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1. Introduction

In RN+1 we consider the second order partial differential operator

L =
N∑

i,j=1

aij (z)∂xi∂xj +
N∑
j=1

bj (z)∂xj − ∂t , (1.1)

wherez = (x, t) is the point ofRN+1, A = (aij ) is aN × N symmetric and
positive semidefinite matrix and the coefficientsaij , bj ,1 6 i, j 6 N , are smooth
functions. We also assume the following hypotheses:

(H.1) L is hypoelliptic;
(H.2) a11(z) 6= 0 for everyz ∈ RN+1;
(H.3) L is the heat operator out of a compact subsetF0 of RN+1.

We proved in a previous note [9] that the operatorL has a global fundamental solu-
tion satisfying several classical properties. Thanks to the results in [9], in this paper
we aim to show a monotone approximation theorem and an integral representation
formula forL-superparabolic functions.

Before presenting our main results in details, we would like to briefly comment
the hypotheses (H.1)–(H.3). As it is well-known, a sufficient condition for (H.1) is
the following Hörmander’s hypothesis (see [7] and [11])

(H) rankL(X1, . . . , XN, Y0− ∂t)(z) = N + 1, ∀z ∈ RN+1.
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In (H), L(X1, . . . , XN, Y0 − ∂t) denotes the Lie algebra generated by the vector
fields

Xi =
N∑
j=1

aij ∂xj , i = 1, . . . , N and Y0− ∂t =
N∑
j=1

bi∂xj − ∂t .

We explicitly remark that (H) is nonequivalent to (H.3) (see [1]).
Condition (H.2) simply ensures thatL is uniformly nontotally degenerate. Con-

dition (H.3) yields an asymptotic estimate of0 at infinity in terms of the funda-
mental solution of the heat equation. Due to the local nature of our results, (H.3)
does not affect the generality.

Before proceding with the plan of the paper, we recall some well-known defin-
itions.

DEFINITION 1.1. Let� be an open subset ofRN+1. The sheaf of theL-parabolic
functions is defined by

HL(�) = {u ∈ C∞(�)|Lu = 0}.
We say that an open setV ⊂ RN+1 isL-regular(V ∈ Tr ) if V is bounded and, for
everyϕ ∈ C(∂V ), there exists a unique functionu := HV

ϕ ∈ HL(V )∩ C(V̄ ) such
thatu|∂V = ϕ. We say that

u:�→]−∞,+∞]
is L-superparabolic(u ∈ S(�)) if u is lower semicontinuous,u < ∞ on a dense
subset of� and

u > HV
ϕ on V,

for everyV ∈ Tr , V̄ ⊆ �, and for everyϕ ∈ C(∂V ) such thatϕ 6 u.

Proceeding as in [10], Theorem 1, we can obtain the following characterization
of L-superparabolic functions.

PROPOSITION 1.2.Let

u:�→]−∞,+∞]
be a lower semicontinuous function. The following statements are equivalent:

(i) u ∈ S(�);
(ii) u ∈ L1

loc(�) andLu 6 0 in the distribution sense.

In Section 2 we are concerned with the problem of the monotone regularization
of L-superparabolic functions. Our result reads:
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THEOREM 1.3. Let � be an open subset ofRN+1 and u ∈ S(�). For every
bounded open setV ⊆ V̄ ⊆ �, there exists an increasing sequence(un)n∈N of
smooth superparabolic functions inRN+1 such that

lim
n→∞ un(z) = u(z), ∀z ∈ V.

The problem of monotone regularization of superparabolic functions has a long
history. It is well-known that a supertemperature can be easily approximated by
an increasing sequence of smooth supertemperatures. This can be attained by the
device of the classic Friedrichs’ mollification. This is also the case of an operator
L of type (1.1) with constant coefficients. However, the general case of variable
coefficients cannot be treated as above. Many authors have developed different
strategies in order to construct ad hoc mollifiers for a certain class of differential
operators.

In a paper dated 1963 [8], concerning uniformly elliptic equations, Littman
proved a result analogous to Theorem 1.3. In that case, the approximation se-
quence of the superarmonic function was obtained by the convolution with a kernel
constructed from the fundamental solution.

More recently, in [6], the case is treated of the heat equation on the Heisenberg
groupHn. In this situation, the particular algebraic structure ofHn × R naturally
supplies some suitable mollifiers analogous to the classical ones.

