0+ν)|2 − e−λ,

where λ is a positive parameter and ν is an outer normal vector to On in x0;
(ii) if z0 ∈ (On × {−R}), we set

ω(z) = −t−R.
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If λ is suitably large, it is possible to determine a barrier function ω for U at z0 ∈ ∂rU ,
such that Lω ≥ 1 in a neighborhood V of z0. Furthermore, there exists M ≥ ‖f‖∞ such
that

Mω ≤ −2R‖f‖∞ in U \ V.

Hence
Lε(Mω ± uε) = MLεω ∓ f ≥ ‖f‖∞ ∓ f ≥ 0 in U ∩ V,

and, from (2.5),
Mω ± uε ≤ 0 in ∂(U ∩ V ).

Thus, by the weak maximum principle,

|uε| ≤M |ω| in U ∩ V,

and, letting ε go to zero,
|u| ≤M |ω| in U ∩ V. (2.8)

In particular, (2.8) implies that
lim

z→z0

u(z) = 0.

This proves the solvability of (PD) when f is smooth. If f is merely continuous,
we consider a sequence (fn)n∈N of smooth functions which converges uniformly to f . If
(un)n∈N denotes the sequence of the corresponding solutions to the Dirichlet problem,
from (2.5), we have

‖un − um‖∞ ≤ 2R‖fn − fm‖∞, n,m ∈ N.

Thus (un)n∈N converges uniformly to a continuous function u which is the desired solution.
�

We next prove the existence of a fundamental solution of L. As above, for fixed n ∈ N
and R > 0, we shall write U instead of Un,R (see (2.4)).

Definition 2.6 The linear positive operator

G : C(U ∪ ∂rU) −→ C(U ∪ ∂rU)

which maps f ∈ C(U ∪ ∂rU) to u = Gf , the unique solution of (PD), is called Green’s
operator of L with respect to U .

Theorem 2.7 There exists a non-negative smooth function G, defined out of the diagonal
of U × U , such that, for every f ∈ C(U ∪ ∂rU),

Gf(z) =
∫
U

G(z; ζ)f(ζ)dζ z ∈ U ∪ ∂rU.
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Moreover G has the following properties:
(i) G(·; ζ)|∂rU = 0, for every ζ ∈ U ;
(ii) G(x, t; ξ, τ) = 0, if t ≤ τ ;
(iii) if G∗ denotes the corresponding function for L∗ then

G∗(z; ζ) = G(ζ; z), ∀z, ζ ∈ U.

Definition 2.8 We call G the Green’s function of L with respect to U .

Proof. We only prove (ii). We refer to Theorem 6.1 in [2] for the other proofs.
Fixed z0, ζ0 ∈ U such that t0 < τ0, we set r = τ0−t0

3 and we consider ϕ ∈ C∞
0 (U) such

that supp(ϕ) ⊆ B(ζ0, r). Let Gε, ε > 0, denote the Green’s operator of Lε = L+ ε4. We
have shown in the proof of Theorem 2.5, that there exists a sequence (εn)n∈N such that

Gεnϕ −→ Gϕ, as n→∞,

weakly in L∞(U). Let ψ ∈ C∞
0 (U) be such that supp(ψ) ⊆ B(z0, r). We have

0 =
∫
U

(Gεnϕ)(z)ψ(z)dz −→
∫
U

(Gϕ(z))ψ(z)dz, as n→∞, (2.9)

since Gε(z; ζ) = 0 for z ∈ B(z0, r), ζ ∈ B(ζ0, r). From (2.9), Gϕ = 0 a.e. in B(z0, r).
Moreover Gϕ ∈ C∞(U) implies that Gϕ(z0) = 0 for every ϕ ∈ C∞

0 (U) with supp(ϕ) ⊆
B(ζ0, r). Therefore G(z0, ζ0) = 0. �

Proof of Theorem 1.1.
We split the proof in four steps.

(1) We set
UR = RN×]−R,R[ =

⋃
n∈N

Un,R R > 0

where Un,R is defined in (2.3) and (2.4). We denote by gn,R(z; ζ) the function defined
in UR × UR, equal to the Green’s function of L with respect to Un,R if z, ζ ∈ Un,R and
vanishing if z ∈ UR \ Un,R or if ζ ∈ UR \ Un,R.
We show that

gn,R ≤ gn+1,R, ∀n ∈ N, R > 0. (2.10)

(2.10) is obvious if z or ζ are in UR \ Un,R. If z, ζ ∈ Un,R, we set

w = gn+1,R(·; ζ)− gn,R(·; ζ) in Un,R.

