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ABSTRACT. – We study the interior regularity properties of the solutions of a nonlinear degenerate
equation arising in mathematical finance. We set the problem in the framework of Hörmander type operators
without assuming any hypothesis on the degeneracy of the associated Lie algebra. We prove that the
viscosity solutions are indeed classical solutions. 2001 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Nous étudions la régularité intérieure des solutions de viscosité d’une équation non linéaire
du second ordre dégénérée que l’on rencontre en finance mathématique. Nous étudions le problème par
la théorie des opérateurs de Hörmander sans aucune hypothèse sur la dégénerescence de l’algèbre de
Lie engendrée. Nous montrons que la solution de viscosité est une solution classique. 2001 Éditions
scientifiques et médicales Elsevier SAS

1. Introduction

In this paper we prove some regularity results for viscosity solutions of a nonlinear differential
equation arising in mathematical finance. In [1], Antonelli, Barucci and Mancino introduce a new
model for agent’s decision under risk, in which the utility functionu is a solution of the Cauchy
problem

Lu = f, in ST ≡ R
2×]0, T [,(1.1)

u(·,0)= g, in R
2,(1.2)

whereT is suitably small andL is the nonlinear operator defined by

Lu = ∂xxu+ u∂yu− ∂tu,

and(x, y, t) = z denotes the point inR3.
In the same paper the authors prove by means of probability methods the existence of a

continuous viscosity solution, in the sense of the User’s guide [13], of (1.1)–(1.2), satisfying∣∣u(x, y, t)− u(ξ, η, τ )
∣∣� CT

(|x − ξ | + |y − η|)(1.3)
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for every (x, y), (ξ, η) ∈ R
2, t ∈ [0, T [, under the assumption thatf and g are uniformly

Lipschitz continuous functions. On the other hand, in a recent paper [2], Antonelli and Pascucci
prove that the solutionu found in [1] can be also considered as a distributional solution.

Other existence results for weak solutions of the Cauchy problem for a more general class of
equations, that contains (1.1), are obtained in [31] and [14]. This kind of solutions, however, is
few regular and does not satisfy condition (1.3).

Related problems arise in the stochastic control theory. For instance, the value functionv of a
suitable control problem is a semiconcave solution of the following Cauchy problem:

∂xxv + 1

2
(∂yu)

2 − ∂t v = ϕ, in ST ≡ R
2×]0, T [,

v(·,0) = ψ, in R
2,

for some continuous functionsϕ andψ (see [16]). Note that the functionu = ∂yv is, at least
formally, a solution of our Cauchy problem (1.1)–(1.2) and the regularity ofv is presently object
of study in [7].

Here are we are interested in the interior regularity of the solutionu found in [1] and [2].
SinceL is a degenerate second-order operator, regularity results proved in [6,32,33] for viscosity
solutions, and in [24] for weak solutions, do not apply. Instead we will study the regularity in
the framework of Hörmander type operators, representing the operatorL as a sum of squares of
vector fields plus a first-order term:

L = ∂2
x + Y, Y = u∂y − ∂t .(1.4)

General operators of this kind can be represented as follows:∑
i,j

aijXiXju+X0u = f,(1.5)

whereXi are linear smooth vector fields andaij ∈C∞ and the rank of the Lie algebra generated
by Xj is maximal at every point (see [20]). The main properties of the operator in (1.5) (such
as existence of a fundamental solution, control distance) have been established in [27,29,30,
21] (see also [25] for a particular class of operators with the same structure asL). Using
these properties, a general theory of the regularity both in Sobolev spaces and in spaces of
Hölder continuous functions has been settled down in [17,19] and [29]. See also [15] for related
results, for pseudodifferential operators. A Morrey type result is proved in [22]. The regularity
of solutions with less regular coefficients has been studied in [5,4] in Sobolev spaces with the
technique introduced in [8]. In [28,26] and [23], it is considered the case of spaces of Hölder
continuous functions. Then operators of the form (1.5) with nonlinear vector fieldsXi have been
studied in [9,11]. In all these papers the regularity properties of the solution relie on the fact that
the Lie algebra generated by the vector fields has maximum rank at every point.

Concerning operatorL in the form (1.4), the commutator of∂x andY is

[∂x,Y ] = ux∂y(1.6)

and an Hörmander condition can be expressed as

∂xu(z) �= 0, ∀z ∈ Ω.(1.7)

Indeed, in [12] the authors proved:
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THEOREM 1.1. – Let Ω be an open set inR3 andu a classical solution of(1.1) on Ω with
f ∈C∞(Ω). If (1.7) holds, thenu ∈ C∞(Ω).