In [3], the case is considered of parabolic operators in divergence form, with
uniformly elliptic principal part. The main tools in [3] are some mean value oper-
ators on the level sets of the fundamental solution which are constructed through
a process of superposition. Such an approach does not seem to work in our set-
ting. Indeed the method used in [3] requires a sharp asymptotic estimate of the
fundamental solution and of its derivatives of every order.

The main and easy idea in the proof of our Theorem 1.3 is to use the property
of the fundamental solution of having the support contained in a halfspace (see
Theorem 5.2(iv) in the Appendix).

In Section 3, we prove a representation formula for smooth functions on the
level sets of the fundamental solution ofL. For everyr > 0 andz ∈ RN+1, we
define

�r(z) =
{
ζ ∈ RN+1|0(z; ζ ) > 1

r

}
.

We call�r(z) theL-parabolic ball of centerz and radiusr. The properties of the
L-parabolic balls stated in the next proposition straightforwardly follow from the
properties of0 proved in [9].

PROPOSITION 1.4.For everyz ∈ RN+1, theL-parabolic balls centered atz have
the following properties:

(i) for everyr > 0,�r(z) is a bounded nonempty set.
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(ii) �r(z) shrinks to{z} asr goes to0, that is⋂
r>0

�r(z) = {z}.

(iii) If we denote by|�r(z)| the Lebesgue measure of�r(z), then

lim
r→0+
|�r(z)|
r
= 0.

(iv) For almost everyr > 0, ∂ �r(z) is aN-dimensionalC∞ manifold.

The main result of Section 3 is the following theorem.

THEOREM 1.5. Letu ∈ C2(RN+1). For everyz ∈ RN+1 andr > 0, we have

u(z) = ur(z)−8ru(z) (1.2)

:=
∫
�r(z)

u(ζ )Er(z; ζ )dζ − 1

r

∫ r

0

∫
�l(z)

(
0(z; ζ )− 1

l

)
Lu(ζ )dζ dl,

where

Er(z; ζ ) = 1

r

〈
A(ζ )∇ξ0(z; ζ ), ∇ξ0(z; ζ )

0(z; ζ )2
〉
+ 1

r
div Y (ζ ) lg(r0(z; ζ ))

and the vector fieldY is defined in(3.2).In particular, a solution ofLu = 0 verifies
the mean value formulau = ur .
Weighted representation formulas, involving level sets of the fundamental solution,
have been established by several authors. We refer to [2] for a historical background
on the subject. We only observe that a particular case of (1.2) is the classic mean
value formula for the caloric functions proved in [13]. (1.2) also contains the mean
formula proved in [5].

In Section 4 we prove our main theorem. We use the smoothing result of The-
orem 1.3 to extend formula (1.2) to the class ofL-superparabolic functions. We
prove

THEOREM 1.6. Let� be an open subset ofRN+1 andu ∈ S(�). Letµ = −Lu.
For everyz ∈ � andr > 0 such�r(z) ⊆ �, we have

u(z) = ur(z)−8ru(z) (1.3)

:=
∫
�r(z)

u(ζ )Er(z; ζ )dz + 1

r

∫ r

0

∫
�l(z)

(
0(z, ζ )− 1

l

)
dµ(ζ )dl.

As a straightforward consequence of Theorem 1.6, we prove a result about
monotone approximation ofL-superparabolic functions by means of the mean
value operators introduced in the second paragraph.
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COROLLARY 1.7. Letu ∈ S(RN+1). For everyz0 ∈ RN+1

(i) uρ(z0) 6 ur(z0), for r 6 ρ;
(ii) lim r→0+ ur(z0) = u(z0).

For greater convenience, in the Appendix we briefly recall the results of [9] that we
shall systematically use in the sequel.

2. Smoothing ofL-Superparabolic Functions

For every nonnegative measureµ with compact support inRN+1, we define the
L-potential0µ of µ by

0µ(z) =
∫
RN+1

0(z; ζ )dµ(ζ ), z ∈ RN+1.

If � is an open subset ofRN+1 andu ∈ S(�), then, by Proposition 1.2,Lu 6 0 in
the distribution sense. Hence−Lu is a nonnegative measure in�. For every fixed
bounded open setV ⊆ V̄ ⊆ �, let

µ = −(Lu)|V̄ and uV = 0µ. (2.1)

By Theorem 5.2(iii) in the Appendix and by the hypoellipticity ofL, we have that

(u− uV )|V ∈ C∞(V ) and L(u− uV ) = 0 on V.

MoreoveruV is a nonnegative function and

LuV = Lu 6 0 on V, LuV = 0 on RN+1\V̄ .
Thanks to these remarks, the following proposition holds.