We first observe that, for every ϕ ∈ C∞
0 ,

G∗n(L∗ϕ) = −ϕ in Un,R, n ∈ N. (2.11)
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Indeed the functions appearing in (2.11) are solutions to the Dirichlet problem{
L∗u = −L∗ϕ
u|∂rUn,R

= 0

so that (2.11) is a consequence of Theorem 2.5.
If we denote by Gn,R the Green’s operator of L with respect to Un,R, for every ϕ ∈
C∞

0 (Un,R), (2.11) yields

−ϕ(ζ) = G∗n,R(L∗ϕ)(ζ) =
∫
G∗

n,R(ζ; z)(L∗ϕ)(z)dz

= 〈gn,R(·; ζ), L∗ϕ〉 ∀ζ ∈ Un,R. (2.12)

(2.12) implies that Lw = 0 in Un,R and, since w ≥ 0 on ∂rUn,R, by the maximum principle
on cylindrical domains, (2.10) follows.

(2) We set
GR = lim

n→∞
gn,R in UR × UR.

As in the proof of Theorem 2.5, we show that for every ϕ ∈ C∞
0 (UR) we have

‖Gn,Rϕ‖∞ ≤ 2R‖ϕ‖∞, ∀n ∈ N. (2.13)

Let Φ ∈ C∞
0 (UR) be such that min{Φ, ϕ+ Φ} ≥ 0 in UR. Then

GRϕ(z) :=
∫
GR(z; ζ)ϕ(ζ)dζ

=
∫
GR(z; ζ)(Φ(ζ) + ϕ(ζ))dζ −

∫
GR(z; ζ)Φ(ζ)dζ

(by Beppo-Levi’s theorem)

= lim
n→∞

Gn,Rϕ(z) ∀z ∈ UR.

Thus, (2.13) yields
‖GRϕ‖∞ ≤ 2R‖ϕ‖∞. (2.14)

An analogous result holds for the adjoint operator G∗R. For every ψ ∈ C∞
0 (UR) and n ∈ N

large enough, we have

−
∫

UR

ϕ(z)ψ(z)dz =
∫

UR

L(Gn,Rϕ)(z)ψ(z)dz =
∫

UR

(Gn,Rϕ)(z)L∗ψ(z)dz

(from (2.14) and the dominated convergence theorem)

−→
∫

UR

(GRϕ)(z)L∗ψ(z)dz = 〈L(GRϕ), ψ〉 as n→∞.
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By the hypoellipticity of L, GRϕ is smooth and

L(GRϕ) = −ϕ in UR

in the classical sense.
On the other hand, in order to show that

GR(Lϕ) = −ϕ in UR,

it suffices to observe that, by (2.11),

−ϕ(z) = Gn,R(Lϕ)(z) =
∫
Gn,R(z; ζ)Lϕ(ζ)dζ

so that, as n goes to infinity,

−ϕ(z) −→
∫
GR(z; ζ)Lϕ(ζ)dζ.

(3) In this step, we show that, for every R > 0, GR is smooth out of the diagonal of
UR × UR. We first verify that GR(·; ζ) ∈ C∞(UR \ {ζ}) for every ζ ∈ UR. Then, it is
sufficient to proceed as in Theorem 6.1 in [2], making use of Schwartz’s kernel theorem
(see, for example Theorem 5.2.6 in [7]).

Let z0, ζ0 ∈ UR, with z0 6= ζ0, and ϕ ∈ C∞
0 (UR) with supp(ϕ) ⊆ B

(
z0,

|z0−ζ0|
2

)
. Then

we have

〈LzGR(·; ζ0), ϕ〉 =
∫
GR(z; ζ0)L∗ϕ(z)dz

= lim
n→∞

∫
G∗

n,R(ζ0; z)L∗ϕ(z)dz

(by (2.12))
= −ϕ(ζ0) = 0.

By the hypoellipticity of L, GR(·; ζ0) is a smooth function in a neighborhood of z0 and
LzGR(z0; ζ0) = 0.

(4) For every z, ζ ∈ RN+1, we define the fundamental solution of L as

Γ(z; ζ) = GR(z; ζ)

where R is a positive number such that z, ζ ∈ UR. This definition is well-posed: indeed,
let R,R′ > 0 be such that, for example, R < R′ and z, ζ ∈ Un,R ⊆ Un,R′ for some n ∈ N.
We consider

w = Gn,R(·; ζ)−Gn,R′(·; ζ)|Un,R
.

We have
w|∂rUn,R

= 0 and Lw = 0 in Un,R,
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therefore, by Proposition 2.2, w = 0 in Un,R. As a consequence

GR = GR′ |U∪∂rU .

