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1. Introduction

In R¥*+1 we consider the second order partial differential operator

N N
L= aj@dd,+ Y bj@)d — 0. (1.)

i,j=1 Jj=1

wherez = (x,t) is the point of RN+, A = (a;;) is a N x N symmetric and
positive semidefinite matrix and the coefficients b;, 1 < i, j < N, are smooth
functions. We also assume the following hypotheses:

(H.1) L is hypoelliptic;
(H.2) a11(z) # O for everyz e RN+,
(H.3) L is the heat operator out of a compact suligedf RV+1,

We proved in a previous note [9] that the operdtdras a global fundamental solu-
tion satisfying several classical properties. Thanks to the results in [9], in this paper
we aim to show a monotone approximation theorem and an integral representation
formula for L-superparabolic functions.

Before presenting our main results in details, we would like to briefly comment
the hypotheses (H.1)—(H.3). As it is well-known, a sufficient condition for (H.1) is
the following Hormander’s hypothesis (see [7] and [11])

(H) ranksL(Xq, ..., Xy, Yo—9)() =N+1, VzeRVtL
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In (H), £(X41,..., Xn, Yo — 9;) denotes the Lie algebra generated by the vector
fields

N N
Xi=Yaydi=1...N and Yo—d = bd, —0.
j=1 =

We explicitly remark that (H) is nonequivalent to (H.3) (see [1]).

Condition (H.2) simply ensures thatis uniformly nontotally degenerate. Con-
dition (H.3) yields an asymptotic estimate Bfat infinity in terms of the funda-
mental solution of the heat equation. Due to the local nature of our results, (H.3)
does not affect the generality.

Before proceding with the plan of the paper, we recall some well-known defin-
itions.

DEFINITION 1.1. LetQ2 be an open subset &"*1. The sheaf of thé.-parabolic
functions is defined by

HE(Q) = {u e C®°(Q)|Lu = 0).

We say that an open set c RV*1is L-regular(V € 7,) if V is bounded and, for
everyp € C(dV), there exists a unique function:= H(pV e #E(V)NC(V) such
thatu|,y = ¢. We say that

u. Q2 —J]— o0, +00]

is L-superparabolicu € S(2)) if u is lower semicontinuous; < oo on a dense
subset of2 and

u>H) onV,

for everyV e 7;, V C Q, and for everyy € C(dV) such thaty < u.

Proceeding as in [10], Theorem 1, we can obtain the following characterization
of L-superparabolic functions.

PROPOSITION 1.2 Let
u. Q2 —]— o0, +o0]

be a lower semicontinuous function. The following statements are equivalent:

(i) u e S(€);

(i) u € Lo(22) and Lu < 0in the distribution sense.

In Section 2 we are concerned with the problem of the monotone regularization
of L-superparabolic functions. Our result reads:
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THEOREM 1.3. Let Q be an open subset @V+t andu € S(Q). For every
bounded open sét C V C Q, there exists an increasing sequen@g),cn of
smooth superparabolic functionsk'** such that

im u,(z) =u(z), VzelV.
n—>oo

The problem of monotone regularization of superparabolic functions has a long
history. It is well-known that a supertemperature can be easily approximated by
an increasing sequence of smooth supertemperatures. This can be attained by the
device of the classic Friedrichs’ mollification. This is also the case of an operator
L of type (1.1) with constant coefficients. However, the general case of variable
coefficients cannot be treated as above. Many authors have developed different
strategies in order to construct ad hoc mollifiers for a certain class of differential
operators.

In a paper dated 1963 [8], concerning uniformly elliptic equations, Littman
proved a result analogous to Theorem 1.3. In that case, the approximation se-
guence of the superarmonic function was obtained by the convolution with a kernel
constructed from the fundamental solution.

More recently, in [6], the case is treated of the heat equation on the Heisenberg
groupH”. In this situation, the particular algebraic structurditf x R naturally
supplies some suitable mollifiers analogous to the classical ones.

In [3], the case is considered of parabolic operators in divergence form, with
uniformly elliptic principal part. The main tools in [3] are some mean value oper-
ators on the level sets of the fundamental solution which are constructed through
a process of superposition. Such an approach does not seem to work in our set-
ting. Indeed the method used in [3] requires a sharp asymptotic estimate of the
fundamental solution and of its derivatives of every order.