The first results for non-Hörmander linear vector fieldsXi are contained in [18]. In [10] a
regularity result was established without conditions on the commutators, for a nonlinear equation
with a structure different fromL. Here we further develop this idea and we prove that the
viscosity solutions are classical solutions of equation (1.1). The main interest in our treatment lies
in the fact that, in spite of the degeneracy of the operator, we do not require any assumption on
the commutators. In particular we do not require any more condition (1.7). Hence the Lie algebra
associated to the operator is completely unknown. However we considerL as a subelliptic
operator with respect to some tentative Lie groups, and we use a representation formula for
the solutionu in this setting. This allows us to prove the existence of the directional Euclidean
derivative ofu

Yu(z) = ∂u

∂νz
(z),

whereνz = (0, u(z),−1).
In Section 2 we prove some preliminary results. Using standard techniques, we get:

PROPOSITION 1.2. –If u is a viscosity solution of(1.1) satisfying(1.3), then it is a strong
solution of the same equation, in the sense that

u ∈H 1
loc(ST ), uxx ∈L2

loc(ST ),

and the equation is satisfied a.e.

Moreoverux is a strong solution of the linear equation formally obtained by differentiat-
ing (1.1).

In Section 3 we prove our main results. Here we use the deep geometric properties of some
Hörmander operators naturally associated toL and we prove that the weak derivatives ofu can
be computed pointwise. More precisely we have the following:

THEOREM 1.3. –If u is a strong solution of(1.1) satisfying(1.3) then it is a classical solution,
in the sense thatuxx, Yu are continuous and the equation is pointwise satisfied.

A similar regularity result also holds forux .
Finally, in Section 4, using the properties ofux established in the previous sections and a

propagation principle, we prove a sufficient condition for (1.7) to hold. Precisely we prove:

THEOREM 1.4. –Assume thatf ∈ C1 ∩ Lip(ST ) is such thatfx � 0 in ST , g ∈ Lip(R2) is
such thatx �→ g(x, y) is non-decreasing for everyy ∈ R and letu be a viscosity solution of
(1.1)–(1.2) satisfying(1.3). If either:

• for every(y, t) ∈ R×]0, T [, the functionx �→ f (x, y, t) is not constant, or
• for everyy ∈ R, the functionx �→ g(x, y) is not constant,

thenux > 0 in ST andu ∈C∞(ST ).

2. Strong solutions

In this section we assume thatf ∈ Lip(ST ), g ∈ Lip(R2) andu is the viscosity solution of (1.1)
satisfying (1.3). We study some preliminary summability properties ofu and its derivatives. Let
us recall thatST = R

2×]0, T [ andux = ∂xu.
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We can always assume thatu is a limit of solutions of the regularized problem

Lεu ≡ ∂xxu+ ε2∂yyu+ u∂yu− ∂tu = f,(2.1)

for ε > 0. Indeed (see [2])

THEOREM 2.1. –If u is a viscosity solution in the sense of[13] of (1.1)–(1.2) and (1.3)
is satisfied, then there exist a sequence(εn)n∈N such thatεn ↓ 0 and a sequence(uεn) in
C2+α,1+α/2(ST )∩ Lip(ST ) such that for everyn the functionuεn is solution of

Lεnu
εn = f,(2.2)

(uεn) converges uniformly on compact subsets ofR
2 × [0, T [ to u, as n → ∞ and (1.3) is

satisfied uniformly inε.

In order to simplify the exposition, we introduce some notations:

DEFINITION 2.2. –We define the linear operator

Lu = ∂xx + u∂y − ∂t ,(2.3)

and, ifb ∈L2
loc(ST ), we say thatv is a strong solution of

Luv = b, in ST ,(2.4)

if ∂xxv, ∂yv, ∂tv ∈ L2
loc(ST ), and equation(2.4) is satisfied a.e.

With these notations we prove Proposition 1.2 and also the following result which will be used
in the third section:

PROPOSITION 2.3. –Letu be a viscosity solution of(1.1) satisfying(1.3). Thenux is a strong
solution of the linear equationLuux = −uxuy + fx .

We first provide some a priori estimates of Caccioppoli type for the derivatives of the functions
(uεn) and we deduce the proofs of Propositions 1.2 and 2.3 lettingn go to infinity.

LEMMA 2.4 (Caccioppoli type inequalities for first derivatives). –Letuε be aC∞ solution to
equation(2.1) that satisfies condition(1.3) and letϕ ∈C∞

0 (ST ). There exists a positive constant
C1 which depends only onf,ϕ and on the constantCT in (1.3), such that∥∥uε

xxϕ
∥∥

2 + ∥∥uε
xyϕ

∥∥
2 + ε

∥∥uε
yyϕ

∥∥
2 + ∥∥uε

t ϕ
∥∥

2 � C1,

for every positiveε.

Proof. –Let us denotel = x or l = y and let us differentiate equationLεu
ε = f with respect

to the variablel. Then we multiply byuε
l ϕ

2 and integrate onST . For simplicity, in the remainder
of the proof, we omit the indexε in uε . Thus we have∫

ST

(
ulxx + ε2ulyy + uluy + uuly − ult

)
ulϕ

2 =
∫
ST

flulϕ
2.