From the construction of Γ, by steps (1)-(3) of this proof and by Theorem 2.7, the prop-
erties (i)-(iv) and (vi) immediately follow. �

As a straightforward consequence of Theorem 1.1, we also have the following corollary.

Corollary 2.9 For every non-negative measure µ with compact support, we have

L

∫
RN+1

Γ(·; ζ)dµ(ζ) = −µ (in the distribution sense).

Proof. We observe that the potential∫
RN+1

Γ(·; ζ)dµ(ζ)

is a distribution. Indeed, for every non-negative function ϕ ∈ C∞
0 (RN+1), we have∫

RN+1

ϕ(z)
∫

RN+1

Γ(z; ζ)dµ(ζ)dz =
∫

RN+1

∫
RN+1

Γ(z; ζ)ϕ(z)dzdµ(ζ) <∞

since, by (1.2), ∫
RN+1

Γ(z; ·)ϕ(z)dz ∈ C∞(RN+1)

and µ is compactly supported. Thus∫
RN+1

Γ(·; ζ)dµ(ζ) ∈ L1
loc(RN+1).

If we still fix ϕ ∈ C∞
0 (RN+1), we have

〈LΓµ, ϕ〉 =
∫ ∫

Γ(z; ζ)dµ(ζ)L∗ϕ(z)dz

=
∫ ∫

Γ∗(ζ; z)L∗ϕ(z)dzdµ(ζ)

= −
∫
ϕ(ζ)dµ(ζ),

where the last equality follows from Theorem 1.1-(vi). �
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3. Some estimates of the fundamental solution. The aim of this section is the
proof of Theorem 1.2 stated in the introduction. We first introduce some notations which
we shall systematically use in the sequel:

(N.1) π1 = {x ∈ RN | x = (x1, . . . , xN ), x1 > 0};

(N.2) x̃ = (x2, . . . , xN ) ∈ RN−1, for every x = (x1, . . . , xN ) ∈ RN ;

(N.3) for every positive constants R and c,

SR,c =: QR×]0, c[,

where
QR = {x ∈ RN | |x| > R}.

The first step of the proof of Theorem 1.2 is the following uniqueness result for the
Dirichlet problem related to the heat operator H in SR,c.

Theorem 3.1 Let u ∈ C2(SR,c)∩C(SR,c ∪ ∂rSR,c) be a solution of the Dirichlet problem{
Hu = 0 in SR,c

u|∂rSR,c
= 0.

(3.1)

If there exists γ > 0 such that

c∫
0

∫
QR

exp(−γ|x|2)|u(x, t)|dxdt <∞ (3.2)

then u ≡ 0 in SR,c.

Proof. We first prove that, if (3.2) holds, then there exists δ = δ(γ) such that u is a
bounded function in SR,δ. Let δ > 0 fixed as we shall specify in the sequel and z̄ = (x̄, t̄) ∈
SR,δ. For every ρ > 0 we set

Bρ = B(x̄, ρ) ∩QR,

where B(x̄, ρ) = {x ∈ RN | |x − x̄| < ρ}. Let hρ be a function such that 0 ≤ hρ ≤ 1,
supp(hρ) ⊆ B(x̄, ρ + 1), hρ(x) = 1 if x ∈ B(x̄, ρ) and with first and second derivatives
continuous and bounded by a constant independent of ρ. Let ε > 0 and ρ such that
B(0, R) ⊆ B(x̄, ρ).

We explicitly remark that, by the results of [5], Ch. 3, u ∈ C1(SR,δ). We set v =
hρK(z̄; ·) and we integrate the Green’s identity

vHu− uH∗v = div(v∇u− u∇v)− ∂t(uv)
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on the region Bρ+1×]0, t̄− ε[. Keeping in mind that u|∂rSR,c
= 0, we obtain, as ε goes to

zero,

u(z̄) = lim
τ→t̄−

∫
Bρ+1

u(x, τ)h(x)K(z̄;x, τ)dx

=

t̄∫
0

∫
Bρ+1

u(x, t)H∗v(x, t)dxdt+

t̄∫
0

∫
|x|=R

〈v(x, t)∇u(x, t), ν(x)〉dσ(x)dt (3.3)

where ν(x) denotes the outer normal to QR in x. Since H∗v = 0 in Bρ, (3.3) yields

u(z̄) =

t̄∫
0

∫
Bρ+1\Bρ

u(x, t)H∗v(x, t)dxdt

+

t̄∫
0

∫
|x|=R

〈v(x, t)∇u(x, t), ν(x)〉dσ(x)dt. (3.4)

Moreover

|H∗v(z)| = |2〈∇h(x),∇K(z̄ − z)〉+K(z̄ − z)4h(x)|

≤ c

(t̄− t)
n+1

2

exp
(
−|x̄− x|2

4(t̄− t)

)
(3.5)

for some positive constant c. By using (3.2), it is easy to show that there exists δ = δ(γ)
such that

lim
ρ→∞

∣∣∣∣∣∣∣
t̄∫

0

∫
Bρ+1\Bρ

u(z)H∗v(z)dz

∣∣∣∣∣∣∣ = 0.

