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ABSTRACT. — We study the interior regularity properties of the solutions of a nonlinear degenerate
equation arising in mathematical finance. We set the problem in the framework of Hérmander type operators
without assuming any hypothesis on the degeneracy of the associated Lie algebra. We prove that the
viscosity solutions are indeed classical solutian®001 Editions scientifiques et médicales Elsevier SAS

Keywords:Nonlinear degenerate Kolmogorov equation, Interior regularity, Hdrmander operators

RESUME. — Nous étudions la régularité intérieure des solutions de viscosité d’'une équation non linéaire
du second ordre dégénérée que I'on rencontre en finance mathématique. Nous étudions le probléme par
la théorie des opérateurs de Hormander sans aucune hypothése sur la dégénerescence de I'algebre de
Lie engendrée. Nous montrons que la solution de viscosité est une solution classi2@@l Editions
scientifiques et médicales Elsevier SAS

1. Introduction

In this paper we prove some regularity results for viscosity solutions of a nonlinear differential
equation arising in mathematical finance. In [1], Antonelli, Barucci and Mancino introduce a new
model for agent’s decision under risk, in which the utility functiors a solution of the Cauchy
problem

(1.1) Lu=f, inSr=R?x]0,T],
1.2) u(-,00=g, InR?
whereT is suitably small and. is the nonlinear operator defined by

Lu = 0yyu +udyu — o;u,

and(x, y, 1) = z denotes the point ifk3.
In the same paper the authors prove by means of probability methods the existence of a
continuous viscosity solution, in the sense of the User’s guide [13], of (1.1)—(1.2), satisfying

(1.3) |u(x,y, 1) —u(, 0, 0)| <Cr(x — &+ 1y —nl)
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for every (x,y), (£,n) € R?, t € [0, T[, under the assumption that and g are uniformly
Lipschitz continuous functions. On the other hand, in a recent paper [2], Antonelli and Pascucci
prove that the solution found in [1] can be also considered as a distributional solution.

Other existence results for weak solutions of the Cauchy problem for a more general class of
equations, that contains (1.1), are obtained in [31] and [14]. This kind of solutions, however, is
few regular and does not satisfy condition (1.3).

Related problems arise in the stochastic control theory. For instance, the value funatian
suitable control problem is a semiconcave solution of the following Cauchy problem:

1 .
dexV + E(ayu)2 —v=¢, inSyr=R>x]0, T,

v(-,0)=1v, inR?

for some continuous functions and ¢ (see [16]). Note that the function= 9,v is, at least
formally, a solution of our Cauchy problem (1.1)—(1.2) and the regularityisforesently object
of study in [7].

Here are we are interested in the interior regularity of the solutidaund in [1] and [2].
SinceL is a degenerate second-order operator, regularity results proved in [6,32,33] for viscosity
solutions, and in [24] for weak solutions, do not apply. Instead we will study the regularity in
the framework of Hormander type operators, representing the opdra®a sum of squares of
vector fields plus a first-order term:

(1.4) L=0%4Y, Y=ud,—3d.
General operators of this kind can be represented as follows:

(1.5) > aiXiXju+ Xou = f.
i.j

whereX; are linear smooth vector fields ang € C* and the rank of the Lie algebra generated
by X; is maximal at every point (see [20]). The main properties of the operator in (1.5) (such
as existence of a fundamental solution, control distance) have been established in [27,29,30,
21] (see also [25] for a particular class of operators with the same structukg. ddsing
these properties, a general theory of the regularity both in Sobolev spaces and in spaces of
Holder continuous functions has been settled down in [17,19] and [29]. See also [15] for related
results, for pseudodifferential operators. A Morrey type result is proved in [22]. The regularity
of solutions with less regular coefficients has been studied in [5,4] in Sobolev spaces with the
technique introduced in [8]. In [28,26] and [23], it is considered the case of spaces of Holder
continuous functions. Then operators of the form (1.5) with nonlinear vector figltdave been
studied in [9,11]. In all these papers the regularity properties of the solution relie on the fact that
the Lie algebra generated by the vector fields has maximum rank at every point.