The main and easy idea in the proof of our Theorem 1.3 is to use the property
of the fundamental solution of having the support contained in a halfspace (see
Theorem 5.2(iv) in the Appendix).

In Section 3, we prove a representation formula for smooth functions on the
level sets of the fundamental solution bf For everyr > 0 andz € R¥*! we
define

Q,(z) = {§ e R Ir(z; ¢) > %}

We call 2, (z) the L-parabolic ball of centet and radius-. The properties of the
L-parabolic balls stated in the next proposition straightforwardly follow from the
properties of” proved in [9].

PROPOSITION 1.4For everyz € R¥+1, the L-parabolic balls centered athave
the following properties:

(i) for everyr > 0, 2,(z) is a bounded nonempty set.
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(i) 2,(z) shrinks to{z} asr goes ta0, that is
2@ =z

r>0

(i) If we denote by<2,(z)| the Lebesgue measure®@f(z), then
r—0t r

(iv) For almost every > 0,9 Q,(z) is a N-dimensionalC*> manifold.

=0.

The main result of Section 3 is the following theorem.

THEOREM 1.5. Letu € C?(RN*1). For everyz € RV andr > 0, we have

u(2) = u,(2) — Du(2) (1.2)

1/ 1
= / u(Q)E, (z; ¢)ds — —/ / <F(z; ¢) — 7) Lu(g)dg dl,
r2) rJo Jau

1 Vel (z;
E(zi0) =2 <A(§)Vs,:l“(z; 0), r?(%fz)

and the vector field is defined in(3.2).In particular, a solution ofLu = 0 verifies
the mean value formula = u,.

where

1.
>+ ;dIVY(C)|g(VF(Z;§))

Weighted representation formulas, involving level sets of the fundamental solution,
have been established by several authors. We refer to [2] for a historical background
on the subject. We only observe that a particular case of (1.2) is the classic mean
value formula for the caloric functions proved in [13]. (1.2) also contains the mean
formula proved in [5].

In Section 4 we prove our main theorem. We use the smoothing result of The-
orem 1.3 to extend formula (1.2) to the classiebuperparabolic functions. We
prove

THEOREM 1.6. Let 2 be an open subset &+ andu € S(RQ). Letu = —Lu.
For everyz € Q andr > 0such2,(z) C 2, we have

u(2) = u,(2) — Dyu(2) (1.3)

1 1
:=/ u(Q)E (z;¢)dz + —/ / (F(z, ¢) — —) du(g) dl.
Q(2) rJo Jau !

As a straightforward consequence of Theorem 1.6, we prove a result about
monotone approximation of.-superparabolic functions by means of the mean
value operators introduced in the second paragraph.
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COROLLARY 1.7. Letu € S(R¥*1). For everyzg € RV+1

(1) uy(zo) < u,(20), forr < p;
(i) lim, o+ u,(zo0) = u(zo).

For greater convenience, in the Appendix we briefly recall the results of [9] that we
shall systematically use in the sequel.

2. Smoothing of L-Superparabolic Functions

For every nonnegative measyrewith compact support ilRV*1, we define the
L-potentiall',, of 1 by

Fu(z)=/ (z;0)du(@), zeRN
RN+1

If Q is an open subset &"*+! andu € S(2), then, by Proposition 1.Z,u < 0in
the distribution sense. HeneeLu is a nonnegative measure$h For every fixed
bounded open sét C V C Q, let

w=—(Lu)ly and uy =T,. (2.1)
By Theorem 5.2(iii) in the Appendix and by the hypoellipticity bf we have that
(u—uy)ly eC*®V) and L(u—uy)=0 onV.
Moreoveruy is a nonnegative function and
Luy =Lu<0 onV, Luy =0 onRVThV.
Thanks to these remarks, the following proposition holds.

PROPOSITION 2.1.Letu € S(2). For every bounded open set C V CQ,
there exists a nonnegative function € SRV N #L RN\ V) such that

u—uy)ly € H*(V). (2.2)

Now we are in position to prove Theorem 1.3.

Proof of Theoreni.3. In virtue of Proposition 2.1, it is sufficient to smooth the
functionuy defined in (2.1).

