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Abstract. We consider the following nonlinear degenerate para-
bolic equation which arises in some recent problems of mathemat-
ical finance:

Ozat + udyu — Oru = f.
Using a harmonic analysis technique on Lie groups, we prove that,

if the solution wu satisfies condition d,u # 0 in an open set Q C R3
and f € C>®(Q), then u € C*>°(Q).

1. INTRODUCTION

In this paper we study the interior regularity properties of the solutions
to the equation in the variables z = (z,vy,t) € R3

Lu = 0ppu + udyu — Oyu = f (1.1)
satisfying the condition
Ozu(z) # 0 Vz e Q. (1.2)

This equation arises in mathematical finance, when studying agents’ deci-
sions under risk. The problem is the representation of agents’ preferences
over consumption processes. Epstein and Zin in [9] have proposed a utility
functional which is the solution of a backward stochastic differential equa-
tion. Recently Antonelli, Barucci and Mancino [1] proposed a more sophisti-
cated utility functional that takes into account some aspects of decision mak-
ing, such as the agents’ habit formation, which is described as a smoothed
average of past consumption and expected utility. In that model the couple
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of processes utility and habit is described by a system of backward-forward
stochastic differential equations. The solution of such a system as a function
of consumption and time satisfies the partial differential equation (1.1).

Several existence and uniqueness results are known for viscosity solutions
of the Cauchy problem associated with equation (1.1), under different hy-
potheses on the initial data ([23], [10], [1]). However no regularity results are
known. Here we are concerned with the regularity of the classical solutions
of (1.1) (see Section 3 for the precise definition of classical solution). To
this end, condition (1.2) is of crucial importance not only because it is sug-
gested by the model, but also because equation (1.1) could have nonregular
solutions if it is suppressed. For example any solution w independent of the
variable x satisfies the Burgers equation

udyu — Oyu = 0,
which is of hyperbolic type. Our main result is the following.
Theorem 1.1. Let 2 be an open subset of R® and let f € C*™(Q). If u is

a classical solution of equation (1.1) in Q and satisfies condition (1.2), then
ue C>®(Q).

The operator L in (1.1) can be seen as a degenerate parabolic operator,
and it can formally be represented as a sum of squares of nonlinear vector
fields. Indeed if we set

X =0, and Y, =udy — 0, (1.3)
then L can be expressed as
Lu = X*u + Y,u. (1.4)

Condition (1.2) ensures that the vector fields X, Y, and their commutator
[X,Y,] = 0,udy are linearly independent at every point. This fact suggests
a link with the theory of Hormander’s operators. These operators can be
written in the form

p
H=) X}+Xo (1.5)

i=1
where X;, i =0,...,p (p < N), are linear, smooth vector fields in RY whose

generated Lie algebra has maximum rank at every point. It is well known
that this last condition, called the Hormander condition, yields that H is
hypoelliptic (see [14]). Under this condition there exists a fundamental solu-
tion I" of the equation (1.5) whose properties have been investigated by [14],
[20], [21], [17]. In particular in these papers a control distance d associated
to the vector fields and their commutators has been introduced. Moreover
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estimates of I and its derivatives are proved in terms of d. Things are par-
ticularly easy when the Lie algebra generated by X1, ..., X, is nilpotent and
stratified. In this case there exists a nonnegative integer (), which is called
the homogeneous dimension of the space, such that

[(2,¢) < Cd(z,)~9*? (1.6)

for every z,( € ). Hence a theory of the regularity similar to the classical
one has been developed for this type of operator. If we denote by C’j’a the
class of functions with derivatives of order k Holder continuous with respect
to the control distance d, then some a priori estimates formally analogous
to the classical Schauder ones hold for the solutions of the equation Hu = f
(see [13], [11], [20]). Obviously, if @ is a fixed function satisfying (1.2), then
the linear operator
Lau = X?u + Yau (1.7)

is formally represented as in (1.5), and the associated classes of Holder-
continuous functions will be denoted by C’f—f’a. Then we have the following
result (see, for example, [20]):
Theorem RS1. Let the coefficient u of Ly be of class C*>°(R), and let
fe 0572’0‘(9), keN,0<a<l. Ifuis a solution of Lyu = f, then u is
of class Cfij’“(ﬂ).

This result is optimal if the coefficient « is of class C°°, and it can be

easily extended with the same technique to less-regular vector fields. In this
case, the following holds.

Theorem RS2. Assume that i € CETV*(Q) and f € CE2(Q). Ifu is a
solution of Lyu = f, then u is of class C’f—f’a(Q).

We stress that this result can not be applied in our nonlinear situation,
since the vector fields in (1.3) have only the regularity of the solution; then
Theorem RS2 does not provide any gain of regularity. Hence we adapt to
this framework a technique introduced by one of the authors in [6] and ex-
tended in [7] for studying the regularity of the solutions of another nonlinear
operator. Here we are able to prove the following.

Theorem 1.2. Assume that Q C R3 is an open set, & € CX*(Q) satisfies

(1.2), and f € C;—j_Q’O‘(Q), for any a € (0,1). If u is a classical solution of
Lagu = f in Q, then u € C¥*(Q), for any o € (0,1).