Integrating by parts the first term with respect tox and the second with respect toy, we get∫
ST

(
u2
lx + ε2u2

ly

)
ϕ2 = −2

∫
ST

(
ulxulϕϕx + ε2ulyulϕϕy

)+ I2 = I1 + I2,(2.5)
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where this equality definesI1 and

I2 =
∫
ST

(
u2
l uy + uululy − ulult − flul

)
ϕ2.

By the Cauchy inequality we have

I1 � δ

∫
ST

(
u2
lx + ε2u2

ly

)
ϕ2 + 1

δ

∫
ST

u2
l

(
ϕ2
x + ε2ϕ2

y

)
,

for every positive constantδ. In order to estimateI2 we note that

ululy = ∂y

(
u2
l

2

)
and ulult = ∂t

(
u2
l

2

)
.

By parts, we obtain

I2 =
∫
ST

(
1

2
u2
l uyϕ

2 − uu2
l ϕϕy + u2

l ϕϕt

)
−
∫
ST

flulϕ
2.

We deduce

(1− δ)
(‖ulxϕ‖2

2 + ε2‖ulyϕ‖2
2

)
� C̃,

whereC̃ depends only onCT in (1.3) andf . Since

ut = uxx + ε2uyy + uuy − f,

we get

‖utϕ‖2 � C̃,

and the assertion is proved.✷
Proof of Proposition 1.2. –It is a simple consequence of Theorem 2.1 and Lemma 2.4, since

we can letn go to infinity in (2.2). ✷
LEMMA 2.5 (Caccioppoli type inequalities for the second derivatives). –Letuε be a solution

to equation(2.1) that satisfies condition(1.3) and letϕ ∈ C∞
0 (ST ). Then there exists a positive

constantC1 that depend only onf,ϕ and on the constantCT in (1.3), such that∥∥uε
xxxϕ

∥∥
2 + ε

∥∥uε
xxyϕ

∥∥
2 + ε2

∥∥uε
xyyϕ

∥∥
2 + ∥∥uε

xtϕ
∥∥

2 � C1,

for every positiveε.

Proof. –We simply outline the proof. We differentiate twice equationLεu
ε = f with respect

to ∂x , then we multiply byuε
xxϕ

2 and integrate onST . We find∫
ST

(
uxxxx + ε2uxxyy + ∂x(uxuy + uuxy)− uxxt

)
uxxϕ

2 =
∫
ST

fxxuxxϕ
2.
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By integrating by parts and arguing as in Lemma 2.4 we readily find the estimate of the first two
terms in the statement.

In order to estimate the third term, we differentiate the equationLεu
ε = f with respect to

∂x then with respect to∂y , we multiply byε2uε
xyϕ

2 and integrate onST . Proceeding exactly as
before we readily obtain the result. Finally, the estimate of the termuxt follows directly from the
identity

uxt = uxxx + ε2uxyy + uxuy − uuxy.

This completes the proof.✷
Proof of Proposition 2.3. –Let (uεn) a sequence of solutions of the regularized equation,

locally uniformly convergent tou. Since everyuεn belongs toC2+α,1+α/2 ∩ W
3,2
loc , the function

vn = ∂xu
εn is a strong solution to the Cauchy problem

vxx + ε2
nvyy + vuεn

y + uεnvy − vt = fx, in ST ,
(2.6)

v = gx, in R
2.

We can obviously assume by Lemmas 2.4 and 2.5 that (vnxx), (ε2
nv

n
yy ), (uεnvny ) weakly converge

to uxxx,0 anduuxy , respectively. Passing to the limit in (2.6), we obtain the thesis.✷
3. Classical solutions

In this section we prove that the functionu is a classical solution of the equation

∂xxu+ (u∂y − ∂t )u = f

as defined below. In Section 2 we considered the first-order term

(u∂y − ∂t )u(3.1)

as a sum of weak derivatives. Here we prove that it is continuous and coincides with the
directional derivative w.r.t. the vectorνz = (0, u(z),−1):

∂w

∂νz
(z) = lim

h→0

w(z + hνz)−w(z)

h
.(3.2)

Then we say thatu is a classical solution ofLu = f if the functionsuxx andz �→ ∂u
∂νz

(z) are

continuous and the equation is satisfied at every point ofST . If w is of classC1, the derivatives
in (3.1) and (3.2) obviously coincide and we will also denote them byYuw. For less regular
functionsw, we have:

LEMMA 3.1. –Lew be a continuous function defined in an open subsetΩ of R
3. Assume that

its weak derivativeswy,wt belong toL2
loc(Ω) and that the limit in(3.2) exists and is uniform

with respect toz in every compact subset ofΩ . Then

∂w

∂νz
(z) = (u∂yw − ∂tw)(z) a.e.z ∈Ω.

We then denote

Yuw(z) = ∂w

∂νz
(z).
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Proof. –By Theorem 2.1 there exists a sequence(uεn) of smooth functions convergent tou
uniformly in Ω and (1.3) is satisfied. Hence we denote

νεn,z = (
0,−uεn(z),1

)
,

in order to approximate the directional derivative ofw. For everyϕ ∈C∞
0 (Ω), we have∫

Ω

∂w

∂νz
(z)ϕ(z)dz= lim

h→0

∫
Ω

w(z + hνz)−w(z)

h
ϕ(z)dz

= lim
h→0

lim
n→∞

∫
Ω

w(z + hνεn,z)−w(z)

h
ϕ(z)dz.