We consider a cut-off functiogr € C5°([0, o0, [0, 1]), such thaty(r) = 1
fort > 1,¢(t) =0forr < % and(d/dt)y(r) > O for everyr > 0. Lety,,(¢) =
Y (nt), n € N. For every(x, t), (¢, 7) € RV*! we set

Lh(x,0;8,0) =T (x, 1,8, )Yt —7), neN
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and
un(Z) = / Fn(Z; f)d,bb({), neN.

It follows from Theorem 5.2(iv) thatl",,),.cn IS @an increasing sequence of smooth
functions such that

lim T,(z;¢) =T(z:¢), Vz,¢ e RV

By the monotone convergence theoref,),.n iS an increasing sequence of
smooth functions that pointwise convergesuto in RN*! asn goes to infinity.
Moreover, by Proposition 1.2,, € S(R¥*+1) for everyn € N, since

Luy(z) = —/ PG OW (-5 du@) <O, neN, zeRY. (2.3)
RN+1

0
REMARK 2.2. Our proof is much simpler of those of the analogous results re-
called in the Introduction. On the other hand, we stress that our smoothing method
drastically modifies the parabolic supportofsee (2.3)).

3. Classical Representation Formulas

The aim of this section is to prove Theorem 1.5. Let us begin with proving Propos-
ition 1.4.

Proof of PropositionlL.4. Property (i) immediately follows from Theorems 5.2
and 5.3, since, for everye RV*1,

I'(z;) € C*®Y™M\{z}) and fim T o) =0

More precisely, we deduce that, for every compact neighborhooaf z, there
exists a positive: such thafl"(z; ¢) < 1/r in RN\ K, that is

Q,(z) CK.
Moreover, since by Theorem 5.4

limsupI'(z; ¢) = oo,

{—=z

thenz € Q,(z) for everyr > 0. This is enough to prove (ii).
From (ii) and recalling thal’(z; -) € Li, (RV*1) (see Theorem 5.2(ii)), we
obtain
€2, (2)|

r

</ I'(z;¢)dc - 0 asr— OF.
()
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We conclude the proof, noting that, sincé&; -) € C*(RN*1\{z}), (iv) is a straight-
forward consequence of Sard’s lemma. O

In the proof of Theorem 1.5 we shall use the following result.

LEMMA 3.1. For every fixed: ¢ RV and¢, r > 0, we set

[re® a
() ={x e RYIT'(x,8;¢) < —¢.

.
Then

Iim/ I(x,t;¢)dx =0. (3.1)
I (1)

t—tt

Proof. It is nonrestrictive to suppose that= 0. By Theorem 5.3, it is possible
to choose a suitable compact subsgt of RY such that for every > 0 small
enough there existB = T'(¢) > 0 such that

I'(z;0) < TK(z;0,—¢) < TK(x, ¢ 0),
for every O< ¢t < ¢ andx € RV \ Mp. Thus, since

|irQ+ ['(x,;0) =0, VxeR"\My,
t—
by the dominated convergence theorem, we have

lim / I'(x,t;0)0dx =0.
I (1)\Mo

t—0t

On the other hand, another application of Lebesgue’s theorem gives

lim / I'(x,;0)dx = lim / C'(x, 1500 x5, (x)dx = 0.
1 (nNMo 1=0% g

t—0t+
Indeed
1
0<T(x, ;0 x;,H(x) < -
and
|ir{)1+ I'(x,t;00 =0, Vxel.(t)N M, O
t—

Proof of Theorenl.5. With Theorem 5.4 and Lemma 3.1 in hand, formula (1.2)
is a standard consequence of the following Green'’s identity (3.4).
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We rewriteL in divergence form
L =div(AV) +Y — 3,

where

N N
Y =Yo— Y (3yai)ds; = Y _ Bjd;. (3.2)
j=1

ij=1

If Y* denotes the adjoint df, then for everyu € C* (RV+1) we have
N
Y'u = —Zaxj(ﬂju) =—udivY —Yu (3.3)
j=1

and the adjoint operator df is given by
L* =div(AV) +Y* +9,.

A standard computation yields
uL*T(z;-) = T(z; )Lu = div(uAVI'(z;-) — I'(z; )AVu)
—(Y = 3)l(z;)) —ul(z; ) divY. (3.4)

In order to remove the singularity df(z; -), we cut theL-parabolic ball. Foe < ¢,
we set

Q) =Q@) N = (1) e RV < ¢)
and
I9(2) = Q) N{¢ = (¢, 1) e RV Hr =¢}.