On the other hand, if |x̄| ≥ 2R, there exists a constant L = L(R) > 0 such that, for every
(x, t) ∈ ∂B(0, R)× [0, δ], 0 ≤ v(x̄, t̄;x, t) ≤ L. Thus, from (3.4) and (3.5), we obtain

|u(z̄)| =

∣∣∣∣∣∣∣
t̄∫

0

∫
|x|=R

v(z)〈∇u(z), ν(x)〉dσ(x)dt

∣∣∣∣∣∣∣ <∞ (3.6)

for z̄ ∈ S2R,δ. From (3.6) it immediately follows that u is bounded in SR,δ.

Thanks to the boundedness of u, we now prove that

lim
|z|→∞, z∈SR,δ

u(z) = 0. (3.7)
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The thesis will follow from (3.7). Indeed an immediate consequence of the maximum
principle shows that u ≡ 0 on SR,δ. Repeating this process for finitely many times, we
deduce that u ≡ 0 on the strip SR,c.

We extend the function u by defining u(x, t) = 0 for every (x, t) ∈ QR×]−∞, 0]. In this
way Hu = 0 in QR×]−∞, δ[. We denote by

ΩH
ρ (z) = {ζ ∈ RN+1 | K(z; ζ) ≥ (4πρ)−

N
2 }

the H-parabolic ball centered at z and with radius ρ > 0. To every z ∈ SR,δ we associate
a radius ρ(z) > 0 such that

ΩH
ρ(z)(z) ⊆ QR×]−∞, δ[

and lim
|z|→∞

ρ(z) = ∞.

The following mean value formula holds (see [12])

|u(z)| =

∣∣∣∣∣∣∣∣
1

(4πρ(z))
N
2

∫
ΩH

ρ(z)
(z)

u(ζ)
|x− ξ|2

4(t− τ)2
dζ

∣∣∣∣∣∣∣∣
≤

sup
SR,δ

|u|

(4πρ(z))
N
2

∫
ΩH

ρ(z)
(z)∩{0<τ<t}

|x− ξ|2

4(t− τ)2
dζ

≤
sup
SR,δ

|u|

(4π)
N
2

∫
ΩH

1 (0)∩{0<s< δ
ρ(z)

}

|y|2

4s2
dyds −→ 0 as |z| → ∞.

�

The result of Theorem 3.1 also holds if we relax condition (3.2) by requiring that u is
non-negative. Indeed we have:

Theorem 3.2 Let u ∈ C2(SR,c) ∩ C(SR,c ∪ ∂rSR,c) be a non-negative solution of the
Dirichlet problem (3.1), then u ≡ 0.

The proof of Theorem 3.2 is based on the following two lemmas.

Lemma 3.3 Let u be a non-negative caloric function in π1×]0, c[, for some positive con-
stant c. Then we have

0 ≤
∫
π1

[K(x− y, t)−K(x1 + y1, x̃− ỹ, t)]u(y + δe1, δ)dy ≤ u(x+ δe1, t+ δ) (3.8)

for every 0 < δ < c and (x, t) ∈ π1×]0, c− δ[.
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Lemma 3.4 In the same hypotheses of the preceding lemma, if 0 < δ < c
2 then there

exists γ > 0 such that

δ∫
0

∫
x1≥ c

2

exp(−γ|x|2)u(x, t)dxdt <∞.

Proof of Lemma 3.3. Since K(x− y, t)−K(x1 + y1, x̃− ỹ, t) ≥ 0 (see (3.11)), the first
inequality in (3.8) holds. For fixed R > 0, we set

πR
1 = {x ∈ π1 | x1 < R and |x̃| < R}

and
F (x, t) =

∫
πR
1

[K(x− y, t)−K(x1 + y1, x̃− ỹ, t)]u(y + δe1, δ)dy,

for every (x, t) ∈ π1×]0, c− δ[. Then

lim
t→0+

F (x, t) = u(x+ δe1, δ)

uniformly on compact subsets of πR
1 and

lim
t→0+

F (x, t) = 0

uniformly on compact subsets of π1 \ πR
1 .

We fix x̄ ∈ ∂πR
1 . By sake of continuity, for every ε > 0 there exists η > 0 such that

u(x+ δe1, δ) ≤ u(x̄+ δe1, δ) + ε if |x− x̄| < η.