This result easily yields Theorem 1.1. The proof of Theorem 1.2 is estab-
lished in two steps: a freezing method and a regularization procedure.
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1.1. Overview of the freezing method. The freezing method is a well-
known technique, classically used to study the regularity of solutions to linear
parabolic operators of the form

N
Z ijOr,0z; — O, (1.8)
ij=1
where z = (x,t) denotes the point in R x R. In this case, the associated
frozen operator is simply obtained by evaluating the coefficients at a fixed

point zg:
N

Z aij(zo)é)xﬁxj — 8t.

ij=1
This new operator is, up to a linear change of coordinates, the heat op-
erator, and its fundamental solution can be considered as a parametrix of
the fundamental solution of the operator in (1.8). An argument much more
complicated was used to prove the existence of a fundamental solution for
Hoérmander-type operators (1.5). Indeed the properties of the operator rely
on the vector fields X1, ..., X, and their commutators. If X; are represented
by

N
Xi:Zaijamj i=1,...,p,
j=1

then the constant-coefficient operators
N
Xi,zo :Zaij(zo)ﬁxj 1= 1,...,p
j=1

commute, and the generated Lie algebra is RP with p < N. Hence, in
general, the operator y ¢ _; Xz’%zo — Xo,zo is not hypoelliptic, and it has not
a fundamental solution. Folland and Stein first pointed out that the model
operators in this case are operators of the form (1.5) such that the Lie algebra
generated by Xj --- X, is nilpotent and stratified. Later on Rothschild and
Stein introduced an abstract and very general version of the freezing method.
The choice of the frozen vector fields X; ., was made in such a way that their
generated Lie algebra is nilpotent and stratified, and, at low orders, it has
the same structure as Lie(X; ---X,). With this choice of vector fields, the
operator y &, Xi% 20 — X0,z 1s hypoelliptic and nilpotent, and its fundamental
solution T, is a parametrix for the fundamental solution of (1.5). After the
existence of the fundamental solution of (1.5) was established, a wide class of
Hoérmander operators has been studied with the same argument as (1.8): the
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operators of the form Zf =1 a;; X; X ;j+Xo, where a; ; are not even continuous
but the vector fields X; are of class C* and satisfy the Hormander condition
for hypoellipticity. Here, for every point zy, it is convenient to consider
as frozen operator Zf,j:l a;j(20)X;X; + Xo, that is an operator with C*
coefficients. In the same spirit as the results known for elliptic operators, by
using the known properties of these operators, many sophisticated results
have been obtained under very weak hypotheses on a;; (see, for example,
[15], [19], [3], [2]). See also [16] where the regularity properties of this kind
of operator have been investigated by a different approach.

The few known results about nonlinear operators refer to operators whose
nonlinearity depends on C*° vector fields (see, for example, [25], [4], [24],
126)).

Things are different when the vector fields themselves are not smooth,
since that operators can not always be considered as simple perturbations
of known linear operators. A first regularity result for solutions of a linear
equation with continuous vector fields is due to Franchi and Lanconelli [12].
In a more recent study one of the authors introduced a simplification of the
freezing method of Rothschild and Stein, for a second-order partial differ-
ential operator, based on the notion of “intrinsic” Taylor expansion of the
coefficients [6].

In this paper we use a technique similar to the one in [6]. We consider the
linearized operator Ly in (1.7) defined in an open subset € of R?. Assuming
(1.2), we have that X, Y3, [X,Yz] are linearly independent at every point.
We observe that the simplest nilpotent Lie algebra with two generators and
of dimension 3 is the Heisenberg algebra. Then, for every point zy € €2,
we associate with X and Y two frozen vector fields X and Y, of class C*
and whose generated Lie algebra is the Heisenberg one. This choice ensures
that the frozen operator L,, = X2 +Y,, is a nilpotent Hormander-type
operator. In particular L., has a fundamental solution I',, and an associated
control distance d,,. Unfortunately the distance d., is not equivalent to the
distance dy associated with Ly, nor are equivalent two distances d, and d,
associated with different points zg and z;. Since the qualitative behaviour
of the solution strictly depends on the control distance, we have to study
in detail the properties of these distances. This is done in Section 2 where
we also study the properties of the Holder classes related to these control
distances.

1.2. Overview of the regularization procedure. In order to introduce
our regularity procedure we consider a solution u in  of the linearized
equation Lzu = f. Fixing zg € (), we represent the function v in terms of
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the fundamental solution I';, of the frozen operator L,,:
u(z) :/on('zaC)Lzou(C) d¢
— [T 0fQdc+ [TaORLd 19

where K, is a kernel with the behaviour K, (¢) ~ d%,(20,¢), and the expo-
nent g depends on the regularity of @. In their classical paper [20], Rothschild
and Stein choose zp = z in the representation formula (1.9). Therefore the
kernel which appears in the second term of (1.9) becomes T',(z,()K.(¢),
and it is less singular then I',,. Hence it is possible to perform higher-order
derivatives with respect to z and to estimate them. On the other hand,
Chiarenza, Frasca and Longo [5] noticed for the first time that, even in the
parabolic case, it seems to be convenient, when dealing with nonregular co-
efficients, to keep z different from 2y as long as it is possible. Using their
technique in our situation, we can differentiate twice u with respect to z,
and we obtain

D2u(z) = / DT (2, 0) £(C) d + / DT, (2, () Ko () dC.