Concerning operatadt in the form (1.4), the commutator af andY is

(1.6) [0x, Y] =uxdy
and an Hérmander condition can be expressed as
2.7) oxu(z) #0, Vze 2.

Indeed, in [12] the authors proved:
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THEOREM 1.1. — Let £2 be an open set iiR® andu a classical solution of1.1) on £2 with
feC®(£2).If (1.7) holds, thent € C*(£2).

The first results for non-Hérmander linear vector fiekisare contained in [18]. In [10] a
regularity result was established without conditions on the commutators, for a nonlinear equation
with a structure different fron.. Here we further develop this idea and we prove that the
viscosity solutions are classical solutions of equation (1.1). The main interest in our treatment lies
in the fact that, in spite of the degeneracy of the operator, we do not require any assumption on
the commutators. In particular we do not require any more condition (1.7). Hence the Lie algebra
associated to the operator is completely unknown. However we conbider a subelliptic
operator with respect to some tentative Lie groups, and we use a representation formula for
the solutionu in this setting. This allows us to prove the existence of the directional Euclidean
derivative ofu

ou
Yu(z) = —(2),
av,
wherev, = (0, u(z), —1).
In Section 2 we prove some preliminary results. Using standard techniques, we get:

PROPOSITION 1.2. —If u is a viscosity solution of1.1) satisfying(1.3), then it is a strong
solution of the same equation, in the sense that

ue I-I%C(ST)’ Uxx € L%C(ST),

and the equation is satisfied a.e.

Moreoveru, is a strong solution of the linear equation formally obtained by differentiat-
ing (1.1).

In Section 3 we prove our main results. Here we use the deep geometric properties of some
Hoérmander operators naturally associated. tand we prove that the weak derivativesiotan
be computed pointwise. More precisely we have the following:

THEOREM 1.3. —If u is a strong solution of1.1) satisfying(1.3) then it is a classical solution,
in the sense that,,, Yu are continuous and the equation is pointwise satisfied.

A similar regularity result also holds far, .
Finally, in Section 4, using the properties ®f established in the previous sections and a
propagation principle, we prove a sufficient condition for (1.7) to hold. Precisely we prove:

THEOREM 1.4. —Assume thayf € C1 N Lip(S7) is such thatf, <0in S7, g € Lip(R?) is
such thatx — g(x, y) is non-decreasing for every € R and letu be a viscosity solution of
(1.1)—(1.2) satisfying(1.3). If either.

e forevery(y,t) e Rx]0, T[, the functionx — f(x, y, t) is not constant, or

o for everyy € R, the functionx — g(x, y) is not constant,
thenu, > 0in Sy andu € C*°(S7).

2. Strong solutions
In this section we assume thate Lip(S7), g € Lip(R?) andu is the viscosity solution of (1.1)

satisfying (1.3). We study some preliminary summability propertias afd its derivatives. Let
us recall thatSy = R?x 10, T[ andu, = dyu.
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We can always assume thats a limit of solutions of the regularized problem
(2.1) Leu Eaxxu+823>,yu+u8yu — o = f,

for ¢ > 0. Indeed (see [2])

THEOREM 2.1. —If u is a viscosity solution in the sense [df3] of (1.1)—(1.2) and (1.3)
is satisfied, then there exist a sequerteg),en such thate, | 0 and a sequenceéu®) in
c2telt+e/2(g.y N Lip(S7) such that for every the functioru®" is solution of

(2.2) Le,u™ = f,
(uf) converges uniformly on compact subsetsRéfx [0, 7[ to u, asn — oo and (1.3) is
satisfied uniformly irz.

In order to simplify the exposition, we introduce some notations:
DEFINITION 2.2.-We define the linear operator

(2.3) Ly = dxx +udy — 0,
and, ifb € L%C(ST), we say thav is a strong solution of

(2.4) Lyv=b, inSr,

2

if dyxv, dyv, 0rv € Lig,

(St), and equation2.4) is satisfied a.e.

With these notations we prove Proposition 1.2 and also the following result which will be used
in the third section:

PROPOSITION 2.3. —Letu be a viscosity solution @fl.1) satisfying(1.3). Thenu, is a strong
solution of the linear equatioh, ux = —uxuy + f.