Therefore

lim sup
(x,t)→(x̄,0)

F (x, t)

= lim sup
(x,t)→(x̄,0)

∫
πR
1 ∩B(x̄,η)

[K(x− y, t)−K(x1 + y1, x̃− ỹ, t)]u(y + δe1, δ)dy

≤ (u(x̄+ δe1, δ) + ε) lim sup
(x,t)→(x̄,0)

∫
πR
1 ∩B(x̄,η)

[K(x− y, t)−K(x1 + y1, x̃− ỹ, t)]dy

= u(x̄+ δe1, δ) + ε.

Since ε is arbitrary, we get

lim sup
(x,t)→(x̄,0)

F (x, t) = u(x̄+ δe1, δ).
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For S > R, we now consider

v(x, t) = u(x+ δe1, t+ δ)− F (x, t), (x, t) ∈ πS
1×]0, c− δ[.

For what we have seen above lim inf
πS
1 ×{0}

v(x, t) ≥ 0, besides v(0, x̃, t) = u(δ, x̃, t+ δ) ≥ 0. On

the other hand, since lim
|z|→∞

F (z) = 0, for every ε > 0 there exists a suitable S = S(ε),

such that
v(z) ≥ −ε z ∈ (∂πS

1 \ {x1 = 0})× [0, c− δ[.

Thus, by the maximum principle, we obtain v ≥ −ε, in πS
1×]0, c − δ[. As ε → 0+, we

obtain
v(z) ≥ 0, z ∈ π1×]0, c− δ[.

More explicitly, for every (x, t) ∈ π1×]0, c− δ[ the following inequality holds∫
πR
1

[K(x− y, t)−K(x1 + y1, x̃− ỹ, t)]u(y + δe1, δ)dy ≤ u(x+ δe1, t+ δ). (3.9)

We conclude by letting R go to infinity in (3.9). �

Proof of Lemma 3.4.
With the change of variable

x′ = x+ δe1, y′ = y + δe1,

from (3.8) we obtain∫
y1>δ

[K(x− y, t)−K(x1 + y1 − 2δ, x̃− ỹ, t)]u(y, δ)dy ≤ u(x, t+ δ)

for every (x, t) ∈ {x1 > δ}×]0, c− δ[. In particular, for x = (1 + δ)e1,

u((1 + δ)e1, t+ δ) ≥
∫

y1>δ

[K((1 + δ)e1 − y, t)−K(1− δ + y1,−ỹ, t)]u(y, δ)dy (3.10)

(observing that

K(1− δ + y1,−ỹ, t) = exp
(
δ − y1

t

)
K((1 + δ)e1 − y, t) (3.11)

and, as a consequence, that the integrand in (3.10) is non-negative)

≥
(

1− exp
(
δ − c

2

c− δ

)) ∫
y1> c

2

K((1 + δ)e1 − y, t)u(y, δ)dy.
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Integrating with respect to the variable δ, we obtain

δ∫
0

∫
y1> c

2

K((1 + s)e1 − y, t)u(y, s)dyds ≤
δ∫

0

u((1 + s)e1, t+ s)

1− exp
(

s− c
2

c−s

) ds <∞ (3.12)

for every t ∈]0, c− δ[. We conclude by putting t = δ in (3.12) and by observing that there
exists γ > 0 such that

K((1 + s)e1 − y, δ) ≥ 1

(4πδ)
N
2

exp(−γ|y|2) ∀(y, s) ∈
{
y1 >

c

2

}
×]0, δ[.

�

We are now in position to prove Theorem 3.2.

Proof of Theorem 3.2.
By the preceding lemmas, there exists γ > 0 such that

c
3∫

0

∫
QR+ c

2

exp(−γ|x|2)u(x, t)dxdt <∞.

We also have
c
3∫

0

∫
QR

exp(−γ|x|2)u(x, t)dxdt <∞.

Therefore Theorem 3.1 ensures that u = 0 in SR, c
3
. We next consider the Dirichlet

problem {
Hu = 0 in SR,c \ SR, c

3

u|∂r(SR,c\SR, c
3
) = 0.

As above, we prove that u = 0 in SR, c
3
+ 2c

9
. By repeating this procedure, the assertion

follows. �

Finally, we prove Theorem 1.2.

Proof of Theorem 1.2.
We fix R > 0 such that F0 ∪ {ζ} ⊆ B(0, R)×] − R,R[, where F0 is the compact set of
hypothesis (H.3). For every n ∈ N, we set

ϕ = Γ(·; ζ)|∂r(QR×]−R,R[),

ϕn(z) =

{
Γ(z; ζ) z ∈ (∂r(QR×]−R,R[)) \ (QR+n × {−R})
0 z ∈ (∂r(QR+n×]−R,R[)) \ (QR+n × {−R}).
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We denote by un, n ∈ N, the solution to the Dirichlet problem{
Hu = 0 in (QR \QR+n)×]−R,R[
u = ϕn in ∂r((QR \QR+n)×]−R,R[).