Integrating (3.4) o) (z) and applying the divergence theorem, we obtain

/ [(z; ¢)Lude :/ (T'(z; )AVu —uAVIL(z;-), ve)do  (3.5)
IE) 32 (2)

+ / ull(z; (Y — 9, v) do. (3.6)
92 (2)

In (3.6),v adv, denote respectively the outer normal and the spatial component of
the outer normal to the integration domain. We observeithat(v,, v,) = (0, 1)
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in 1) (z) andl(z; ) = 1/r in 32 (2)\ I (z). Therefore (3.6) yields

/ I'(z; $)Ludg
%7

1
-/ WAV @b+ [ (A, ve)
2P\ () " Jool® o\ (2)

+u(Y — 9;,v))do — / ul'(z; ) do (2). (3.7)

1)

Now we examine the behavior of each term of (3.7} g®es toe. Sincel'(z; -) is
locally integrable

lim / I'(z;)Lude =/ ['(z;)Lude.
e~ Joi (2) Q,(2)

Moreover, by the divergence theorem

/ oo ((AVu, ve) + u(Y — 9, v))do
A" O\ ()

=/ " (Lu—i—udivY)d{—i—/ u do
I (2)

JAGNES

— (Lu+udivY)ds ase— . (3.8)
Qr(2)

Since, iNIQE ()\ 1) (z),

(AVeD (23 0), vg) = <AV5F(Z; N Vel(z; ) > S0

VD ()]

by the monotone convergence theorem, we have

lim / u(AVel'(z;2), ve) do = / u(AVeI'(z; +), ve) do.
e=17 J9ol O\ () 99, (2)

At last, we use Theorem 5.4 and Lemma 3.1 to prove that

lim / ul’(z; ) do = u(z).
JAE)

e—>1"

Indeed, by (5.3),

[, wOreod© -
lrg (2)
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/\ u(;mz;:)do(;)—u(z)/ [ 0)do(¢)
1) RN x{e}
<[, O - u@IrEE 6 do )

1,7 (2)

+u(z)| T(z;¢)do(¢) == 1) + 13 (2).
RN x{eD\ 1 (2)

Now, sinceu € C2(RN*1),

Jl(g)(Z) < sup |u@)—u(z)l—>0 ase—>1".
el (@)

Moreover, by Lemma 3.1,

lim J\”(z) = 0.
e—>t~
Hence, lettings go tot~ in (3.7), we derive the following representation formula

u(z) = / u(AVeI'(z;+), vg) do (¢) 3.9
982 (2)

+}/ wdivY de —/ <F(z; -)—3> Ludz. (3.10)
rJo, @ 2 () !

Proceeding as in [4], Theorem 1.5, by means of Federer's co-area formula, form
(3.10) we get

_1 Ly, Vel@ )
u(z) = —/Qr(z)u<AVgF(Z, ) T >d§ (3.12)

r

1 [ d
+—/ / udivY dc—
rJo Jou )

—// (F(z; ) — 3) Ludz d. (3.12)
0 Q(2) l

Formula (1.2) follows immediately from (3.12) observing that, by Fubini’s
theorem,

/ /Q wdivyde L :./ /’ wdivy 3
o Jaw ! L) J1/T ) !

_ / wdiv Y lg(rT(z: ) de. O
Qr(2)
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REMARK 3.2. If we choose: = 1in (1.2), we get

/ E.(z;0)dc =1
Qr(2)

4. Representation Formulas forL-superparabolic Functions

The aim of this section is to prove Theorem 1.6. We begin with proving an expected
property of theL-superparabolic functions.

PROPOSITION 4.1.Let  be an open subset &'+ andu e S(). Thenu
satisfies the super-mean value property, that is, for egetyQ2 andr > 0 such
thatQ,(z) C Q,

u(z) = u,(z). (4.1)

Proof.Letz andr as in the statement. By Theorem 1.3, there exists an increasing
sequenceéu,),cn of smooth superparabolic functionsli'+* such that

nleoo u, (¢) = u(g), V¢ € Q,(z) U{z}.
Moreover, by Proposition 1.2 and Theorem 1.5,
un(z) = (uy)r(z2), Vne N. (42)

Thus, asn goes to infinity in (4.2), by the monotone convergence theorem, we
obtain (4.1). O

REMARK 4.2. If E, in (1.2) is positive (for example, i¥ = 0) then it is not
difficult to show that every lower semi-continuous function for which (4.1) holds,
satisfies a minimum principle and then itlissuperparabolic.