We first provide some a priori estimates of Caccioppoli type for the derivatives of the functions
(u®7) and we deduce the proofs of Propositions 1.2 and 2.3 lettigg to infinity.

LEMMA 2.4 (Caccioppoli type inequalities for first derivatives).etu® be aC* solution to
equation(2.1) that satisfies conditiofil.3) and lety € C3°(S7). There exists a positive constant
C1 which depends only ofi ¢ and on the constar@7 in (1.3), such that

Ju sl + s, 0l + el ol + ol < €.
for every positives.

Proof. —Let us denoté = x or [ = y and let us differentiate equatidn.u® = f with respect
to the variablé. Then we multiply bwf<p2 and integrate o7 . For simplicity, in the remainder
of the proof, we omit the index in u?. Thus we have

2 2 2
/(ulxx + &%upyy + uguy 4 ungy — ug)ui@ =/f1u1<p :
ST ST

Integrating by parts the first term with respecitand the second with respectipwe get

(2.5) f(ulzx + szulzy)goz = —Zf(ulxulwwx + szulyuqupy) + =11+ I,
St St
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where this equality definelg and

I = /(ulzuy + ungury — ugug — f[u[)goz.
St

By the Cauchy inequality we have
2 22y 2, L 2( 2 22
I1 <6 (“1x+3 u,y)q) + < | uj (gox—i—s goy),

)
St St

for every positive constardt In order to estimaté; we note that

2 2
u u
ujujy = oy (é) and wju;; =0 (71)
By parts, we obtain

1
I =/(§u12uyg02 — uulzwgoy + u,2<pg0,> — / flu[(pz.
St St
We deduce
1= 8)(luixpll3 + e2lluypll3) < C.

whereC depends only o€ in (1.3) andf. Since
U = Uxx + gzuyy + uuy - f»

we get
lurgll2 < C,
and the assertion is provedo
Proof of Proposition 1.2. 4 is a simple consequence of Theorem 2.1 and Lemma 2.4, since
we can letz go to infinity in (2.2). O

LEMMA 2.5 (Caccioppoli type inequalities for the second derivativekptu® be a solution
to equation(2.1) that satisfies conditioril.3) and lety € C5°(Sr). Then there exists a positive
constantC; that depend only orf, ¢ and on the constar@r in (1.3), such that

Huimw ”2 te H”Jscxy¢ ”2 + 82||ufcyy§0 ”2 + Huit(pHZ < Cl’

for every positive.

Proof. —We simply outline the proof. We differentiate twice equation:® = f with respect
to 9, then we multiply byu? ¢? and integrate o57. We find

2 2 2
f(uxxxx + &%Uxxyy + ax(uxuy + uuxy) - uxxt)uxx§0 = f Sexlxx@©.
St St
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By integrating by parts and arguing as in Lemma 2.4 we readily find the estimate of the first two
terms in the statement.

In order to estimate the third term, we differentiate the equakigif = f with respect to
dx then with respect t@,, we multiply byezujy<p2 and integrate oi§7. Proceeding exactly as
before we readily obtain the result. Finally, the estimate of the tggnfollows directly from the
identity

2
Uyt =Uxxx + & Uxyy +uxuy — Ulyy.
This completes the proof.0

Proof of Proposition 2.3. +et (1) a sequence of solutions of the regularized equation,
locally uniformly convergent ta. Since every®» belongs toc2te-1+¢/2 W,icz the function
V" = d,u®" is a strong solution to the Cauchy problem

Vyx + e,zlvyy + vui” +u"vy —v; = fr, inSr,
(2.6)
v=gy, In R2.

We can obviously assume by Lemmas 2.4 and 2.5 hbf@b,((s,zlv;’y), (u®nvy) weakly converge

t0 1 xx, 0 anduu,,, respectively. Passing to the limit in (2.6), we obtain the thesis.

3. Classical solutions
In this section we prove that the functiaris a classical solution of the equation
Oxxtt + (udy —dpu=f
as defined below. In Section 2 we considered the first-order term
(3.1) (udy — d)u

as a sum of weak derivatives. Here we prove that it is continuous and coincides with the
directional derivative w.r.t. the vector = (0, u(z), —1):

dw w4 hvy) —w(z)
(3.2) oo = fim, : .