By the maximum principle, (un)n∈N is an increasing sequence of non-negative functions.
For fixed ε > 0, if ζε = (ξ, τ − ε) there exists T = T (ε) such that

ϕ ≤ TK(·; ζε). (3.13)

Using the maximum principle, from (3.13) we get

un ≤ TK(·; ζε) in (QR \QR+n)×]−R,R[, ∀n ∈ N (3.14)

from which it follows that (un)n∈N is bounded. Let

u = sup
n∈N

un in QR×]−R,R[.

By means of the Harnack’s theorem, we see that u is a non-negative solution of{
Hu = 0 in QR×]−R,R[
u = ϕ in ∂r(QR×]−R,R[).

Moreover, from Theorem 3.2 u is equal to Γ(·; ζ), and letting n→∞ in (3.14), we obtain

Γ(·; ζ) ≤ TK(·; ζε) in QR×]−R,R[. (3.15)

In order to prove the estimate in the semispace RN×]R,∞[, we consider the Cauchy
problem

(CP)

{
Hu = 0 in RN×]R,∞[
u(x,R) = Γ(x,R; ζ).

Since Γ(·; ζ) is a solution of (CP), we have

Γ(z; ζ) =
∫

RN

K(z; y,R)Γ(y,R; ζ)dy

(modifying T in (3.15), if necessary, so that Γ(·, R; ζ) ≤ TK(·, R; ζε))

≤ T

∫
RN

K(z; y,R)K(y,R; ζε)dy = TK(z; ζε)

by the reproduction property of K. �
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We close this section by proving the uniqueness theorem for solutions to the Cauchy
problem (1.5) stated in the introduction.

Proof of Theorem 1.3. We fix R > 0 such that

F0 ⊆ BRN (0, R)× R,

where F0 is defined in (H.3). From Lemma 3.4, for every c > 0, if any of (i) and (ii) holds
then there exist γ0 > 0 and δ > 0 such that

c∫
0

∫
|x|>R+δ

exp(−γ0|x|2)|u(x, t)|dxdt <∞.

Thus, since L = 4− ∂t in SR,c, proceeding as in the proof of Theorem 3.1, (see (3.7)),
we have

lim
|z|→∞, z∈SR+δ,c

u(z) = 0.

As an obvious application of the maximum principle shows, u is identically zero in RN ×
[0, c]. Moreover we can proceed analogously to show that u ≡ 0 in every strip RN ×
[nc, (n+ 1)c], n ∈ N. �

4. Some properties of the fundamental solution. In this section we prove Theorem
1.4 and Corollary 1.5.

Proof of Theorem 1.4. We begin by proving (1.6). Without loss of generality we can
assume that ζ = 0. We want to show that Γ0 := Γ(·; 0) is unbounded near the origin. By
contradiction, we suppose that Γ0 is bounded.

We take for granted, for a moment, the existence of a non-negative function p with
the following property: there exist two positive constants T and c, only dependent on L,
such that, for every fixed ζ ∈ RN+1, p(·; ζ) is a smooth L-superparabolic function in QT

and
cKζ(x1 − ξ1, t− τ) ≤ p(x1, t; ζ) in QT . (4.1)

Here QT = R×]τ, τ + T [. For the definition of Kζ , see (4.3) and (4.4).
For every ε ∈]0, 1[ there clearly exists δ = δ(ε) ∈]0, T/2[ such that, if

vε(z) = εp(x1, t; 0,−δ)− Γ0(z), z ∈ RN×]0, T/2[,

then
lim inf

z→0
vε(z) ≥ 0.

Moreover we can choose δ(ε) in such a way that δ(ε) tends to 0 as ε → 0+. We recall
Theorem 1.2 and observe that vε(x, 0) is non-negative for every x ∈ RN . Thus by applying
the maximum principle to the function vε in the strip RN×]0, T/2[, we have

Γ0(z) ≤ εp(x1, t; 0,−δ(ε)). (4.2)
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We remark that, for every fixed z = (x, t) ∈ RN×]0, T/2[, p(x1, t; 0,−δ(ε)) is a bounded
function of ε in ]0, 1[. Therefore, as ε → 0+, from (4.2) we deduce that Γ0 ≡ 0 in
RN×]0, T/2[. This is an obvious contradiction.