Then, we evaluate the second order derivative of u at zq:

D?u(z) = / DT, (20, ) £(C) dC + / DT (20, () Ko (C) dC.

In this way we compute the second derivative of u without differentiating
the coefficient of I',,. The same idea has been used in [7] also for higher-
order derivatives, and here we further extend it. Obviously, we can not
repeat the preceding arguments for the third derivatives since, for z # zg,
the kernel D3I, (2, () K, (¢) is not locally integrable. Nevertheless, a rather
delicate argument, based on the use of some high-order difference quotients
(see Section 3), yields

DPu(zg) = / DTy (20, () D £(C) dC + / DAL (20, () K (C) dC.

In this way, we obtain some regularity results for the solutions even though
the coefficients of the vector fields and of the fundamental solution of the
frozen operator are not regular.

2. FREEZING METHOD

In this section we describe the freezing method for the linear equation
L=X?4Ys,
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where X = 0,, Y3 = 10, — 0y and @ is a given function satisfying (1.2).
In Subsection 2.1, we study the relation between the distances dg, associ-
ated with the vector fields X and Y3, and the distance d, associated with
the vector fields X and Y,,. In Subsection 2.2, we define classes Cf—f’a of
Hoélder-continuous functions with respect to the distance dgz, and we prove
the existence of a polynomial expansion of Taylor type for functions of class
C’!—j’a. Finally, in Subsection 2.3, we study the properties of the fundamental
solution of the frozen operator.

2.1. Heisenberg group and distances. Here we recall some properties of
the Heisenberg algebra and we establish some relations between the control
distances corresponding to the linear and to the frozen operators.

The Heisenberg algebra is a Lie algebra with two generators, and nilpotent
of step two. The simplest representation of the Heisenberg vector fields is

0 0
Xg= 391 — 52893 and Yy = 892 + 51893.

Clearly [Xpg,Yrn] = Jg, and all the other commutators vanish. The asso-
ciated Lie group H; is then R3, endowed with the following composition
law:

1
0 ® 0 = (91 + 9/1, 0y + 95,93 + 9% + 5(919% — 9293))
A natural dilations group on Hl is defined by
SH(0) = (M1, \%02,0%03), A >0.

Since the Jacobian J§ = A%, the homogeneous dimension of H; with respect
to (5{\{),\>0 is the exponent ) = 6. A norm homogeneous with respect to
this dilations group is given by [|0||g = |61] + \02]% + \93|%. The associated
distance is obviously defined by dg(¢',0) = |67 @ ¢'|| . Clearly Xy and
Yy are respectively 55 -homogeneous of degree one and two; that is,

Xy (uo )y = N Xpu) o 6%, Yy (uo 68) = XN2(Yiu) o 64,

Thus, the second-order differential operator Ly = X%I + Yy has a funda-
mental solution I'; which is invariant with respect to the left ®-translations
and 5§I -homogeneous of degree —Q + 2.

We next introduce the canonical coordinates corresponding to the linear
operator Lg. If D is a Lipschitz-continuous vector field, and [0, 1] is contained
in the domain of the local solution to the Cauchy problem

7'(s) =D(v(s)), 7(0) =z,
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we let exp(D)(z) = (1) and call an exponential map the application D
exp(D)(z). Since y(s) = exp(sD)(z), then exp(D)(z) is defined for D suf-
ficiently small. If Dy, Do, D3 are Lipschitz-continuous vector fields, linearly
independent at every point, then the map

F, : 60— exp(0-D)(z) = exp(61 D1 + 02D3 + 03D3)(z)

is a diffeomorphism of a neighborhood of the origin of R3 to a neighborhood
U, of z. Its inverse function 0p, = F_ 1 defines the canonical change of
variable associated with the vector field D, and center z. When D1, Do, D3 €
C', by the properties of the solutions of the Cauchy problem, the Jacobian
matrix JF, of the function F, depends continuously on z. Then, by the local
invertibility theorem, the open set U, continuously depends on z.

By our assumptions, X,Y; and [X,Y3] = 1,0, are linearly independent
at every point, but %, is not Lipschitz continuous, so we cannot define
exp (0 - (X, Ya, [X,Yzs])). We instead consider

vﬁ = (Xa Yﬂa 8y)

and denote by 05 ., the associated canonical change of coordinates, defined
on U, C Q. This function allows us to introduce a topological structure in
a neighborhood of zy, naturally associated with the vector fields X and Yj.
Indeed, by the continuity of U,, there exists r = r(zp) > 0 such that the
Euclidean ball B(zp, ) satisfies

B(zp,r) C U, Vz € B(zo,7). (2.1)
Thus, if z,( € B(z,7), then ¢ € U, 05 .(C) is defined, and we can set
da(z,¢) = 10a,:(C)|| - (2:2)

More explicitly, we have

0o = (6=~ -Dn -yt (-0 [ AGDas), @

and

3
’

1 1
di(e10) = I =l + I =t + o=y + (7 =1) [ ata(s) ds

where (s) = exp (s64,2(C) - Va) (2) with s € [0, 1].