PROPOSITION 2.1.Let u ∈ S(�). For every bounded open setV ⊆ V̄ ⊆ �,
there exists a nonnegative functionuV ∈ S(RN+1) ∩HL(RN+1\V̄ ) such that

(u− uV )|V ∈ HL(V ). (2.2)

Now we are in position to prove Theorem 1.3.

Proof of Theorem1.3. In virtue of Proposition 2.1, it is sufficient to smooth the
functionuV defined in (2.1).

We consider a cut-off functionψ ∈ C∞0 ([0,+∞[, [0,1]), such thatψ(t) = 1
for t > 1, ψ(t) = 0 for t 6 1

2 and(d/dt)ψ(t) > 0 for everyt > 0. Letψn(t) =
ψ(nt), n ∈ N. For every(x, t), (ξ, τ ) ∈ RN+1, we set

0n(x, t; ξ, τ ) = 0(x, t; ξ, τ )ψn(t − τ), n ∈ N
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and

un(z) =
∫
0n(z; ζ )dµ(ζ ), n ∈ N.

It follows from Theorem 5.2(iv) that(0n)n∈N is an increasing sequence of smooth
functions such that

lim
n→∞ 0n(z; ζ ) = 0(z; ζ ), ∀z, ζ ∈ R

N+1.

By the monotone convergence theorem,(un)n∈N is an increasing sequence of
smooth functions that pointwise converges touV in RN+1 asn goes to infinity.
Moreover, by Proposition 1.2,un ∈ S(RN+1) for everyn ∈ N, since

Lun(z) = −
∫
RN+1

0(z; ζ )ψ ′n(t − s)dµ(ζ ) 6 0, n ∈ N, z ∈ RN. (2.3)

2
REMARK 2.2. Our proof is much simpler of those of the analogous results re-
called in the Introduction. On the other hand, we stress that our smoothing method
drastically modifies the parabolic support ofu (see (2.3)).

3. Classical Representation Formulas

The aim of this section is to prove Theorem 1.5. Let us begin with proving Propos-
ition 1.4.

Proof of Proposition1.4. Property (i) immediately follows from Theorems 5.2
and 5.3, since, for everyz ∈ RN+1,

0(z; ·) ∈ C∞(RN+1\{z}) and lim|ζ |→∞ 0(z; ζ ) = 0.

More precisely, we deduce that, for every compact neighborhoodK of z, there
exists a positiver such that0(z; ζ ) 6 1/r in RN+1\K, that is

�r(z) ⊆ K.
Moreover, since by Theorem 5.4

lim sup
ζ→z

0(z; ζ ) = ∞,

thenz ∈ �r(z) for everyr > 0. This is enough to prove (ii).
From (ii) and recalling that0(z; ·) ∈ L1

loc(RN+1) (see Theorem 5.2(ii)), we
obtain

|�r(z)|
r

6
∫
�r(z)

0(z; ζ )dζ → 0 as r → 0+.



SUPERPARABOLIC FUNCTIONS RELATED TO SECOND ORDER HYPOELLIPTIC OPERATORS309

We conclude the proof, noting that, since0(z; ·) ∈ C∞(RN+1\{z}), (iv) is a straight-
forward consequence of Sard’s lemma. 2
In the proof of Theorem 1.5 we shall use the following result.

LEMMA 3.1. For every fixedζ ∈ RN+1 and t, r > 0, we set

Ir(t) =
{
x ∈ RN |0(x, t; ζ ) 6 1

r

}
.

Then

lim
t→τ+

∫
Ir (t)

0(x, t; ζ )dx = 0. (3.1)

Proof. It is nonrestrictive to suppose thatζ = 0. By Theorem 5.3, it is possible
to choose a suitable compact subsetM0 of RN such that for everyε > 0 small
enough there existsT = T (ε) > 0 such that

0(z;0) 6 TK(z;0,−ε) 6 TK(x, ε;0),
for every 0< t < ε andx ∈ RN\M0. Thus, since

lim
t→0+

0(x, t;0) = 0, ∀x ∈ RN\M0,

by the dominated convergence theorem, we have

lim
t→0+

∫
Ir (t)\M0

0(x, t;0)dx = 0.

On the other hand, another application of Lebesgue’s theorem gives

lim
t→0+

∫
Ir (r)∩M0

0(x, t;0)dx = lim
t→0+

∫
M0

0(x, t;0)χIr (t)(x)dx = 0.