We can now perform the change of variableζ = ,εn,h(z) ≡ z + hνεn,z. Let us estimate the
Jacobian determinant independently ofε:∣∣J

,−1
εn,h

(ζ )
∣∣= ∣∣1+ huεn

y

(
,−1
εn,h

(ζ )
)∣∣−1

(since(uεn
y ) is bounded uniformly with respect toε andζ )

= 1− huεn
y

(
,−1
εn,h

(ζ )
)+ hRεn,h(ζ ),

whereRεn,h(ζ ) → 0 ash → 0 uniformly with respect toεn and ζ . Inserting in the previous
expression we get:∫

Ω

∂w

∂νz
(z)ϕ(z)dz= lim

h→0
lim
n→∞

(
1

h

∫
Ω

w(ζ )ϕ
(
,−1
εn,h

(ζ )
)(

1− huεn
y

(
,−1
εn,h

(ζ )
)+ hRεn,h(ζ )

)
dζ

− 1

h

∫
Ω

w(ζ )ϕ(ζ )hdζ

)

= lim
h→0

lim
n→∞

∫
Ω

w(ζ )
ϕ(,−1

εn,h
(ζ ))− ϕ(ζ )

h
dζ

− lim
h→0

lim
n→∞

∫
Ω

w(ζ )uεn
y

(
,−1
εn,h

(ζ )
)
ϕ
(
,−1
εn,h

(ζ )
)
dζ

+ lim
h→0

lim
n→∞

∫
Ω

w(ζ )ϕ
(
,−1
εn,h

(ζ )
)
Rεn,h(ζ )dζ

(using the mean value theorem in the first term, withζεn,h ∈ [ζ,,−1
εn,h

(ζ )], the change of variable

z = ,−1
εn,h

(ζ ) in the second, and the fact thatRεn,h → 0 uniformly in the third)

= lim
h→0

lim
n→∞

∫
Ω

w(ζ )
〈∇ϕ(ζεn,h),

(
0,−uεn

(
,−1
εn,h

(ζ )
)
,1
)〉

dζ

− lim
h→0

lim
n→∞

∫
Ω

w
(
,εn,h(z)

)
uεn
y (z)ϕ(z)

(
1+ huεn

y (z)
)
dz.
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Due to the uniform boundedness ofνεn,z, we have

,−1
εn,h

(ζ ) → ζ, ,εn,h(z) → z,

ash → 0 uniformly with respect toεn andζ . Lettingh go to 0 we get∫
Ω

∂w

∂νz
(z)ϕ(z)dz= − lim

n→∞

∫
Ω

w
(
uεnϕy − ϕt

)− lim
n→∞

∫
Ω

wuεn
y ϕ

= −
∫
Ω

w
(
uϕy − ϕt

)− ∫
Ω

wuyϕ,

and this completes the proof.✷
Let us begin our regularization procedure. The operatorL defined in (1.4) is not a Hörmander

type operator since it is nonlinear, its coefficients are not smooth and even if we could compute
the commutators, we had no information on the structure of the generated Lie algebra. Then, we
choose an approximating vector field in such a way that the associated Lie algebra is the simplest
non-Abelian one. Fixed a compact setM, for everyz0 ∈ M we define the frozen vector field of
order 0 as follows

Y0,z0 = (
u(z0) + (x − x0)

)
∂y − ∂t .(3.3)

In this way

[X,Y0,z0] = ∂y

and the Lie algebra generated by∂x andY0,z0 spans the whole space at every point. We will call
d0,z0 the control distance generated by∂x , Y0,z0 and their commutator.

It is known (see for example Remark 2.2 in [12]) that there exist positive constants only
dependent onM such that

C1d0,z0(z0, z) �
(|x − x0| + |t − t0|1/2 + |y − y0 + u(z0)(t − t0)|1/3)� C2d0,z0(z0, z)(3.4)

for all z, z0 ∈M. We call frozen operator of order 0 the operator formally defined asL:

L0,z0 = ∂xx + Y0,z0.

This operator has a fundamental solutionΓ0,z0 whose asymptotic behaviour can be estimated in
terms of the control distanced0,z0 as follows:∣∣Γ0,z0(z0, z)

∣∣� Cd0,z0(z0, z)
−Q+2,

whereQ = 6 is the so-called homogeneous dimension of the Lie group onR
3 associated to

∂x,Y0,z0. We refer to [29,19,27] for more details about this topic.
Using the existence of a fundamental solution it is quite standard to prove:

LEMMA 3.2. –Letu be a strong solution of(1.1). Thenu is differentiable with respect to the
variable x in ST . Moreover, for everyα ∈]0,1[ and compact subsetM of ST , ux is Hölder
continuous with exponentα in M w.r.t. the distanced0,z0. Besides there existsC3 > 0 only
dependent on the constantCT in (1.3) such that∣∣u(z)− u(z0)− ux(z0)(x − x0)