Then we say that is a classical solution ofu = f if the functionsu,, andz — %(z) are

continuous and the equation is satisfied at every poisyof w is of classC?, the derivatives
in (3.1) and (3.2) obviously coincide and we will also denote thentYpy. For less regular
functionsw, we have:

LEMMA 3.1.—Lew be a continuous function defined in an open sulsef R3. Assume that

its weak derivativesv,, w; belong toLﬁ)C(.Q) and that the limit in(3.2) exists and is uniform

with respect tq; in every compact subset &f. Then
ow
—(2) = Wdyw — hw)(z) a.ezeL.
av,

We then denote

0
Yw(z) = %(z»
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Proof. —By Theorem 2.1 there exists a sequee®) of smooth functions convergent io
uniformly in £2 and (1.3) is satisfied. Hence we denote

vsn»Z = (0’ _usn (Z)v 1)1

in order to approximate the directional derivativeuafFor everyp € C3°(£2), we have

fa_w(z)¢(z)dz=)liinof wzthv) —w@ g

av; h
7 Q2

— lim lim /w(“hvs;l,z)—w(z)

¢(z) dz.

h—0 n—00
2

We can now perform the change of varialgle= o, »(z) = z + hv,, ;. Let us estimate the
Jacobian determinant independentlyof

en (1 -1
|JQ;11,1« @) =1+ huy (an,h(f)ﬂ
(since(uy") is bounded uniformly with respect toand¢)

=1—hu (0, % (©)) +hRe, n(0),

whereR;, »(¢) — 0 ash — 0 uniformly with respect te, and¢. Inserting in the previous
expression we get:

9 (1
f %(z)w(z) dz = lim n'Lmoo(z f w(@©)ep (o, () (1= hutr (0,%,(0)) + hRe, 1(0)) dt
2

- 2
1
- E/w(;)w(;)hd:)
2
o 90, (@) — 9(©)
= jm,fm, | wie
22

— . tim [ @ 04, ©)oler @) &

h—0Q n—o00

2
+ }!ir;no nILmOO/ w(é’)go(Q;jh(C))Ran,h(f) d¢
2

(using the mean value theorem in the first term, withy, € [¢, Q;fh(;)], the change of variable
z= Q;}h(;) in the second, and the fact thRf, , — O uniformly in the third)

= lim lim /w(;)(w(ce,,,h),(O, —uf" (0, %, (). 1)) d¢

h—0Q n—o00
2

— lim_ lim / w(0e,,n(2))u5 (D)@ (2) (14 hus (2)) dz.

h—0 n—00

2
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Due to the uniform boundednessigf ., we have

Q;fh(;“) =& 06,.10(2) > 2,

ash — 0 uniformly with respect te@, and¢. Lettings go to O we get

ow : e . e
/ 8—‘)2(1)¢(Z) dz= —n“_)moo'/ u)(u Yy — <.0t) —n“_)mm/ wuy ¢
2 2 2

=—fw(u¢y—¢t)—fw“y¢’

2 2
and this completes the proofo

Let us begin our regularization procedure. The operatdefined in (1.4) is not a Hormander
type operator since it is nonlinear, its coefficients are not smooth and even if we could compute
the commutators, we had no information on the structure of the generated Lie algebra. Then, we
choose an approximating vector field in such a way that the associated Lie algebra is the simplest
non-Abelian one. Fixed a compact ¢t for everyzg € M we define the frozen vector field of
order O as follows

(3.3) Yo,50 = (#(z0) + (x — x0))dy — 3.
In this way
[X, Yo.z0] = 8y

and the Lie algebra generated &yandYy ;, spans the whole space at every point. We will call
do -, the control distance generated &y, Yo ., and their commutator.