Indeed

06 0(x, t;0)χIr (t)(x) 6
1

r

and

lim
t→0+

0(x, t;0) = 0, ∀x ∈ Ir(t) ∩M0. 2
Proof of Theorem1.5. With Theorem 5.4 and Lemma 3.1 in hand, formula (1.2)

is a standard consequence of the following Green’s identity (3.4).
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We rewriteL in divergence form

L = div(A∇)+ Y − ∂t ,

where

Y = Y0−
N∑

i,j=1

(∂xi aij )∂xj :=
N∑
j=1

βj∂xj . (3.2)

If Y ∗ denotes the adjoint ofY , then for everyu ∈ C1 (RN+1) we have

Y ∗u = −
N∑
j=1

∂xj (βju) = −udiv Y − Yu (3.3)

and the adjoint operator ofL is given by

L∗ = div(A∇)+ Y ∗ + ∂t .

A standard computation yields

uL∗0(z; ·)− 0(z; ·)Lu = div(uA∇0(z; ·)− 0(z; ·)A∇u)
−(Y − ∂t)(u0(z; ·))− u0(z; ·)div Y. (3.4)

In order to remove the singularity of0(z; ·), we cut theL-parabolic ball. Forε < t ,
we set

�(ε)r (z) = �r(z) ∩ {ζ = (ξ, τ ) ∈ RN+1|τ < ε}

and

I (ε)r (z) = �r(z) ∩ {ζ = (ξ, τ ) ∈ RN+1|τ = ε}.

Integrating (3.4) on�(ε)r (z) and applying the divergence theorem, we obtain∫
�
(ε)
r (z)

0(z; ζ )Ludζ =
∫
∂�

(ε)
r (z)

〈0(z; ·)A∇u − uA∇0(z; ·), νξ 〉dσ (3.5)

+
∫
∂�

(ε)
r (z)

u0(z; ·)〈Y − ∂t , ν〉dσ. (3.6)

In (3.6),ν adνx denote respectively the outer normal and the spatial component of
the outer normal to the integration domain. We observe thatν = (νx, vt ) = (0,1)
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in I (ε)r (z) and0(z; ·) = 1/r in ∂�(ε)r (z)\I (ε)r (z). Therefore (3.6) yields∫
�
(ε)
r (z)

0(z; ζ )Ludζ

= −
∫
∂�

(ε)
r (z)\I (ε)r (z)

u〈A∇ξ0(z; ·), νξ 〉dσ + 1

r

∫
∂�

(ε)
r (z)\I (ε)r (z)

(〈A∇u, νξ 〉

+u〈Y − ∂t , ν〉)dσ −
∫
I
(ε)
r (z)

u0(z; ·)dσ (ζ ). (3.7)

Now we examine the behavior of each term of (3.7) asε goes tot . Since0(z; ·) is
locally integrable

lim
ε→t−

∫
�
(ε)
r (z)

0(z; ·)Ludζ =
∫
�r(z)

0(z; ·)Ludζ.

Moreover, by the divergence theorem∫
∂�

(ε)
r (z)\I (ε)r (z)

(〈A∇u, νξ 〉 + u〈Y − ∂t , ν〉)dσ

=
∫
∂�

(ε)
r (z)

(Lu+ udiv Y )dζ +
∫
I
(ε)
r (z)

udσ

→
∫
�r(z)

(Lu+ udiv Y )dζ as ε→ t−. (3.8)

Since, in∂�(ε)r (z)\I (ε)r (z),

〈A∇ξ0(z; ·), νξ 〉 =
〈
A∇ξ0(z; ·), ∇ξ0(z; ·)|∇ζ0(z; ·)|

〉
> 0,

by the monotone convergence theorem, we have

lim
ε→t−

∫
∂�

(ε)
r (z)\I (ε)r (z)

u〈A∇ξ0(z; ·), νξ 〉dσ =
∫
∂�r(z)

u〈A∇ξ0(z; ·), νξ 〉dσ.

At last, we use Theorem 5.4 and Lemma 3.1 to prove that

lim
ε→t−

∫
I
(ε)
r (z)

u0(z; ·)dσ = u(z).

Indeed, by (5.3),∣∣∣∣∫
I
(ε)
r (z)

u(ζ )0(z; ζ )dσ (ζ )− u(z)
∣∣∣∣
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=
∣∣∣∣∫
I
(ε)
r (z)

u(ζ )0(z; ζ )dσ (ζ )− u(z)
∫
RN×{ε}

0(z; ζ )dσ (ζ )

∣∣∣∣
6
∫
I
(ε)
r (z)

|u(ζ )− u(z)|0(z; ζ )dσ (ζ )

+|u(z)|
∫
(RN×{ε})\I (ε)r (z)

0(z; ζ )dσ (ζ ) := J (ε)1 (z)+ J (ε)2 (z).