∣∣� C3d
1+α
0,z0

(z, z0) ∀z, z0 ∈ M.(3.5)
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Proof. –Let us fix a functionϕ ∈C∞
0 (ST ), such thatϕ = 1 inM. By definition of fundamental

solution, and the fact thatu is a strong solution of (1.1), we immediately have

(uϕ)(z)=
∫
ST

Γ0,z0(z, ζ )ψ(z0, ζ )dζ, z ∈M,

where

ψ(z0, ζ ) = ((
u(z0)− u(ζ )+ ξ − x0

)
uy + f

)
ϕ + uL0,z0ϕ + 2uxϕx

is a bounded function with compact support. Here we have denotedζ = (ξ, η, τ ).
Then, we have

∂xu(z) =
∫
ST

∂xΓ0,z0(z, ζ )ψ(z0, ζ )dζ, z ∈M,

and a standard argument yields the Hölder estimate ofux . We refer to Theorem 2.16 in [12] for
the proof of assertion (3.5).✷

Proof of Theorem 1.3. –We have to prove the existence and continuity of the derivatives∂xxu

andYuu. By brevity, we prove only the second one, which is technically more complicated. In
Lemma 3.2, we showed thatu can be represented as

u(z) =
∫
ST

Γ0,z0(z, ζ )(ψ1 +ψ2)(z0, ζ )dζ, z ∈ M,

where

ψ1(z0, ζ ) = (
u(z0)− u(ζ )+ ξ − x0

)
uyϕ, ψ2(z0, ζ ) = fϕ + uL0,z0ϕ + 2uxϕx.

It is clear thatψ2 is Hölder continuous, so that we indicate how to compute the derivative of the
term containingψ1:

ũ(z) =
∫
ST

Γ0,z0(z, ζ )ψ1(z0, ζ )dζ.

We denote byχ aC∞([0,+∞[, [0,1]) function such that

χ(s) = 0, for s � 1

2
, χ(s) = 1, for s � 1,

and we define

uδ(z) =
∫
ST

Γ0,z0(z, ζ )χ

(
d0,z0(z, ζ )

δ

)
ψ1(z0, ζ )dζ,

and

v(z0) =
∫
ST

YuΓ0,z0(z0, ζ )ψ1(z0, ζ )dζ.
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Using the local behavior ofΓ0,z0(z, ζ ) and the fact that|ψ1(z0, ζ )| � Cd0,z0(z0, ζ ) we get, for
everyz, z0 such thatd0,z0(z0, z) � δ

∣∣uδ(z)− ũ(z)
∣∣� C

∫
d0,z0(z,ζ )�δ

d
−Q+2
0,z0

(z, ζ )d0,z0(z0, ζ )dζ

(using the fact thatd0,z0(z0, ζ ) � C0(d0,z0(z, ζ )+ d0,z0(z0, z)) � 2C0δ and the polar coordinates
associated to the homogeneous Lie group)

� Cδ

δ∫
0

ρ−Q+2+Q−1 dρ = Cδ3

and analogously∣∣Yuuδ(z0)− v(z0)
∣∣� δ, sup

d0,z0(z0,z)�δ

∣∣∂yuδ(z)
∣∣� C log(δ).

Then the derivative∂u
∂νz0

(z0) can now be computed as follows:∣∣∣∣ ũ(z0 + δνz0)− ũ(z0)

δ
− v(z0)

∣∣∣∣
(3.6)

= |̃u(z0 + δνz0) − uδ(z0 + δνz0)|
δ

+
∣∣∣∣uδ(z0 + δνz0) − uδ(z0)

δ
− v(z0)

∣∣∣∣
+ |̃u(z0)− uδ(z0)|

δ

(by mean value theorem, for somẽδ ∈ [0, δ])
� δ2 + ∣∣u(z0)∂yuδ(z0 + δ̃νz0)− ∂tuδ(z0 + δ̃νz0)− v(z0)

∣∣
= ∣∣u(z0)− u(z0 + δ̃νz0)

∣∣∣∣∂yuδ(z0 + δ̃νz0)
∣∣+ ∣∣Yuuδ(z0 + δ̃νz0) − v(z0)

∣∣
� δ̃1/2 log(̃δ)+ δ̃ + δ → 0, asδ → 0.

Then

v(z0) = ∂ũ

∂νz0

(z0),

andv is continuous, since this limit is uniform. Finally, by Lemma 3.1,

Yuu(z0) = v(z0) +
∫
ST

YuΓ0,z0(z0, ζ )ψ2(z0, ζ )dζ,

and it is a continuous function.✷
Property (3.5) allows us to introduce new vector fields frozen of order 1:

X = ∂x, Y1,z0 =
(
u(z0) + ux(z0)(x − x0)+ (x − x0)

2

2

)
∂y − ∂t .(3.7)
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Note that, even if we have no information onux , the rank of the Lie algebra generated by∂x and
Y1,z0 is constant at every point. Indeed ifux(z0) �= 0, then

∂x, Y1,z0, [∂x,Y1,z0] =
(
ux(z0)+ 2(x − x0)

)
∂y

are linearly independent nearz0. On the other hand ifux(z0) = 0 then[∂x,Y1,z0](z0) = 0 and we
need commutators of order 3 to span the whole space:

∂x, Y1,z0,
[
∂x, [∂x,Y1,z0]

]= ∂y.