LEMMA 4.3. Letg € C°(RV+) such thatd < ¢ < 1and

sup [t — 1| < e.
(x,1),(§,7)€ SUpgy)

Then
u(z) =/ T(z; o) de <e, VzeRVHL
RN+1

Proof.Sincel'(x, t; &€, t) = 0forr < 7,thenu(x, ) =0fort < 15 :=min{s €
R|(y, s) € suppe) for somey e RV}. It is nonrestrictive to suppose that= 0.
We define

v(x,t) =t —u(x,t), xeRY, r>0.
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Then, by Theorem 5.2, € C* and
Lv(z) = —-1—¢(z) <0.
Moreover
v(x,0) = —u(xx,0 =0
and since by Theorem 5i3x, t) — 0 as|x| — oo, we have

lim v(x,t) =1, vt > 0.

|x|—00

Thus, by the maximum principle on cylindrical domains, Propositioni&,,z) >
Oforz > 0, that is

u(x,t) <t, Vr>=0. (4.3)
In particularu(x, t) < ¢ for 0 < ¢ < £. On the other hand, since by assumption

sup It -1l <e,
(x,1), (§.7) € SUPHy)

then
Lu(z)=0 fort>z¢
and

lim wu(x,t) =0, Vi>e.

|x|—00
Thus, another application of the maximum principle gives
ulx,t) <e, Vt>ce¢

and this completes the proof. O

PROPOSITION 4.4 (Weak representation formulaetu € SR+ andu =
—Lu. For everyp € Co(R¥*1) andr > 0, we have

/ u(z)p(z) dz
RN+1

= / ur(2)(z) dz
RN+1

1 " 1
e [ [ (reo-7) duod (4.4
r JrRy+1 0 Q) l
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Proof. It is nonrestrictive to suppose thatis nonnegative. In virtue of Pro-
position 2.1, we can also suppose thats compactly supported and= I',,. By
Theorem 1.3, there exists an increasing sequéngg.n of smooth superparabolic
functions, which approximates We have

/ Y(Q)u,(z)dz = / ©(2)(u,),(z) dz
RN+1 RN+1

—/ ©(2)®,u,(z)dz, VneN.
RN+1
Since, by Proposition 4.1,

0< (un) Su, <u, Vne N,

then, by Lebesgue theorem,
nILmoo /(p(z)un(z) dz = /(p(z)u(z) dz
and

nILmoo /ga(z)(u,,)r(z) dz = /w(Z)Mr(Z) dz.

Now we consider the last term of (4.4). We let

1/ 1
G(g“):—/ / (F(Z;g“)——)(p(z)dzdl, ¢ e RN+,
rJo Jreosii )

We wish to show tha € Co(RV*1). From the estimate of Theorem 5.3, it follows
thatG is compactly supported.

Let (¥,).en be the sequence of cut-off functions defined in the proof of The-
orem 1.3. It is easy to check that, for everg N,

1
pn(g) = / (F(Z; é‘) - 7) gD(Z)Wn(lZ - é‘l)dz
I'(z;0)<1/1

is a continuous function iRY*1. We now verify thatp,, is uniformly convergent
to

1
p() = / (F(z; 7)) — 7) ¢(z) dz. (4.5)
I'(z;0)>1/1

We first point out that, by Lemma 4.3,
1
/ Nz OA—Yu(lz—wh)dz <=, Ve, we RV (4.6)
RN+1 n
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Then, sincey > 0,

0< p(©) — pa(2)