Now, sinceu ∈ C2(RN+1),

J
(ε)

1 (z) 6 sup
ζ∈I (ε)r (z)

|u(ζ )− u(z)| → 0 as ε→ t−.

Moreover, by Lemma 3.1,

lim
ε→t−

J
(ε)

2 (z) = 0.

Hence, lettingε go tot− in (3.7), we derive the following representation formula

u(z) =
∫
∂�r(z)

u〈A∇ξ0(z; ·), νξ 〉dσ (ζ ) (3.9)

+ 1

r

∫
�r(z)

udiv Y dζ −
∫
�r(z)

(
0(z; ·)− 1

l

)
Ludζ. (3.10)

Proceeding as in [4], Theorem 1.5, by means of Federer’s co-area formula, form
(3.10) we get

u(z) = 1

r

∫
�r(z)

u

〈
A∇ξ0(z; ·), ∇ξ0(z; ·)

0(z; ·)2
〉

dζ (3.11)

+1

r

∫ r

0

∫
�l(z)

udiv Y dζ
dl

l

−
∫ r

0

∫
�l(z)

(
0(z; ·)− 1

l

)
Ludζ dl. (3.12)

Formula (1.2) follows immediately from (3.12) observing that, by Fubini’s
theorem,∫ r

0

∫
�l(z)

udiv Y dζ
dl

l
=
∫
�r(z)

∫ r

1/0(z;·)
udiv Y

dl

l
dζ

=
∫
�r(z)

udiv Y lg(r0(z; ·))dζ. 2
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REMARK 3.2. If we chooseu ≡ 1 in (1.2), we get∫
�r(z)

Er(z; ζ )dζ = 1.

4. Representation Formulas forL-superparabolic Functions

The aim of this section is to prove Theorem 1.6. We begin with proving an expected
property of theL-superparabolic functions.

PROPOSITION 4.1.Let � be an open subset ofRN+1 and u ∈ S(�). Thenu
satisfies the super-mean value property, that is, for everyz ∈ � and r > 0 such
that�r(z) ⊆ �,

u(z) > ur(z). (4.1)

Proof.Let z andr as in the statement. By Theorem 1.3, there exists an increasing
sequence(un)n∈N of smooth superparabolic functions inRN+1 such that

lim
n→∞ un(ζ ) = u(ζ ), ∀ζ ∈ �r(z) ∪ {z}.

Moreover, by Proposition 1.2 and Theorem 1.5,

un(z) > (un)r(z), ∀n ∈ N. (4.2)

Thus, asn goes to infinity in (4.2), by the monotone convergence theorem, we
obtain (4.1). 2
REMARK 4.2. If Er in (1.2) is positive (for example, ifY = 0) then it is not
difficult to show that every lower semi-continuous function for which (4.1) holds,
satisfies a minimum principle and then it isL-superparabolic.

LEMMA 4.3. Letϕ ∈ C∞0 (RN+1) such that06 ϕ 6 1 and

sup
(x,t),(ξ,τ )∈ supp(ϕ)

|t − τ | 6 ε.

Then

u(z) =
∫
RN+1

0(z; ζ )ϕ(ζ )dζ 6 ε, ∀z ∈ RN+1.

Proof.Since0(x, t; ξ, τ ) = 0 for t 6 τ , thenu(x, t) = 0 for t 6 t0 := min{s ∈
R|(y, s) ∈ supp(ϕ) for somey ∈ RN }. It is nonrestrictive to suppose thatt0 = 0.
We define

v(x, t) = t − u(x, t), x ∈ RN, t > 0.
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Then, by Theorem 5.2,v ∈ C∞ and

Lv(z) = −1− ϕ(z) 6 0.

Moreover

v(x,0) = −u(x,0) = 0

and since by Theorem 5.3u(x, t)→ 0 as|x| → ∞, we have

lim|x|→∞ v(x, t) = t, ∀t > 0.

Thus, by the maximum principle on cylindrical domains, Proposition 5.1,v(x, t) >
0 for t > 0, that is

u(x, t) 6 t, ∀t > 0. (4.3)

In particularu(x, t) 6 ε for 0< t 6 ε. On the other hand, since by assumption

sup
(x,t),(ξ,τ )∈ supp(ϕ)

|t − τ | 6 ε,

then

Lu(z) = 0 for t > ε

and

lim|x|→∞ u(x, t) = 0, ∀t > ε.