It is known (see for example Remark 2.2 in [12]) that there exist positive constants only
dependent o such that

(3:4) C1do,z(z0,2) < (Ix = xol + I — 101"/? + |y — yo + u(z0) (¢ — 10)1"/%) < C2do (20, 2)
for all z, zo € M. We call frozen operator of order O the operator formally definefl:as
LO,ZO = 8xx + YO,ZO-

This operator has a fundamental solutif),, whose asymptotic behaviour can be estimated in
terms of the control distane® ., as follows:

170,20 (z0. 2)| < Cdo (20, 7)~2t2

where 0 = 6 is the so-called homogeneous dimension of the Lie grouftdmssociated to
dx, Yo o We refer to [29,19,27] for more details about this topic.
Using the existence of a fundamental solution it is quite standard to prove:

LEMMA 3.2.—Letu be a strong solution ofl.1). Thenu is differentiable with respect to the
variable x in S7. Moreover, for everyx €10, 1] and compact subse¥ of Sr, u, is Holder
continuous with exponent in M w.r.t. the distancely ;,. Besides there exisiSz > 0 only
dependent on the constafit in (1.3) such that

(3.5) |u(z) — u(z0) — ux (z0)(x — x0)| < C3déf;§‘(z, z0) Vz,z0€ M.
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Proof. —Let us fix a functionp € C§°(Sr), such thaty = 1 in M. By definition of fundamental
solution, and the fact thatis a strong solution of (1.1), we immediately have

(uw)(z)=f1“o,zo(z,§)lﬁ(zo,§)d§, zeM,

St

where

¥ (20, ¢) = ((u(z0) — u(¢) + & — x0)uy + f)¢ +uLo @ + 2uxpx

is a bounded function with compact support. Here we have degotett, n, 7).
Then, we have

Bxu(z)=/8x1“o,zo(z,§)¢(zo,§)d§, zeM,
St

and a standard argument yields the Holder estimatg ofVe refer to Theorem 2.16 in [12] for
the proof of assertion (3.5).0

Proof of Theorem 1.3. We have to prove the existence and continuity of the derivativas
andY,u. By brevity, we prove only the second one, which is technically more complicated. In
Lemma 3.2, we showed thatcan be represented as

u(z) = / T0.20(z, O) (Y1 +¥2) (20, £)AE, z€M,
St
where
¥1(20, ¢) = (u(z0) — u(t) +& — xo0)uyg, V2(20,8) = fo +uLlozo0 + 2uxey.

It is clear thaty, is Hélder continuous, so that we indicate how to compute the derivative of the
term containing/1:

(o) = / To.2g(22 V120, ¢) k.

St

We denote by a C*° ([0, +o0l, [0, 1]) function such that

, x(s)=1, fors>1,

NI =

x(s)=0, fors<

and we define

do ;o (z,
us(2) = f To2o(2: ) (W)Wzo, 0)d.

St

and

v(z0) = / Y, I0,24(z0, $)¥1(z0, ¢) L.

St
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Using the local behavior ofp ;,(z, ¢) and the fact thaly1(zo, ¢)| < Cdo 4 (z0, ¢) We get, for
everyz, zo such thatlp ;(z0,z) < §

lus @) — )| < C f d5 2722, ©)do 2o(20, £) e
do(2.0)<8
(using the fact thad ;,(z0, ¢) < Co(do,z,(z, ¢) + do,zo(z0, 2)) < 2Cod and the polar coordinates
associated to the homogeneous Lie group)

)
<C$ f p~2t2+0-1q, = s
0

and analogously

|Yuus(z0) — v(zo)| <6, sup  [dyus(z)| < Clog(s).
do,;((20,2) <8

Then the derivative(ff)i (zo) can now be computed as follows:
20

i(z0+ dvyy) — U(z0)

5 - v(zo)‘
(3.6)
_ lu(zo + 8vzg) —us(zo+8vzo)| | |us(zo+ 8vzy) — us(z0)
= 3 5 — v(z0)
|1(z0) — us(z0)|

* 5

(by mean value theorem, for sorfie [0, 5])
<82+ |u(zo)3yu5(zo +§v10) — 0us5(20 —i—ngO) - v(zo)|
= [u(z0) — (20 + 8v=0)||dyus (0 + Bvz)| + | Yutts (20 + 8vz) — v(20)|
<8Y210gd)+5+8—>0, ass— 0.