1
=/ (F(z;:) - 7) o)L= (jz — w) 2
I'(z;¢)>1/1

¢ lloo
ol [ TEO@= Yz - whyde < 1O ve e RV,
RN+1 n
The last inequality follows from (4.6) fow = ¢. This proves thap, converges
uniformly to p. From the continuity of, the continuity ofG follows straightfor-
wardly.
Defining
Mn = —Lun, n e N,

by a change of the order of integration, we have

/ qﬂ(z)@run(z)dz:/ G(¢)du,(¢), neN.
RN+1 RN+1

Now we consider a sequengg, ),y of smooth functions which converges uni-
formly to G in R¥*+! and such that

Supp(g,), SUppG) € K cc R¥*1, vn eN.
Besides, lety € C°(RY*1) such that
O0< xk < x <1,

whereyk denotes the characteristic function&f Then, we have

‘/G(z) du(z)—/G(z) du, (2)

< V(G(Z) — 8 (2) duy (2)

+ ‘ / (G(2) — 8,(2)) du(2)

+ ‘/gj(z)(du(z) — dun(z))‘

— I{n,,/) + I](-n,j) + I?En,j)’ n,j eN.
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For everye > 0, there existsj = j. € N, independent ofi, such thatr"”,

1" < &. Indeed

1" <G = gl / $(2) i (2)
— 16 — gl f L* X (2un(2) iz

< 16 - gjlle / L*x(2)u(z) dz
and
1 < 1G — g0 / $(2) di(2).

On the other hand, far and ; fixed as above, there exisis= n(¢, j) € N such
that for everyn > i1

I?En,j) — ‘/ L*gj(z)(u(z) — un(2)) dz

<L)l f (D) — un(2) dz < &
K

in virtue of Beppo—Levi theorem. The proof of (4.4) is thus completed. O
Proof of Theorenl.6. We fixzg € Q2. As before, we suppose thatis com-
pactly supported and = T",,.. We distinguish three cases.
(1) there exists an open neighborhotdof zo such thatu|y € (V).

In this caseu and®,u are continuous functions in a suitable neighborhoogypf
since suppu) € R¥*1\ V. We now

claim: u, is continuous in a neighborhoag.

Let us take the claim for granted and use it to prove (1.3). We consider a sequence
(¢j) jen Of continuous nonnegative functions with sipp < B(zo, &) < V, for
suitable positive, for every;j € N, such that

I|m Q= (SZO,
in the sense that, for every € C(RV+1),

lim /RN+1 V()¢ (2) dz = ¥ (20).

j—o0o

Substitutingy ande; in (4.4) and lettingj go to infinity, (1.3) follows.
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We are thus left with the proof of the claim. Letbe a smooth cut-off function
such thaip > 0, supfig) € V andg = 1in B(zo, ¢). We have

u, = (ug), + (Ul — ¢)),.
It is not difficult to verify that(u(1 — ¢)), is continuous in a neighborhoag.

On the other hand, sinaep € C5°(RM 1), by the representation formula of
Theorem 1.5, we have

(M(/))r =up + (Dr(u(p) (47)

From this identity, it follows thatug), is continuous neatg. Indeedug is aC™
function inV and®, (u¢) is continuous in a suitable neighborhoodzgfbecause

L(up) =Lu =0 on B(zgp,¢&).
(2) n({zo}) = 0.

In this case, le(V;) ey be a decreasing sequence of open neighborhoods, of
such that

(Vi = {zo}-

jeN
We set
wj=nld—xv), JjeN

Then, for every nonnegative € C(RV+1),

/wa(z) du;j(2) 1 /wa(z) du(z) asj — oo.
Moreover
LT,; =0 onV; jeN
Thus, we can apply the result proved in the case (1) to the funEfjopobtaining

Ly;(zo) = (Uy;)r(z0) — @,y (20)- (4.8)

By the monotone convergence theorem

lim T, (z0) = u(zo)
j—oo
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and
jILmoo(Fuj)r(Zo) = u,(20)-
In order to prove that
/,”_)moo @, (z0) = Pru(zo),
we first show that
/RNHWZ) du;(2) 1 AN_1W(Z) diu(z) asj — oo,

for every nonnegative lower semicontinuous functibnindeed, since
[voae < [vodo. vien

we have
"Tjﬁp ¥ (z)du;(z) < /W(Z) du(z).

On the other hand, ib € C(RV*1) and 0< ¢ < ¢, then
iminf [ 4@ dey @) > iminf [ 940 = [ 9@ o
From (4.11), by taking the upper bound with respeap tave obtain
"j”lLQf /W(z) du;(z) > / ¥ (z) du(2).