Thus, another application of the maximum principle gives

u(x, t) 6 ε, ∀t > ε
and this completes the proof. 2
PROPOSITION 4.4 (Weak representation formula).Let u ∈ S(RN+1) andµ =
−Lu. For everyϕ ∈ C0(RN+1) andr > 0, we have∫

RN+1
u(z)ϕ(z)dz

=
∫
RN+1

ur(z)ϕ(z)dz

+1

r

∫
RN+1

ϕ(z)

∫ r

0

∫
�l(z)

(
0(z; ζ )− 1

l

)
dµ(ζ )dldz. (4.4)
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Proof. It is nonrestrictive to suppose thatϕ is nonnegative. In virtue of Pro-
position 2.1, we can also suppose thatµ is compactly supported andu = 0µ. By
Theorem 1.3, there exists an increasing sequence(un)n∈N of smooth superparabolic
functions, which approximatesu. We have∫

RN+1
ϕ(z)un(z)dz =

∫
RN+1

ϕ(z)(un)r(z)dz

−
∫
RN+1

ϕ(z)8run(z)dz, ∀n ∈ N.

Since, by Proposition 4.1,

06 (un)r 6 un 6 u, ∀n ∈ N,
then, by Lebesgue theorem,

lim
n→∞

∫
ϕ(z)un(z)dz =

∫
ϕ(z)u(z)dz

and

lim
n→∞

∫
ϕ(z)(un)r(z)dz =

∫
ϕ(z)ur(z)dz.

Now we consider the last term of (4.4). We let

G(ζ) = 1

r

∫ r

0

∫
0(z;ζ )>1/ l

(
0(z; ζ )− 1

l

)
ϕ(z)dz dl, ζ ∈ RN+1.

We wish to show thatG ∈ C0(RN+1). From the estimate of Theorem 5.3, it follows
thatG is compactly supported.

Let (ψn)n∈N be the sequence of cut-off functions defined in the proof of The-
orem 1.3. It is easy to check that, for everyn ∈ N,

pn(ζ ) :=
∫
0(z;ζ )<1/ l

(
0(z; ζ )− 1

l

)
ϕ(z)ψn(|z − ζ |)dz

is a continuous function inRN+1. We now verify thatpn is uniformly convergent
to

p(ζ ) :=
∫
0(z;ζ )>1/ l

(
0(z; ζ )− 1

l

)
ϕ(z)dz. (4.5)

We first point out that, by Lemma 4.3,∫
RN+1

0(z; ζ )(1− ψn(|z − w|))dz 6 1

n
, ∀ζ,w ∈ RN+1. (4.6)



316 ERMANNO LANCONELLI AND ANDREA PASCUCCI

Then, sinceϕ > 0,

06 p(ζ )− pn(ζ )

=
∫
0(z;ζ )>1/ l

(
0(z; ζ )− 1

l

)
ϕ(z)(1− ψn(|z − w|))dz

6 ‖ϕ‖∞
∫
RN+1

0(z; ζ )(1− ψn(|z − w|))dz 6 ‖ϕ‖∞
n

, ∀ζ ∈ RN+1.

The last inequality follows from (4.6) forw = ζ . This proves thatpn converges
uniformly top. From the continuity ofp, the continuity ofG follows straightfor-
wardly.

Defining

µn = −Lun, n ∈ N,

by a change of the order of integration, we have∫
RN+1

ϕ(z)8run(z)dz =
∫
RN+1

G(ζ)dµn(ζ ), n ∈ N.

Now we consider a sequence(gn)n∈N of smooth functions which converges uni-
formly toG in RN+1 and such that

supp(gn), supp(G) ⊆ K ⊂⊂ RN+1, ∀n ∈ N.

Besides, letχ ∈ C∞0 (RN+1) such that

06 χK 6 χ 6 1,

whereχK denotes the characteristic function ofK. Then, we have∣∣∣∣∫ G(z)dµ(z)−
∫
G(z)dµn(z)

∣∣∣∣
6
∣∣∣∣∫ (G(z)− gj (z))dµn(z)

∣∣∣∣
+
∣∣∣∣∫ (G(z)− gj (z))dµ(z)

∣∣∣∣
+
∣∣∣∣∫ gj (z)(dµ(z)− dµn(z))

∣∣∣∣
:= I (n,j)1 + I (n,j)1 + I (n,j)3 , n, j ∈ N.
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For everyε > 0, there existsj = jε ∈ N, independent ofn, such thatI (n,j)1 ,
I
(n,j)

2 6 ε. Indeed

I
(n,j)

1 6 ‖G− gj‖∞
∫
χ(z)dµn(z)

= ‖G− gj‖∞
∫
L∗χ(z)un(z)dz

6 ‖G− gj‖∞
∫
L∗χ(z)u(z)dz

and

I
(n,j)

2 6 ‖G− gj‖∞
∫
χ(z)dµ(z).