The intrinsic gradient is the vector

∇1,z0 = (
∂x,Y1,z0, [∂x,Y1,z0],

[
∂x, [∂x,Y1,z0]

])
and (∇1,z0)i will denote its components. The associated control distance can be defined as
follows:

DEFINITION 3.3. –For everyz, z0, z̄ there exist constantsθ1, θ2, θ4, such that

z = exp
(
θ1(∇1,z0)1 + θ2(∇1,z0)2 + θ4(∇1,z0)4

)
(z̄).

Precisely

θ1 = x − x̄, θ2 = −(t − t̄ ),

θ4 = y − ȳ + (t − t̄ )

(
u(z0)+ ux(z0)

(
x − x̄

2
+ x̄ − x0

)
+ (x − x̄)2

2
+ (x − x̄)(x̄ − x0)

2
+ (x0 − x̄)2

6

)
.

If 2ux(z0)+ x − x̄ + 2(x̄ − x0) �= 0, then there also exists a constantθ3 such that

z = exp
(
θ1(∇1,z0)1 + θ2(∇1,z0)2 + θ3(∇1,z0)3

)
(z̄)

and

θ3 = 2θ4

2ux(z0)+ (x − x̄)+ 2(x̄ − x0)
.

Then the control distance associated tod1,z0 can be defined as

d1,z0(z, z̄) = |θ1| + |θ2|1/2 + min
{|θ3|1/3, |θ4|1/4}.

The functiond1,z0 has been introduced in [27], where it is also proved that it is a quasi-distance
locally equivalent to the Carnot–Caratheodory’s one.

Let us note explicitly thatd1,z0 is not an homogeneous function, so that the group associated to
this choice of vector fields is not homogeneous. However the metric is doubling. In other words
there exists a constantC > 0 only dependent on the fixed compact setM such that∣∣B1,z0(z,2R)

∣∣� C
∣∣B1,z0(z,R)

∣∣,
for everyz ∈ M, whereB1,z0(z,2R) denotes the ball of the metricd1,z0, and| · | the Lebesgue
measure. Let us also note that the distancesd0,z0 andd1,z0 are not equivalent, and the following
relation holds:
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Remark3.4. –

d0,z0(z, z0) � Cd1,z0(z, z0).

Proof. –If min{|θ3|1/3, |θ4|1/4} = |θ3|1/3 then

d0,z0(z, z0) � |θ1| + |θ2|1/2 +
∣∣∣∣y − y0 + (t − t0)

(
u(z0)+ ux(z0)(x − x0)

2

)∣∣∣∣1/3

(sinceux is bounded)

� C
(|θ1| + |θ2|1/2 + |θ3|1/3 + |t − t0|1/3|x − x0|2/3)� d1,z0(z0, z).

Analogously, if min{|θ3|1/3, |θ4|1/4} = |θ4|1/4

d0,z0(z, z0) � |θ1| + |θ2|1/2 + |θ4|1/4 + |t − t0|1/4|x − x0|1/2 � d1,z0(z0, z).

From Lemma 3.2 and the preceding remark it follows that

COROLLARY 3.5. –If u is a Lipschitz continuous, strong solution of(1.1), then for every
α ∈]0,1[ for every compact setM there exists a constantC3 > 0 and only dependent onCT

in (1.3), such that ∣∣u(z)− u(z0)− ux(z0)(x − x0)
∣∣� C3d

1+α
1,z0

(z, z0).

In order to study the regularity of the solution, we proceed as before, using the fundamental
solution of a suitable operator defined in terms ofY1,z0. We call frozen operator of order 1:

L1,z0 = ∂xx + Y1,z0

andΓ1,z0 will be its fundamental solution. It satisfies the following estimate

Γ1,z0(z, ζ ) � C
d2

1,z0
(z, ζ )

|B1,z0(z, d1,z0(z, ζ ))|
.(3.8)

PROPOSITION 3.6. –If u is a strong solution of(1.1) satisfying(1.3) then the weak derivative
Yuux is continuous.

Proof. –Arguing as in Lemma 3.2, we see thatu can be represented in terms of the
fundamental solutionΓ1,z0 and that

∂xu(z) =
∫
ST

∂xΓ1,z0(z, ζ )(ψ1 +ψ2)(z0, ζ )dζ, z ∈M,

where

ψ1(z0, ζ ) = −
(
u(ζ )− u(z0) − ux(z0)(x − x0)− (x − x0)

2

2

)
uyϕ,

ψ2(z0, z) = fϕ + uL1,z0ϕ + 2uxϕx.
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As before we indicate how to compute the derivative of the term containingψ1:

∂xũ(z) =
∫
ST

∂xΓ1,z0(z, ζ )ψ1(z0, ζ )dζ.