Then
ou

vz

v(z0) = (z0),

andv is continuous, since this limit is uniform. Finally, by Lemma 3.1,
Yuu(zo0) = v(zo) + f YuFO,zO(ZOa 0)Y2(zo0, ) dé"
St
and it is a continuous function.O

Property (3.5) allows us to introduce new vector fields frozen of order 1:

_ 2
3.7 X = 0y, Y1z = (u(zo) + ux(20) (x — x0) + w%)’ — 0.
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Note that, even if we have no information ep, the rank of the Lie algebra generateddyand
Y1, IS constant at every point. Indeedif (zo) # 0, then

Oy, Yl,z()’ [0y, Yl,z()] = (ux (zo) + 2(x — xO)) ay

are linearly independent neay. On the other hand if, (zg) = 0 then[d,, Y1 ;,1(z0) = 0 and we
need commutators of order 3 to span the whole space:

Oy, Yl,zg» [ax» [0y, Yl,z()]] = 8y~

The intrinsic gradient is the vector

V1,zo = (ax’ Yl,zo’ [0x, Yl,Zo]a [8x, [0y, Yl,zo]])

and (V1,,,); will denote its components. The associated control distance can be defined as
follows:

DerINITION 3.3. —For everyz, zo, 7 there exist constanty, 62, 64, such that

z=exp(01(V1,20)1 + 02(V1,20)2 + 04(V1,20)4) (2).

Precisely

0L=x—x, Oo=—(t —1),

2
(x—0?  (x—HE-x0) , (xo—5)?
+ > + > + 3 .
If 2u,(z0) +x — x + 2(x — x0) # 0, then there also exists a const#gtsuch that

- - X=X _
94=y—y+(f—t)(u(zo)+ux(zo)(—+x—xo>

z=exp(01(V1,29)1 + 02(V1,2)2 + 03(V1,20)3) (2)

and
204
O3 = — — .
2u(z0) + (x — X) + 2(x — x0)
Then the control distance associated#o., can be defined as

d1,20(z, 2) = 01] + 16212 + min{ |63 7/3, |04 Y/4}.

The functiondy ., has been introduced in [27], where it is also proved that it is a quasi-distance
locally equivalent to the Carnot—Caratheodory’s one.

Let us note explicitly thad; ., is not an homogeneous function, so that the group associated to
this choice of vector fields is not homogeneous. However the metric is doubling. In other words
there exists a constaat> 0 only dependent on the fixed compact &esuch that

|B1.25(z, 2R)| < C| By, (2, R)

)

for everyz € M, whereBy ;,(z, 2R) denotes the ball of the metriy ;,, and| - | the Lebesgue
measure. Let us also note that the distargg andd, ., are not equivalent, and the following
relation holds:
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Remark3.4. —
do,70(z, 20) < Cd1,74(z, 20)-
Proof. —If min{|63|Y/3, |04|%/4} = |63/Y/3 then
1/3

ux(zo)(x — xo))
2

do,2o(z, 20) < 161] + 162|1? + ‘y — Yo+ (t — ro)(u<zo> +

(sinceu, is bounded)
< C(162] + 1621Y2 + 163172 + |t — 10| 3)x — x01?/3) < d1.0(20, 2).
Analogously, if mir{|63]Y/3, |041Y4} = |64|1/4
do,2o(z. 20) < [61] + 0212 + 1044 + |1 — 10|/ — x0/Y? < d1,24 (20, 2).

From Lemma 3.2 and the preceding remark it follows that

COROLLARY 3.5.—If u is a Lipschitz continuous, strong solution @.1), then for every
a €]0, 1 for every compact sei/ there exists a constarifz > 0 and only dependent o@r
in (1.3), such that

|u(2) — u(z0) — ux (20) (x — x0)| < C3d1 ¥ (2, 20).

In order to study the regularity of the solution, we proceed as before, using the fundamental
solution of a suitable operator defined in termgof,. We call frozen operator of order 1:

Ll,zg = Oyx + Yl,zo

andI ., will be its fundamental solution. It satisfies the following estimate

d7 (2 0)

38 Mk H<C '
(3.8) 120(2:¢) |B1,7(2, d1,70(2, £))]

PROPOSITION 3.6. —If u is a strong solution of1.1) satisfying(1.3) then the weak derivative
Y, u, is continuous.