Remark 2.1. Let zp € 2 and z € U,,. An integral curve of Vy, connecting
z and zg, is Y(s) = exp (0.2 (%) - Va) (20) with s € [0,1]. Then, for every
s € [0,1], we have

da(7(s), 20) = ||80m,2 (2) |1 < (0,2 ()| = da(z0, 2)-
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Since 05 .(¢) is only a local diffeomorphism, it does not introduce a group
structure on R3. In order to overcome this problem, we define a new vector
field in the following way: for every fixed zy € €2, we define the frozen
operator of Yz as follows: Yz, = Yg(.0)1a, (20)(w—z0)» Where we have denoted,
as usual, u,(20) = Oyu(2p). Obviously X, Y, and [X,Y,,] = @(20)0, are
of class C'*° and all the commutators of higher order are null. Now we set
V. = (X,Y,,[X,Y,,]) and L,, = X? +Y,,. The map 6 — exp(f - V,,)(z)
is a global diffeomorphism. We denote by ngo) the canonical coordinates
associated with V,, and of center z. As a consequence of the Campbell-
Hausdorff formula we have

X (w0 8G0)) = (Xpu) 0 050, Y, (uof0)) = (Yiu) o §0)

zo ! zo0 )

g (20)0y (u 0 0)) = (9p,u) 0 080 (2.4)

Then, as a direct consequence, we have L., (u o 9,(2'30)) = (Lyu) o 9%0). The

diffeomorphism 9%0) naturally induces a Lie group structure with dilations

on R3. Indeed, we define the composition law
20 (= (05) 71 (050 (2) @ 05(C)), (2.5)
the dilations
50 (2) = (05 S 05020, A>0,
and the function d,, defined by
Z -1 Z
dzo(2,0) = [ (65(2) ™ @ 05O s

which is a quasi-distance, in the sense that there exists a positive constant
C = C(zp) such that

dzo(20,C) < C (dsy(20,m) + dg(1,Q)),  2,m,¢ € R, (2.6)

Then G, = (R3,0) is the Lie group associated with the Lie algebra £,, =
Lie(X,Y>,), generated by X and Y, and it is isomorphic to H;. The quasi-
distance we have introduced can be represented as

deo(2,0) = 05O, 2 CeR3, (2.7)
and, more explicitly,
ggzo)(o — (2.8)
1 -2
(€= —(r— 1), — (g =y + (7 — ) (a(z0) + waz0) T E2E0Y)),

Uz (20)
dZO(ng) = (29)
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1
QI(ZD)

We next describe some relations between d,, and dy.

ST

€l +1r— 12 +| 5

(n—y+ (1 —t)(a(z0) + @z (20)

Remark 2.2. In the sequel, we shall also use the distance defined by

do(20) = [0 ()1, 0 () = (€ — 2, —(r — ), — y+ (1 — )(20)) .
(2.10)
This distance is equivalent to d,, in the sense that there exists a positive
constant C, which depends only on @(29), such that
1~

F0=0(20,0) < dsg(20,€) < Cd(20,C), V¢ ERE

Here and in the sequel, C' will denote a constant which will not always be
the same. The proof of the above statement relies only on the following
elementary inequality,

P
ab)s < —a+ -b3,  Va,b>0, 2.11
3

W =

and on the explicit expression of d, provided in (2.9).

Lemma 2.3. Let U,, CC Q2 be a neighborhood of zy such that (01,02,03) =
a2 (C) is defined for every ¢ € U,,. If (01,602,03) = 9230)(0 is defined as in
(2.10), then we have

105 — 03] < C|r — tolda(z0,¢), V¢ € Us,. (2.12)

Proof. Since u is a locally Lipschitz-continuous function (in the Euclidean
sense), we get

[a(v(s)) = u(20)| < Cilv(s) — 20| < Cada(20,7(s)),

where v(s) = exp(sba,,(C) - Va)(20), for s € [0,1], and C1, Cy depend only
on U,,. Thus the assertion follows from expressions (2.3) and (2.10):

~ 1 1
|03 — 03] < |7 —t0|/ a(v(s)) — u(z0)| ds < Car —t0|/ da(20,7(s)) ds
0 0
(by Remark 2.1) < Ca|r — to|da(20, ().

Proposition 2.4. For every z1 € S, there exists a compact neighborhood
K CQ of z1, and a positive constant C = C(K), such that

i) C71dy(20, ) < da(20,¢) < Odzy(20, )

i) dz (20, 2) < C(dz(20,¢) + d¢(C, 2)),

111) ’l_L(ZO7 Z) < C(dﬁ('an C) + dﬂ(<7 Z)), fO’I" every z, ZO7C € K.
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Proof. We first remark that there exists r = r(z1) > 0 such that

K = B(z1,r) CU,, NU, NU¢.

(i) If 4., (¢) and 5%0)(0 are the functions defined in (2.3) and (2.10),
they have the first two components in common. Then, using Lemma 2.3, we
get

' ~ 1
dzo(20,C) = 105 < 110,20 (O) |1 + |65 — 5[5
< da(20,¢) + C|r — to|3da(20,¢)3 < Cida(z0,C).