Thus, since for every positivie

1
Vi = XQ(z0) (F(ZO§ D) — 7)

is a lower semicontinuous function, from (4.10) we get

“m/ 1;01(2)(31,001'(2):/ Y(z) du(z).
RN RN

J—>00

The monotone convergence theorem yields (4.9).
(3) u({zo}) # 0.

(4.9)

(4.10)

(4.11)
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In this case
M= A+ cé,

where 1 is a non-negative measure such théfzo}) = 0 andc is a positive
constant. Therefore, for everye RV*1, it holds

u(z) =I'(2) + cI'(z; 20)-
In particularu(zo) = I';x(z0). Moreover, sincd(-; zg) € S(RV*1), we have
0< (I'(:; 20))r(z0) < T'(z0520) =0
and then
ur(zo) = (I')),(z0)-
Finally, observing that, for everly> 0
2;(zo) N SUPES;,) = ¥,

we have

/ / <F(ZO; 7) — }> d(8,,(z))dl = 0.
0 JQ(zo) l

Hence, (1.3) follows from step (2) and this concludes the proof of the theorem.

Proof of Corollaryl.7. Proceeding as in [4], Theorem 1.6, from (1.3) we get

d 1
—u,(20) = —— l9(rT"(zo; -)) dit. (4.12)
dr r Q- (z0)

We remark that the kernel appearing in (4.12) is strictly positive on the domain of
integration{2, (zg). Hence

d
d_l"ur (ZO) < 0’

sinceu = —Lu is non-negative. This proves (i).
Moreover, by the lower semicontinuity af, for every positives, there exists
o = p, > 0 such that

u(zo) —u(z) <, Vz € B(zo, p).
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Thus, recalling Remark 3.2,

0 < u(zo) —u,(z0) = / (u(z0) — u(2))E,(z0; 2) dz

Q2 (z0)
< 8/ E (z0;2)dz =¢
Qr(ZO)

if r is sufficiently small, so tha®, (z¢) € B(zo, p). O

5. Appendix

In this paragraph we briefly recall some of the results of [9] which are prelimin-
ary to this paper. We begin by giving a simple maximum principle on cylindrical
domains. Given a cylinde® = O x]a, b[, whereO is an open subset @&" and

a < b, we define the parabolic boundary @fby

9,0 = (0 x {a})) U (30 x [a,b]). (5.1)
PROPOSITION 5.1Letu € C3(Q) andLu > 0in Q. If lim sup,_,, u(z) < Ofor
everys € 9,Q thenu < 0in Q.

The following theorem states the existence of a fundamental solutidn of

THEOREM 5.2. There exists a fundamental solutibhof L having the following
properties:
(i) T is a nonnegative function which is smooth away from the diagorfal'ot x
RN+1;
(ii) for every fixedt € RN*1, I'(-; z) andI'(z; -) are locally integrable
(iii) for every nonnegative measysewith compact support ang € C*(RV*1),
the following identities hold

L/ [0 du@) = —u,
RN+1

/RMF(-; L) de = —g;

(iv) T(x,t;&, 1) =0if ¢ < 7

(v) for everys € R¥*L LT (-;¢) = —§,, wheres, denotes the Dirac measure
supported in¢};

(vi) if we define

M(z:¢) =T 2),  Vz,0 e RV

thenI™ is a fundamental solution df*, the formal adjoint ofL, satisfying the
dual statements dfii)—(v).
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By means of hypothesis (H.3) and by suitably modifying some classical results
about caloric functions, we prove the following asymptotic behaviar af infinity.

THEOREM 5.3. For every: = (¢, 7) € RV*! and for everye > 0 there exists a
compact seF € RV*! and a positive constar@ such that

['(z;¢) < CK(z;¢(e)), VzeRVINWF,

where¢(s) = (§,7 — ¢) and K denotes the fundamental solution of the heat
operator H in RN+,

The last section of [9] is devoted to the proof of some further classical properties
of the fundamental solution. In particular, we have

THEOREM 5.4. For every: = (£, 1) € RVt

limsupI'(z; ¢) = oo. (5.2)

z—¢

Moreover, ift > 7, we have

/ C(x,t;0)dx = 1. (5.3)
RN
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