Proof. —Arguing as in Lemma 3.2, we see thatcan be represented in terms of the
fundamental solutiorfy ;, and that

dyu(2) = / 0y oo (22 )Y + V) (0. ) e, 2 € M,
St

where

(x — x0)2
¥1(z0,¢) = —(u(é) — u(z0) — uy(z0)(x — xg) — T)Myw,

Y2(z0,2) = fo +uL1 00 + 2ux@y.
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As before we indicate how to compute the derivative of the term contaifting

3xﬁ(2)=/3xF1,zO(Z,C)¢1(Zo,C)dC-

St

We denote by, the same function as in Lemma 3.2 and we define

dl,ZO(Zv é‘)

ﬁé(z)zfaxpl,ZO(Z’C)X< s

N

)Wl(zo, ¢)dg

and

v(z0) = / Yads T2 (20, )20, £) .
St

We remark explicitly that the last integral is convergent by Corollary 3.5 and estimate (3.8). In
order to proceed as in the proof of Theorem 1.3, we need to prove that

(3.9) |iis (2) — e (2)] <827, |Vulis(z0) — v(z0)| < 8

for z, zo satisfyingds ;,(zo0, z) < 8. However we can not repeat the same proof, since no polar
coordinates are associated to the Lie algebra generatéd By .,, which is not homogeneous.
We use instead the doubling property of the medliic,:

75() — e ()] = / |95 Tz (2. )220 )| ¢
2 (2.0) <8

dl,zo (Z» ;) 1I4o 1I4o
<c A ) 4 d e z0)) d
Bt dig(z, 0] e @O+ 1z 20)) &

129208

2+

ey ECLU

R |B1.2o(z, d1.54(2, 0))]|
21\+1 <di; O(Z {)<

o0

d1.70(z,¢)
+ C81+Ot / 1,20 d
2 Broo(.diog@ O]

k=0

Z{Sﬁédl,zo(z,{)ézik

+C§:< 8 )2+a |B1.5(z, ﬁn st Z 8 1BLe(@ 50l
A\ 2 Broo@ 2 2 |B1s (2. 50)

(since the metric is doubling)

o
8 1+ 8 2+
<CZ<§) +C8 “sz cs?te,
k=0

The proof of the second assertion in (3.9) is analogous. Once these properties are established,
arguing as in (3.6), we deduce that

YMEX (z0) = v(zo0)
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and

Yoty (20) = — / YuLao(20. O)0:¥2(20. ) U + v(z0). O
St

4. Propagation principle and smoothness

In this section we consider the classical solutiwnof the Cauchy problem (1.1)—(1.2)
satisfying (1.3) and we prove Theorem 1.4. We aim to show that a propagation principle for
minima ofu, holds, so that

ux(z) >0, inSr,

then Theorem 1.4 follows from Theorem 1.1.
We recall some classical results due to Bony [3] about the propagation of maxim@. het
an open connected subset®f and

D:2 — RN

a locally Lipschitz continuous vector field. A non-empty subiBeaif 2, relatively closed in2,
is said to be positivelyp-invariant if for every curve

y:[0,S]— 2

such thaty’ = D(y) andy (0) € E, we necessarily have(s) € E for everys € [0, S]. If E is
positively invariant forD and— D, we say that is D-invariant. In other wordsE is D-invariant
if for every

yl— £

integral curve ofD such thaty (so) € E for somesg € I, theny (I) C E.
Positive D-invariant sets can be characterized in a remarkable geometric way. A vector
v e RN\ {0} is said to be an exterior normal #in z € E (in symbolsy L E in z) if

B(z+v, [v])NE =4,
whereB is the Euclidean balll
B(z.R)={t eR" ||z —¢| <R}.
We put:
E*={zeE|Fv LEinz}.

Itis easy to show thak™* # (J whenevel) # E # £2.

THEOREM 4.1 (Bony). -Let E C £2, relatively closed in2. ThenkE is positive D-invariant
if and only if

(D(),v)<0, VzeE*, Vv LlEinz

In particular, E is D-invariant if and only if

(D(),v)=0, VzeE*, Vv LlEinz.
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In order to apply the theorem, we prove a Hopf type lemma for the set
(4.1) E={ze€Sr |ux(z) =0},
by using some functions introduced in [26], Proposition 6.1, for the study of a boundary value

problem for operators related to the linear operdtpin Definition 2.2.