We now prove the existence of p. We imitate the proof of Th. 2.2 in [3]. In order to
avoid repetitions, we shall only sketch the proof.

Let ω be a bounded non-decreasing function verifying (1.3) and (2.22) of [3], i.e. ω is
a modulus of continuity of the coefficients of L. The notation is as in (2.22) of [3]. For
z = (x, t) = (x1, . . . , xN , t), ζ = (ξ, τ) = (ξ1, . . . , ξN , τ) ∈ RN+1, we set

Qζ(x1) =
x2

1

a11(ζ)
(4.3)

and
Pζ(x1, t) = Qζ(x1 − ξ1 + (t− τ)b1(ζ)).

By using (H.2) and (H.3), it is possible to choose a positive number µ such that, for every
z, ζ ∈ RN+1, µ satisfies the following constraints analogous to (2.22)-(2.27) of [3]:

a11(z)(∂x1Pζ(x1, t))2 ≥ µ−1|x1 − ξ1 + (t− τ)b1(ζ)|2

(∂x1Pζ(x1, t))2 ≤ µ|x1 − ξ1 + (t− τ)b1(ζ)|2

|∂2
x1
Pζ(x1, t)| ≤ 4µ

|∂x1Pζ(x1, t)| ≤ 4µ|x1 − ξ1 + (t− τ)b1(ζ)|2

µ−1|x1 − ξ1 + (t− τ)b1(ζ)|2 ≤ Pζ(x1, t) ≤ µ|x1 − ξ1 + (t− τ)b1(ζ)|2.

For every fixed ζ ∈ RN+1, we consider the parabolic operator with constant coefficients
in R2

Lζ = a11(ζ)∂2
x1

+ b1(ζ)∂x1 − ∂t.

The fundamental solution of Lζ , with pole in (0, 0), is given by

Kζ(x1, t) =

{
(4πt)−1 exp

(
−Qζ(x1+tb1(ζ))

4t

)
t > 0

0 t ≤ 0.
(4.4)

We restrict the choice of µ so that analogous conditions to (2.28)-(2.30) of [3] hold, that
is

sup
ζ∈RN+1

sup
(x1,t)∈R2

(|x1 + tb1(ζ)|2 + |t|)Kζ(x1, t) ≤
µ

2

and
ω

(µ
2

)
>

3
4
m
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where
m = sup

z∈RN+1

ω(|z|).

Now, if f and h are as in (2.31), (2.34) of [3], we let

ě(t) = exp

 1∫
0

f(s)ds


ǧ(u) =

u∫
0

exp

− v∫
1

h(w)dw

 dv u ≥ 0

and define
p(x1, t; ζ) = ǧ(ě(t)Kζ(x1 − ξ1, t− τ)).

By following the proof of Th. 2.2 in [3], we show that there exist T = T (L) > 0 and
c = c(L) > 0 such that

Lp(z) = (a11(z)∂2
x1

+ b1(z)∂x1 − ∂t)p(x1, t; ζ) ≤ 0

in RN×]τ, τ + T [ so that (4.1) holds. We stress that neither T or c depend on ζ. This
completes the proof of (1.6).

We proceed by proving (1.7). We give two preliminary lemmas.

Lemma 4.1 Let ϕ ∈ C∞
0 (RN+1) be such that 0 ≤ ϕ ≤ 1 and

sup
(x,t),(ξ,τ)∈supp(ϕ)

|t− τ | ≤ ε.

Then
u(z) =

∫
RN+1

Γ(z; ζ)ϕ(ζ)dζ ≤ ε ∀z ∈ RN+1.

Proof. Since Γ(x, t; ξ, τ) = 0 for t ≤ τ , then u(x, t) = 0 for t ≤ t0 =: min{s ∈ R | (y, s) ∈
supp(ϕ) for some y ∈ RN}. It is non-restrictive to suppose t0 = 0.
We define

v(x, t) = t− u(x, t) x ∈ RN , t ≥ 0.

Then, from Theorem 1.1, we have that v ∈ C∞ and

Lv(z) = −1 + ϕ(z) ≤ 0.

Moreover v(x, 0) = −u(x, 0) = 0. From Theorem 1.2,

lim
|x|→∞

u(x, t) = 0,
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therefore
lim

|x|→∞
v(x, t) = t ∀t ≥ 0.

Thus, by using the maximum principle on cylindrical domains, v(x, t) ≥ 0 for t ≥ 0, that
is

u(x, t) ≤ t ∀t ≥ 0. (4.5)

In particular u(x, t) ≤ ε for 0 < t ≤ ε. On the other hand, by assumption,

sup
(x,t),(ξ,τ)∈supp(ϕ)

|t− τ | ≤ ε,

then
Lu(z) = 0 ∀t > ε,

and
lim

|x|→∞
u(x, t) = 0 ∀t > ε.