We denote byχ the same function as in Lemma 3.2 and we define

ũδ(z) =
∫
ST

∂xΓ1,z0(z, ζ )χ

(
d1,z0(z, ζ )

δ

)
ψ1(z0, ζ )dζ

and

v(z0) =
∫
ST

Yu∂xΓ1,z0(z0, ζ )ψ1(z0, ζ )dζ.

We remark explicitly that the last integral is convergent by Corollary 3.5 and estimate (3.8). In
order to proceed as in the proof of Theorem 1.3, we need to prove that∣∣̃uδ(z)− ũx(z)

∣∣� δ2+α,
∣∣Yuũδ(z0) − v(z0)

∣∣� δα(3.9)

for z, z0 satisfyingd1,z0(z0, z) � δ. However we can not repeat the same proof, since no polar
coordinates are associated to the Lie algebra generated by∂x,Y1,z0, which is not homogeneous.
We use instead the doubling property of the metricd1,z0:∣∣̃uδ(z)− ũx(z)

∣∣= ∫
d1,z0(z,ζ )�δ

∣∣∂xΓ1,z0(z, ζ )ψ1(z0, ζ )
∣∣dζ

� C

∫
d1,z0(z,ζ )�δ

d1,z0(z, ζ )

|B1,z0(z, d1,z0(z, ζ ))|
(
d1+α

1,z0
(z, ζ )+ d1+α

1,z0
(z, z0)

)
dζ

� C

∞∑
k=0

∫
δ

2k+1 �d1,z0(z,ζ )� δ

2k

d2+α
1,z0

(z, ζ )

|B1,z0(z, d1,z0(z, ζ ))|
dζ

+Cδ1+α
∞∑
k=0

∫
δ

2k+1 �d1,z0(z,ζ )� δ

2k

d1,z0(z, ζ )

|B1,z0(z, d1,z0(z, ζ ))|
dζ

+C

∞∑
k=0

(
δ

2k

)2+α |B1,z0(z,
δ

2k+1 )|
|B1,z0(z,

δ
2k
)| +Cδ1+α

∞∑
k=0

δ

2k

|B1,z0(z,
δ

2k+1 )|
|B1,z0(z,

δ
2k
)|

(since the metric is doubling)

� C

∞∑
k=0

(
δ

2k

)2+α

+Cδ1+α

∞∑
k=0

δ

2k
� Cδ2+α.

The proof of the second assertion in (3.9) is analogous. Once these properties are established,
arguing as in (3.6), we deduce that

Yuũx(z0) = v(z0)
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and

Yuux(z0) = −
∫
ST

YuΓ1,z0(z0, ζ )∂xψ2(z0, ζ )dζ + v(z0). ✷

4. Propagation principle and smoothness

In this section we consider the classical solutionu of the Cauchy problem (1.1)–(1.2)
satisfying (1.3) and we prove Theorem 1.4. We aim to show that a propagation principle for
minima ofux holds, so that

ux(z) > 0, in ST ,

then Theorem 1.4 follows from Theorem 1.1.
We recall some classical results due to Bony [3] about the propagation of maxima. LetΩ be

an open connected subset ofR
N and

D :Ω → R
N

a locally Lipschitz continuous vector field. A non-empty subsetE of Ω , relatively closed inΩ ,
is said to be positivelyD-invariant if for every curve

γ : [0, S] →Ω

such thatγ ′ = D(γ ) andγ (0) ∈ E, we necessarily haveγ (s) ∈ E for everys ∈ [0, S]. If E is
positively invariant forD and−D, we say thatE isD-invariant. In other words,E isD-invariant
if for every

γ : I → Ω

integral curve ofD such thatγ (s0) ∈E for somes0 ∈ I , thenγ (I) ⊆ E.
PositiveD-invariant sets can be characterized in a remarkable geometric way. A vector

ν ∈ R
N \ {0} is said to be an exterior normal toE in z ∈ E (in symbols,ν ⊥ E in z) if

B
(
z+ ν, |ν|)∩E = ∅,

whereB is the Euclidean ball

B(z,R) = {
ζ ∈ R

N | |z− ζ | <R
}
.

We put:

E∗ = {
z ∈E | ∃ν ⊥ E in z

}
.

It is easy to show thatE∗ �= ∅ whenever∅ �= E �= Ω .

THEOREM 4.1 (Bony). –Let E ⊆ Ω , relatively closed inΩ . ThenE is positiveD-invariant
if and only if 〈

D(z), ν
〉
� 0, ∀z ∈ E∗, ∀ν ⊥ E in z.

In particular,E is D-invariant if and only if〈
D(z), ν

〉= 0, ∀z ∈ E∗, ∀ν ⊥ E in z.
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In order to apply the theorem, we prove a Hopf type lemma for the set

E = {
z ∈ ST | ux(z) = 0

}
,(4.1)

by using some functions introduced in [26], Proposition 6.1, for the study of a boundary value
problem for operators related to the linear operatorLu in Definition 2.2.