LEMMA 4.2.-Let E be as in(4.1). For everyzo € E* andv = (vy, vy, v;) L E in zg, we
have

(X,v)=v, =0 and (¥,(z0),v)=u(zo)vy —v; <O.

Proof. ~We defineL by Lw = L,w + uyw. By Proposition 2.3Lu, = f, in St and, by the
maximum principle and our assumption gnandg, we findu, > 0 in S7. Hencezg € E* is a
minimum point foru, . Since, by Theorem 1.3 and Proposition 3.6, andYu, are defined and
continuous, we have

(4.2) uxx(zo)=0 and Yu,(zg0) =0.

To prove the first assertion, we suppose, by contradictionthat) # 0. We set; = zo + v,
r=|v| and

—Alz—Z? _ o—ar?

w(z) = e,

for some positive.. A straightforward computation yields
Lw(z0) = e+ (2)»113 — 1+ u(zo)vy — vy).
Thus, there exist, ¢ > 0 such that
Lw(z) >0, Vze Q2o=B(,r)N B(zo,0).

Sinceuy > 0in B(z,r) N dB(z0,0), ux = 0indB(z,r), andw = 0in IB(z,r), there exists a
positives such that:, —dw > 0in 0820 andL (u, — Sw) < 0 in £29, by the minimum principle
we get

(4.3) uy =8w, in .
As noticed abovey,, (zo) exists and, we get from (4.3) that

ux(xo + hvy, yo, to) — ux(z0)

uxy(z0) = lim
h—0t

h
. hvs. 0. 10) — _

> ||m+aw(x°Jr b 20 0) = WG0) _ 55302647 5,
h—0

This inequality contradicts (4.2) and proves the first claim. As a consequence, by Theorem 4.1,
E is X-invariant, that is

z0=(x0,y0.20) €E = {(x,y0.70) |[x eR} CE.
Therefore, for everyp € E* andv_ LE in zo, we have

(4.4) [,y ) eR3 | (y —yo—v)2+(t —to—v)?> < W’} NE = 0.
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In order to prove the second claim we suppose, by contradictiory th@tv, — v; > 0. For a
positiver we denote = zo +rv and

BE.r={y,0eR|r2x -0+ -2+ -0 <r?p?}.
By (4.4),5(2, r) N E =@ for everyr €10, 1]. If we choose" < u(zo)vy — v; and let:

w(x, y, 1) = € @RGP ==D? _ grZ?

a direct computation shows that
~ _ 21,2
Lv(zo) = 2re " IV (u(z())vy — v — r) >0,
then there existg > 0 such that
Lv(z) >0, Vzeo=B(Z r)NB(z0.0).
As in the previous case, it is easy to see that there exist® such that
uy =08v, in ﬁo

so that
Vit (z0) = 8Y,0(z0) = 26r& " " (u(zo)vy — v1) > 0.
This inequality contradicts (4.2) and completes the proaf.
Proof of Theorem 1.4. As stated above, we show that condition (1.7) is satisfied by proving
that the seft defined in (4.1) is empty.
Suppose, by contradiction, that there exists= (xo, yo, %) € E. By Lemma 4.2,E is
X-invariant, then it follows from (4.2) thaf; (x, yo, to) = Yu,(x, yo, t0) = O for everyx € R

and this contradicts our assumption fn
In the other case, we observe that, by (1.3), the integral cur¥g sfarting atzg

y(s) = (XO, yo+fu(y(f))df,to—8>
0

is defined for every € [0, r0]. By Lemma 4.2 and Theorem 4.K,is positivelyY,-invariant. As
a consequencge([0, to[) € E and using again th&-invariance ofE and the continuity of: we

find
1o L{0]
M<X,y0+fu(y(f))df, 0) =M(X0, yo—i—fu(y(r))dr, 0)

0 0
for anyx € R and this contradicts our assumptiongrn both cases we havg > 0 in S and
the thesis follows from Theorem 1.10
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