The maximum principle once more gives

u(x, t) ≤ ε ∀t > ε

which completes the proof of the lemma. �

Lemma 4.2 For every x ∈ RN and t, τ ∈ R we have∫
RN

Γ(x, t; ξ, τ)dξ ≤ 1. (4.6)

Proof. The left hand side of (4.6) vanishes if t ≤ τ . Thus it is enough to prove the
lemma in the case t > τ .
Let ε > 0 and let (ϕn)n∈N be an increasing sequence of smooth functions with compact
support supp(ϕn) ⊆]τ − ε, τ [ and such that ϕn pointwise converges to χ]τ−ε,τ [. From
Lemma 4.1, we have ∫

RN+1

Γ(z; ξ, s)ϕn(ξ, s)dξds ≤ ε

hence, as n goes to infinity,

1
ε

τ∫
τ−ε

∫
RN

Γ(x, t; ξ, s)dξds ≤ 1. (4.7)

From this inequality, as ε goes to 0, (4.6) follows. �
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Finally, we are in position to conclude the proof of Theorem 1.4. Without loss of generality
we can suppose τ > 0. We set

u(x, t) =

+∞∫
0

∫
RN

Γ(x, t; ξ, s)dξds x ∈ RN , t > 0.

Integrating inequality (4.6) with respect to τ on the interval [0, t], we obtain

u(x, t) =

t∫
0

∫
RN

Γ(x, t; ξ, s)dξds ≤ t ∀x ∈ RN , ∀t > 0.

We want to show that u ∈ C∞(RN×]0,+∞[) and Lu = −1. We fix (x, t) ∈ RN×]0,+∞[
and consider a cut-off function ϕ ∈ C∞

0 (RN+1) with supp(ϕ) ⊆ BRN+1(0, t) and such that
ϕ ≡ 1 in a neighborhood V of (x, t). We have

u(z) =
∫

RN+1

Γ(x, t; ξ, s)ϕ(ξ, s)dξds

+

+∞∫
0

∫
RN

Γ(x, t; ξ, s)(1− ϕ(ξ, s))dξds ≡ I1(z) + I2(z).

From Theorem 1.1, we obtain

LI1(z) = −ϕ(z) = −1.

Moreover

LI2 =

+∞∫
0

∫
RN

LΓ(·; ξ, s)(1− ϕ(ξ, s))dξds = 0

in V . Hence v(x, t) ≡ t− u(x, t) is a non-negative function such that

Lv(x, t) = 0 ∀(x, t) ∈ RN×]0,+∞[,

and v(x, 0) = 0. Using Theorem 1.3, we see that v is identically zero, that is

t∫
0

1−
∫

RN

Γ(x, t; ξ, s)dξ

 ds = 0 (4.8)

From this identity, keeping in mind Lemma 4.2, we obtain∫
RN

Γ(x, t; ξ, τ)dξ = 1.
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We close this section by proving the Corollary 1.5.

Proof of Corollary 1.5. It is clear that Lu = 0 in RN×]0,∞[. We only have to study
the boundary behavior of u. Let us fix x ∈ RN . Using the continuity of ϕ, for every ε > 0
there exists δ > 0 such that

sup
|x−ξ|≤δ

|ϕ(ξ)− ϕ(x)| < ε.

From Theorem 1.4, we obtain

|u(x, t)− ϕ(x)| =

∣∣∣∣∣∣
∫

RN

Γ(x, t; ξ, 0)(ϕ(ξ)− ϕ(x))dξ

∣∣∣∣∣∣
≤ ε+ 2‖ϕ‖∞

∫
|x−ξ|≥δ

Γ(x, t; ξ, 0)dξ.

We observe that lim
t→0+

Γ(x, t; ξ, 0) = 0 if x 6= ξ. Therefore, using Theorem 1.2 and its

remarks, from the previous inequality we finally obtain

lim sup
t→0+

|u(x, t)− ϕ(x)| ≤ ε ∀ε > 0.

This completes the proof. �
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[10] O.A. Olejnik, E.V. Radkevič, Second order equations with non-negative char-
acteristic form, Providence, Amer. Math. Soc. (1973).

[11] A. Pascucci, Soluzione fondamentale e teoria del potenziale per equazioni ipoellit-
tiche del second’ordine, Seminario di Analisi Matematica, Dip. di Mat. Univ. Bologna
(A.A. 1996/97, Tecnoprint Bologna).

[12] N.A. Watson, A theory of temperatures in several variables, Proc. Lond. Math.
Soc., 26,3 (1973), 385–417.

25