On the other hand, forε andj fixed as above, there existsn̄ = n̄(ε, j) ∈ N such
that for everyn > n̄

I
(n,j)

3 =
∣∣∣∣∫ L∗gj (z)(u(z)− un(z))dz

∣∣∣∣ 6 ‖L∗gj‖∞ ∫
K

(u(z)− un(z))dz 6 ε

in virtue of Beppo–Levi theorem. The proof of (4.4) is thus completed. 2
Proof of Theorem1.6. We fixz0 ∈ �. As before, we suppose thatµ is com-

pactly supported andu = 0µ. We distinguish three cases.

(1) there exists an open neighborhoodV of z0 such thatu|V ∈ HL(V ).

In this case,u and8ru are continuous functions in a suitable neighborhood ofz0,
since supp(µ) ⊆ RN+1\V . We now

claim: ur is continuous in a neighborhoodz0.

Let us take the claim for granted and use it to prove (1.3). We consider a sequence
(ϕj )j∈N of continuous nonnegative functions with supp(ϕj ) ⊆ B(z0, ε) ⊆ V , for
suitable positiveε, for everyj ∈ N, such that

lim
j→∞ ϕj = δz0,

in the sense that, for everyψ ∈ C(RN+1),

lim
j→∞

∫
RN+1

ψ(z)ϕj(z)dz = ψ(z0).

Substitutingϕ andϕj in (4.4) and lettingj go to infinity, (1.3) follows.
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We are thus left with the proof of the claim. Letϕ be a smooth cut-off function
such thatϕ > 0, supp(ϕ) ⊆ V andϕ ≡ 1 inB(z0, ε). We have

ur = (uϕ)r + (u(1− ϕ))r.

It is not difficult to verify that(u(1− ϕ))r is continuous in a neighborhoodz0.
On the other hand, sinceuϕ ∈ C∞0 (RN+1), by the representation formula of

Theorem 1.5, we have

(uϕ)r = uϕ +8r(uϕ). (4.7)

From this identity, it follows that(uϕ)r is continuous nearz0. Indeeduϕ is aC∞
function inV and8r(uϕ) is continuous in a suitable neighborhood ofz0, because

L(uϕ) = Lu = 0 on B(z0, ε).

(2)µ({z0}) = 0.

In this case, let(Vj)j∈N be a decreasing sequence of open neighborhoods ofz0,
such that⋂

j∈N
Vj = {z0}.

We set

µj = µ(1− χVj ), j ∈ N.

Then, for every nonnegativeϕ ∈ C(RN+1),∫
RN+1

ϕ(z)dµj (z) ↑
∫
RN+1

ϕ(z)dµ(z) as j →∞.

Moreover

L0µj = 0 on Vj, j ∈ N.

Thus, we can apply the result proved in the case (1) to the function0µj , obtaining

0µj (z0) = (0µj )r (z0)−8r0µj (z0). (4.8)

By the monotone convergence theorem

lim
j→∞ 0µj (z0) = u(z0)
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and

lim
j→∞

(0µj )r(z0) = ur(z0).

In order to prove that

lim
j→∞

8r0µj (z0) = 8ru(z0), (4.9)

we first show that∫
RN+1

ψ(z)dµj (z) ↑
∫
RN−1

ψ(z)dµ(z) as j →∞, (4.10)

for every nonnegative lower semicontinuous functionψ . Indeed, since∫
ψ(z)dµj(z) 6

∫
ψ(z)dµ(z), ∀j ∈ N,

we have

lim sup
j→∞

∫
ψ(z)dµj(z) 6

∫
ψ(z)dµ(z).

On the other hand, ifϕ ∈ C(RN+1) and 06 ϕ 6 ψ , then

lim inf
j→∞

∫
ψ(z)dµj (z) > lim inf

j→∞

∫
ϕ(z)dµj(z) =

∫
ϕ(z)dµ(z). (4.11)

From (4.11), by taking the upper bound with respect toϕ, we obtain

lim inf
j→∞

∫
ψ(z)dµj (z) >

∫
ψ(z)dµ(z).

Thus, since for every positivel

ψl := χ�l(z0)
(
0(z0; ·)− 1

l

)
is a lower semicontinuous function, from (4.10) we get

lim
j→∞

∫
RN
ψl(z)dµj(z) =

∫
RN
ψl(z)dµ(z).