LEMMA 4.2. –Let E be as in(4.1). For everyz0 ∈ E∗ and ν = (νx, νy, νt ) ⊥ E in z0, we
have

〈X,ν〉 = νx = 0 and
〈
Yu(z0), ν

〉= u(z0)νy − νt � 0.

Proof. –We definẽL by L̃w = Luw + uyw. By Proposition 2.3,̃Lux = fx in ST and, by the
maximum principle and our assumption onf andg, we findux � 0 in ST . Hencez0 ∈ E∗ is a
minimum point forux . Since, by Theorem 1.3 and Proposition 3.6,uxx andYux are defined and
continuous, we have

uxx(z0) = 0 and Yux(z0) = 0.(4.2)

To prove the first assertion, we suppose, by contradiction, that〈X,ν〉 �= 0. We set̄z = z0 + ν,
r = |ν| and

w(z) = e−λ|z−z̄|2 − e−λr2
,

for some positiveλ. A straightforward computation yields

L̃w(z0) = 2λe−λ|ν|2(2λν2
x − 1+ u(z0)νy − νt

)
.

Thus, there existλ, , > 0 such that

L̃w(z) > 0, ∀z ∈Ω0 ≡ B(z̄, r)∩B(z0, ,).

Sinceux > 0 in B(z̄, r) ∩ ∂B(z0, ,), ux � 0 in ∂B(z̄, r), andw = 0 in ∂B(z̄, r), there exists a
positiveδ such thatux − δw � 0 in ∂Ω0 andL̃(ux − δw) < 0 in Ω0, by the minimum principle
we get

ux � δw, in Ω0.(4.3)

As noticed above,uxx(z0) exists and, we get from (4.3) that

uxx(z0)= lim
h→0+

ux(x0 + hνx, y0, t0)− ux(z0)

h

� lim
h→0+ δ

w(x0 + hνx, y0, t0)−w(z0)

h
= 2δλν2

xe−λr2
> 0.

This inequality contradicts (4.2) and proves the first claim. As a consequence, by Theorem 4.1,
E is X-invariant, that is

z0 = (x0, y0, t0) ∈E !⇒ {
(x, y0, t0) | x ∈ R

}⊆ E.

Therefore, for everyz0 ∈E∗ andν⊥E in z0, we have{
(x, y, t) ∈ R

3 | (y − y0 − νy)
2 + (t − t0 − νt )

2 < |ν|2} ∩E = ∅.(4.4)
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In order to prove the second claim we suppose, by contradiction, thatu(z0)νy − νt > 0. For a
positiver we denotēz = z0 + rν and

B̃(z̄, r) = {
(x, y, t) ∈ R

3 | r2(x − x̄)2 + (y − ȳ)2 + (t − t̄ )2 < r2|ν|2}.
By (4.4),B̃(z̄, r)∩E = ∅ for everyr ∈]0,1]. If we chooser < u(z0)νy − νt and let:

v(x, y, t) = e−r2(x−x̄)2−(y−ȳ)2−(t−t̄ )2 − e−r2|ν|2,

a direct computation shows that

L̃v(z0) = 2re−r2|ν|2(u(z0)νy − νt − r
)
> 0,

then there exists, > 0 such that

L̃v(z) > 0, ∀z ∈ Ω̃0 ≡ B̃(z̄, r)∩B(z0, ,).

As in the previous case, it is easy to see that there existsδ > 0 such that

ux � δv, in Ω̃0

so that

Yuux(z0) � δYuv(z0) = 2δre−r2|ν|2(u(z0)νy − νt
)
> 0.

This inequality contradicts (4.2) and completes the proof.✷
Proof of Theorem 1.4. –As stated above, we show that condition (1.7) is satisfied by proving

that the setE defined in (4.1) is empty.
Suppose, by contradiction, that there existsz0 = (x0, y0, t0) ∈ E. By Lemma 4.2,E is

X-invariant, then it follows from (4.2) thatfx(x, y0, t0) = Yux(x, y0, t0) = 0 for everyx ∈ R

and this contradicts our assumption onf .
In the other case, we observe that, by (1.3), the integral curve ofYu starting atz0

γ (s) =
(
x0, y0 +

s∫
0

u(γ (τ ))dτ, t0 − s

)

is defined for everys ∈ [0, t0]. By Lemma 4.2 and Theorem 4.1,E is positivelyYu-invariant. As
a consequenceγ ([0, t0[) ⊆ E and using again theX-invariance ofE and the continuity ofu we
find

u

(
x, y0 +

t0∫
0

u
(
γ (τ)

)
dτ,0

)
= u

(
x0, y0 +

t0∫
0

u
(
γ (τ)

)
dτ,0

)
for anyx ∈ R and this contradicts our assumption ong. In both cases we haveux > 0 in ST and
the thesis follows from Theorem 1.1.✷
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