On the other hand, again from Lemma 2.3 and (2.11), we get

65 = 03] < Clr — tolda(20,¢) < C(3 ('T 5 0’)% +§<5da(zO,<>>3)

for any positive §. Therefore
da(20,C) < dy(20,) + |05 = O3
2C C\1
)a +1)dyy(20,C) + 5(§)sda(zo,4‘)-

<03 (%

By choosing a suitably small § > 0 and by Remark 2.2, we get the thesis.
(ii) We observe that

Iy — yo + @(z0)(t — t0)[3 < |y —n+a(¢)(t —7)|3
+ |7 — yo + @(z0) (T — to) |5 + |(t — 7)(@(z0) — (<))
< de(C,2) + day (20, C) + (|t = 7lda(20,0))3

since @ is Lipschitz continuous. The last term can be estimated by (2.11)
and (i), as follows:

Wl

W=

1

[(t — 7)da(20,¢)|3 < %’t—ﬂ? + C1dg(20,¢) < % (¢, 2) + Cdy (20, C).

By the definition of CLO(ZO, z), this last inequality and Remark 2.2 yield the
assertion.
(iii) It is a direct consequence of (i) and (ii). O

Remark 2.5. Since we are proving a local result, from now on we shall
always work in a compact set K C €, satisfying the assumptions of Propo-
sition 2.4.
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2.2. Holder-continuous functions and Taylor polynomials.

Definition 2.6. Let zg € 2, 0 < a < 1 and let D be a locally Lipschitz
continuous vector field on Q. We say that u € C{(2o) if there exists a
positive constant C' such that

|u(exp(hD)(z0)) — u(z0)| < C|h|%, (2.13)

for every suitably small h. We say that u € C%(§), if (2.13) holds uniformly
on compact subsets of €.

Definition 2.7. Let zg € 2 and D be a Lipschitz-continuous vector field in
Q). We say that there exists the Lie derivative of u with respect to D in z,
if the following limit exists:
. u(exp(hD)(20)) — u(z0)
D =1 .
u(z0) = fimy h

We denote by C2(Q2) (or C3(f2)) the set of continuous functions in Q. If
u € Cz(9), and there exists Xu € Cy(Q2), we say that u € CL(Q). If k > 2,
Xu € CEHQ) and Yyu € CE72(Q), then we say that u € CE(Q).

Remark 2.8. We remark that if u € C'(Q) and D can be expressed as
D = dy0, + d20y + d30;, with dy, da, d3 Lipschitz-continuous functions, then
there exists the Lie derivative of u and it can be expressed as

Du(zo) = d10yu(z20) + daOyu(z0) + d3Opu(20), zo € Q.

We next define the spaces of Holder-continuous functions related to the
linear operator Lg.

Definition 2.9. Let @ be a C! function satisfying (1.2), and let 0 < a < 1.

2),

We say that v € Cg(Q) if u e C%(Q2) and u € C’éﬂ (Q).

We say that u € Cy*(Q) if Xu € C2(Q) and u € C’;,:TQ(Q)

We say that u € C2*(Q) if Xu € CL*(Q) and Yyu € C2(Q).

Let k > 3 and suppose that @ € CE~2%(Q). We say that u € CE2*(Q) if
Xu € CF Q) and Yzu € CF22(Q).

For the sake of simplicity, in the sequel, when we write u € CX*(Q), for
k > 3, we will assume implicitly that @ € CE~2%(Q).

Remark 2.10. For every fixed z € €2, we agree to work only in a compact
neighborhood K of z; satisfying the assumptions of Proposition 2.4. Thus
du (20, 2) is defined for every zp,z € K. We will see that, as a simple conse-
quence of Theorem 2.16, that the class Cg(Q) is defined in such a way that,
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for every u € CZ(Q),
lu(z) — u(z0)| < Cdg(z0,2)%, Vz, 20 € K.

Remark 2.11. In the sequel we will use the following simple result: if
0<a<1andk > 1, then CE*(Q) C CF1P(Q), v3 € (0,1).

We next prove some regularity results in the direction d, for a function
belonging to the spaces CS’Q(Q).

Proposition 2.12. Let @ be a C'-function satisfying (1.2) and let 0<a<1.
i) If u e CZ(Q), then u € C'gy(Q);

1ta
ii) If u € CY(Q), then u € Cy? (Q);
24a
i) If u € C2*(2), then u € Co, (Q);
iv) If u € CE*(Q), with k > 3, then there exists Oyu and it belongs to
O (9).

Remark 2.13. We explicitly note that C2*%(Q) € ¢®5(Q) € ¢F3 (),
for every 0 < a < 1 and k > 1, where C*#(Q) is the space of functions
with derivatives up to order k that are g-Hoélder-continuous functions in the
Euclidean sense. Thus, if u € CE*(Q) for every k € N, then u € C*°(Q).