The monotone convergence theorem yields (4.9).

(3)µ({z0}) 6= 0.
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In this case

µ = λ+ cδz0,

whereλ is a non-negative measure such thatλ({z0}) = 0 and c is a positive
constant. Therefore, for everyz ∈ RN+1, it holds

u(z) = 0λ(z)+ c0(z; z0).

In particularu(z0) = 0λ(z0). Moreover, since0(·; z0) ∈ S(RN+1), we have

06 (0(·; z0))r(z0) 6 0(z0; z0) = 0

and then

ur(z0) = (0λ)r(z0).

Finally, observing that, for everyl > 0

�l(z0) ∩ supp(δz0) = ∅,

we have∫ r

0

∫
�l(z0)

(
0(z0; z)− 1

l

)
d(δz0(z))dl = 0.

Hence, (1.3) follows from step (2) and this concludes the proof of the theorem.2
Proof of Corollary1.7. Proceeding as in [4], Theorem 1.6, from (1.3) we get

d

dr
ur(z0) = − 1

r2

∫
�r(z0)

lg(r0(z0; ·))dµ. (4.12)

We remark that the kernel appearing in (4.12) is strictly positive on the domain of
integration�r(z0). Hence

d

dr
ur(z0) 6 0,

sinceµ = −Lu is non-negative. This proves (i).
Moreover, by the lower semicontinuity ofu, for every positiveε, there exists

ρ = ρε > 0 such that

u(z0)− u(z) 6 ε, ∀z ∈ B(z0, ρ).
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Thus, recalling Remark 3.2,

06 u(z0)− ur(z0) =
∫
�r(z0)

(u(z0)− u(z))Er(z0; z)dz

6 ε

∫
�r(z0)

Er(z0; z)dz = ε

if r is sufficiently small, so that�r(z0) ⊆ B(z0, ρ). 2

5. Appendix

In this paragraph we briefly recall some of the results of [9] which are prelimin-
ary to this paper. We begin by giving a simple maximum principle on cylindrical
domains. Given a cylinderQ = O×]a, b[, whereO is an open subset ofRN and
a < b, we define the parabolic boundary ofQ by

∂rQ = (O × {a}) ∪ (∂O × [a, b]). (5.1)

PROPOSITION 5.1.Letu ∈ C2(Q) andLu > 0 in Q. If lim supz→ζ u(z) 6 0 for
everyζ ∈ ∂rQ thenu 6 0 in Q.

The following theorem states the existence of a fundamental solution ofL.

THEOREM 5.2. There exists a fundamental solution0 of L having the following
properties:

(i) 0 is a nonnegative function which is smooth away from the diagonal ofRN+1×
RN+1;

(ii) for every fixedz ∈ RN+1, 0(·; z) and0(z; ·) are locally integrable;
(iii) for every nonnegative measureµ with compact support andϕ ∈ C∞0 (RN+1),

the following identities hold:

L

∫
RN+1

0(·; ζ )dµ(ζ ) = −µ,∫
RN+1

0(·; ζ )Lϕ(ζ )dζ = −ϕ;
(iv) 0(x, t; ξ, τ ) = 0 if t 6 τ ;
(v) for everyζ ∈ RN+1, L0(·; ζ ) = −δζ , whereδζ denotes the Dirac measure

supported in{ζ };
(vi) if we define

0∗(z; ζ ) = 0(ζ ; z), ∀z, ζ ∈ RN+1,

then0∗ is a fundamental solution ofL∗, the formal adjoint ofL, satisfying the
dual statements of(iii)–(v).
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By means of hypothesis (H.3) and by suitably modifying some classical results
about caloric functions, we prove the following asymptotic behavior of0 at infinity.

THEOREM 5.3. For everyζ = (ξ, τ ) ∈ RN+1 and for everyε > 0 there exists a
compact setF ⊆ RN+1 and a positive constantC such that

0(z; ζ ) 6 CK(z; ζ(ε)), ∀z ∈ RN+1\F,

whereζ(ε) = (ξ, τ − ε) and K denotes the fundamental solution of the heat
operatorH in RN+1.

The last section of [9] is devoted to the proof of some further classical properties
of the fundamental solution. In particular, we have

THEOREM 5.4. For everyζ = (ξ, τ ) ∈ RN+1,

lim sup
z→ζ

0(z; ζ ) = ∞. (5.2)

Moreover, ift > τ , we have∫
RN
0(x, t; ζ )dx = 1. (5.3)
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