Proof of Proposition 2.12. We start with a preliminary remark. If u €
C>(Q), the proof is a consequence of the Campbell-Hausdorff formula. The
assertion could be deduced from the general theory alsoif u € C’:—f’a(Q). Since
@ is only of class C, we proceed by direct computation. Let zy be a point in
Q and, for a suitably small § > 0, let z1 = exp (6X)(z0), 22 = exp (6°Yz)(21),
z3 = exp (—06X)(22), 24 = exp (—6%Y5)(23). We claim that

24 = exp ((53 + 0(53))12183,)(20), as d — 0. (2.14)

We denote by (xj,y;,t;) = z;, for j =0,1,...,4. Let v; : [0,1] — Q be the
integral path connecting the point z;_1 to z;, j = 1,2,3,4. It is easy to see
that

~v1(s) = (zo + I, Yo, to), then z1 = (g + 6, Yo, to),

Y2(s) = (fvo + 6, Y0 +52/ u(ye(r)) dr,to — 528)7
0

1
s(s) = (:co T (1 - 8) 0 + 52/0 @(ya(r)) dr, tg — 52), (2.15)
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(s) = (s0.0-+ ([ () dr - [ atum i) to+ 2= 1);

then it is clear that x4 = xg and t4 = tp. In order to estimate y4 — yg, we
observe that

u(72(7)) — a(ya(7)) = Vu(z(r)) - (v2(1) = 7a(7)) (2.16)
= 5ty (3(7)) +52ﬂy(}3(7'))< - / (2(0)) do + /0 Tﬁ(’m(a))da)

T

+ (1 = 27)6%w(Z(7)) = 01 (20) (1 + o(1)), as 0 — 0,

since 1, is a continuous function. As a consequence of (2.15), we get

yi— o = 8 / —a(ya(r)) dr = Bian(z0)(1 +0(1));  (2.17)

as 0 — 0, then (2.14) is proved. Moreover, since y4 depends continuously
on ¢ and um(zo) = 0, the function § — y,4 is surjective in a neighborhood of
yo. Hence, for every (3 sufficiently small, there exists a § = §(3) such that
the point (zg,yo + G, to) can be written as z4 in (2.15) (with § = §(3)). We
stress that (2.17) also yields

3(B)° 1
-
B Uz (20)
After these preliminary considerations, we conclude the proof as follows.
(i) Let 3 be chosen as above. Since u € CZ(£2), we have

[u(z0) — u(=1)] < C8%,  Julz1) - u(z2)| < €67,

as [ — 0. (2.18)

|u(21
lu(z0) — uzs)| < C3°,  [ulzs) — ulzs)] < 5% (2.19)
then, since uz(z0) # 0,
o g 5 R
|u(z0) — u(z4)| <4CO* = 4C(ﬂx(20)(1 n 0(1))) as 3 —0,

and this proves (i).

(ii) We consider the functions 7; : [0,1] — R, defined in (2.15) for j =
1,...,4 and we apply the Taylor expansion of first order to uo ;. Since, by
hypothesis, u is of class C1® as a function of the first variable z, we have

u(z0) — u(z1) = dug(z1) + O(0*), (2.20)
u(22) = ulz3) = —0ug(22) + O(5°TH).
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1t+a
Since u € Cy.2 (),

lu(z1) — u(z2)| < Co*H, lu(z3) — u(z4)| < COTL
Then, by using (2.20), (2.18) and the fact that u, € C%(£2), we conclude

that u(zo) — u(z4) = O(3%F1) = O(3*5 ) as B — 0.
(iii) In this case we use Taylor polynomials of order 2. As § tends to zero,

we have
52
u(20) — u(z1) = dug(21) + ?um(zl) + O(5%1),

2
u(z2) — u(zg) = —0uy(22) — %uxx(ZQ) L0 (52+a) ,

u(z1) — u(zz) = §*Ygu(22) + O(6°F?),
u(z3) — u(zy) = —62Ygu(z3) + O(6%2).

Hence we obtain
2

u(zn) — () =8 (e (1) — e (22)) + % (a(21) — te(22))

+0? (Yau(ze) — Yau(z3)) + O (52+a)

(since uy € Cy*(Q) and gy, Yz € C2(Q)) = O (6%+%), as § — 0, and this
yields (iii).

(iv) We first consider the problem for £ = 3. By using a Taylor polynomial
of higher order, we get, as d tends to zero,

52 53
U(ZO) — U(Zl) = 5um(z1) + Euxr(zl) -+ Eumx(zl) + O (53+a) ,
u(z1) — u(z) = —02Ygu(zg) + O (63+°‘) ,
52 53
u(22) — u(z3) = —duy(22) — Eum(z’z) — Eurxx(ZZ) +0 (53+a) . (2.21)
u(z3) — u(z4) = 6*Yau(zs) + O (6°19).
Then

52

u(z0) — u(zq) = 0 (uz(21) — uz(22)) + ) (Uzz(21) — Uzz(22)) (2.22)
53

+ 62 (Yau(z2) — Yau(z3)) + 5 (Ugzz(21) — Ugaz(22)) + O ((53+°‘) .

Since u, € C2%(0), Yau, € C%(Q) and dg (20, 22) < § , we have
Ugp(21) — Ug(22) = —0?Ygug(z0) + O (52+a) = —0%Yaug(z) + O (52""”) .
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Since uy, € C’?(Q) and Uz, € CF(Q), we have
Uz (21) — Uza(22) = O (0'7%) , Uawa(21) — Ugaa(22) = O (6%).
Moreover, by the fact that Yzu € CY*(Q), 8,Yau € C2(Q) and dg(z0, 22) <
4, we get
Yau(zs) — Yau(zs) = 60, Yau(zo) + O (6'1%) = 69, Yau(z0) + O (6'7).
Inserting in (2.22), we finally obtain
u(zp) — u(z4) = 62 (0 Yau(z0) — Yaug(20)) + O(53F)
or, in other words,

u(wo, Yo + B, toﬂ) — u(o, 9o, to) _ 5(?3 [ X, Ya|u(z) + O (6(6)%)
1 (2.23)
T a(z0) (X, Ya]u(zo),  as B—0.

This proves the existence of dyu. The regularity follows from the fact that

1
uy(2) = —— (0 Yau(z) — Yaug(2)) , Vz e Q.
g (20)
The proof in the case k > 3 is immediate: the existence of dyu has been
proved, while its regularity directly follows from the above identity. ]
We introduce the “Taylor polynomials” related to the spaces C’f—f’a(Q)
above considered.

Definition 2.14. Let 29 = (20, y0,%0) € 2,k € N and let % be a C! function
such that (1.2) holds. We denote by PX any function of the form

Pi(z,yt) = > cijam(m—20)'(t —to) (y — yo + (t — to)tu(z0))™ (2.24)
i+2j+3m<k
where 4, j,m € NU {0} and ¢; j» are real constants. We say that Pfo is a

polynomial of initial point zg and 5/(\20)—degree k.

Remark 2.15. The functions & — xg,t — t9 and y — yo + (t — to)u(zo) are
5§z0)—homogeneous of degree 1,2 and 3, respectively, since they are 61, —05
and U (20)(03 + 6102), where (61, 602,03) = 9%0)(,2) defined in (2.8).

We next state the main result of this subsection.
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Theorem 2.16. Let zp € Q, 0 < a < 1, k € NU {0} and assume that
0)

u € C’S’a(Q). Then there exists a polynomial function szou, of 6§\z -degree

k, such that
u(z) = Pfou(z) + O(dg(z0, 2)*+9) as z — 2. (2.25)

Proof. We prove our result by a classical argument that relies on Proposition
2.12. We observe that the regularity assumption is given in terms of the
geometry corresponding to 6y ., while we obtain polynomial functions that

are homogeneous with respect to 5E\ZO).

The assertion is obvious if £ = 0. We first prove (2.25) for k = 1,2. We
proceed essentially as in the proof of Proposition 2.12. We consider a point
20 = (z0,Y0,t0) €  and a compact neighborhood K C € of zy such that

every z = (x,y,t) € K can be connected to 2 as follows. Let

71(s) = exp(s(z — z0)X)(20) and 21 =7(1) = (2,0, %0)
Y2 (s) = exp( s(t —1t9)Ya)(21) and zo = 72(1) = (z,y2, 1)
73(s) = exp(s(y — y2)9y)(22).

Clearly

|z — zo| < du(20,2), |t — to] < da(z0,2)% (2.26)

Let us now estimate |y — ya|. We have

ly — 2| = da(z, 22)® < C? (dal(z, 20) + dalz0, 21) + da(z1, 22))?
~ 1\ 3 5 (2.27)
<C (da(z,zo)+]az—xo\—Ht—toP) < Cdg(z0,2)°.

Let us give a detailed proof of (2.25) for k¥ = 1. The case k = 2 can be
treated analogously.

u(z) = u(z0) = u(z1) — u(z0) + u(z2) — u(z1) + u(z) — u(z) =
1ta
(since u € CH*(Q) as a function of its first variable, u € Cy2 (©2) and

we Gy’ ()
= u(zo)+ (& — o) (20) + Oldalz0,2)+) + Ot ~to] ) 4 O(ly 1l ) =
(by (2.26) and (2.27))

= u(zp) + (x — zo)ug(20) + O(dz(z0, z)1+0‘), as z — zp.

For k > 3 we simply argue by induction. We recall that, by our convention,

we assume 4 € C’Ij 2 Q). If 4 is the Euclidean segment connecting z and



718 GIOVANNA CITTI, ANDREA PAScuUCCI, AND SERGIO POLIDORO

zp, we have

u(z) —u(z0) = (x — xo / Ou(Y(s))ds — (t — to) / Yau(y
(g — o+ (z0) (¢ — to) /O B,u(3(s)) ds (2.28)

1
+(e=t0) [ (@3() = iz0)) 0u((5) s

By the inductive hypothesis, u, has a Taylor expansion of the form (2.24)—
(2.25) of 6(20)-degree k — 1. Thus we have

1
(x — xo / Oru(y(s)) ds = (x — xo) /0 Z Cijm (T — 0)'(t — to)?

i+2j+3m<k—1
X (y = yo + (t = to)u(z0))™ s ™ ds + (x — xg / O(du(z0,7(s))" 1 **)ds
= Ci,jm (x — )it j ~ "
= ) @ a) ™M t0) (v —yo + (E—to)u(20)
iv2jiamehoy LTI Tm A1
+0 (da(20,2)%),  asz— .

In the same way we can handle the second and the third term in the right-
hand side of (2.28), since, by our assumption, Yzu € CE~>%(Q) and Oyu €

Ch=3a (€2). The last term can be estimated as follows. Let ¢; j, (respectively
¢i,jm) denote the coefficients of Pf(;2ﬂ (respectively Péf;?’uy). Then we have

1
(t—t0) [ (@) ~ a(0) yu(i(s)) ds
0
1
= (t—to) /0 (PE2a(3(s)) = a(z0) + O(da(z0,7(5))~2+) )

- (PE-5uy (3(5)) + O(da(20,7()F5+) ) ds
(since PE~24 (5(s)) — u(z0) = O (da(z0,2)), as z — 2o)

/ Eiaj’méil’jlgml (w - .%'0)7’—“1 (t — to)j+]1+1'
0

0<z+2j+3m<k 2,
i1+731+mq<k-3

(Y —yo + (t — to)u(zo))™ M ST g 4 O(dg(20,2)FT). O
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2.3. Parametrix. In this subsection, we provide some results about the
fundamental solution of the frozen operator L,,. As we previously noticed,
the second-order differential operator

Ly =X}+Yy
has a fundamental solution I'fy, which is invariant with respect to the left

@-translations and (55 -homogeneous of degree —(Q)+2. Hence a fundamental
solution of L, is given by

Day(2.0) = =T ((049(0)) 8 059)(2)) (2.29)

Uy (20)

and it is 55\20)—h0mogeneous of degree —@Q + 2. We remark that in [22],
Kolmogorov wrote explicitly the fundamental solution of the operator

Oz + xay - ata

which is, up to a canonical change of coordinates, the fundamental solution
of Ly or L,,. However here we don’t make use of that explicit formula, but
we use only its local behavior.

For the sake of convenience, here and in the sequel we systematically use
the following notation:

Di=x, D¥=x = DH=xy,

o) (2.30)
Dy =Yy Dy =Y,, D¥=vy

Besides we denote D3 = 0, Di(fo) = Uz(20)0y, DY = 9y,. We also denote
the identity by Dy = Dézo) = D¥. For every multi-index o = (01,...,0m),
with o, € {0,1,2,3}, 1 <r <m €N, we set

Dy = Dgy,--- Dy, DFO) = Dgzlo) ...plo) - pH — Dg ~~Dfm- (2.31)

m

We call height of ¢ the natural number
m

EEDINS (2.32)
r=1

We remark that DS (resp. D) is a 6&20)(respectively 64)-homogeneous
operator of degree |o|. Since I',, depends on many variables, the notation
D(z1)T'4, (-, ¢) shall denote the D-derivative of I',(z, () with respect to the
variable z, evaluated at the point zj.

If ¢ € C§°, a simple relation holds between the derivatives D¢ and

Dc(,zo)cp.



720 GIOVANNA CITTI, ANDREA PAScuUCCI, AND SERGIO POLIDORO

Lemma 2.17. If i € CE2*(Q), and o € {0,1,2}*™ with |o| < k + 1, then
for every function ¢ € C§°(Q) the derivative Dyp can be represented as

ZC HDNU (ZO ()

o€l neEJ,

u—P1

where 1, and J, are suitable subsets of {0, 1,2,3}k+1 C, are nonnegative
constants, and h, and k, are nonnegative integers such that

ol <lol+ke  ky<hg lul<ky<Blol. Vuel,Voel,

If J, is empty, we set [[ Dyu = 1.

wedy
Proof. Since the function ¢ is of class C§°(€2), by Remark 2.8 its Lie
derivatives can be represented in terms of the standard partial derivatives,
and it is not necessary to use the exponential function. If |o| < 2, the
assertion follows directly from the definition. Indeed, if o € {(1),(1,1)},
then D, = D5, while, if o = (2), then

u— PLa)
D, = po) 1+ =P o)
o ﬂac ( 20 ) 3
The general assertion follows by induction on |o]|. O

Analogously it is not difficult to prove the following.

Lemma 2.18. If a € Cy*(Q), o € {0,1,2}*+1 with |o| < k+ 1, and 20,
21 € §1, then for every function ¢ € C§°(Q)

D& p(z) =
DEp(z) + > Cylia — PLa)*e(z0) (w — 20)" (1a(20) — a(21))* DS o(2),

where J, is a suitable family of subsets of {0,1,2, 3}F+1, C, are nonnegative
constants, and j, and k, are nonnegative integers such that

ol < lo|+ko+he  hy <o ¥o€ I
Proof. If [o| € {(1),(1,1)} the assertion is obvious. If ¢ = (2), then
D{Vp(z) — DFVg(z) = (PLa(z) — PLa(z)) 0y0(z)
= — ((20) — P} u(20) — (x — m0) (th(21) — Ua(20))) Dyp(2).
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Now, let us suppose that the assertion is true for every multi-index of height
less than or equal to k — 1. We choose o = (01,0”), of height |o| = k. We
assume for simplicity that o1 = 1, since the proof is similar if ;7 = 2. Then

D =
D (Do + 30 Oyl — P (o) a—0)" (i(20) — (1) D)
QEJU/
=DF) o +> " h,Cyt — Pl )™ (20)(z—0)" " (U (20) — Ua(21))’e DS
QEJU/
+ Y Culi = PLa)e(20) (x — w0)"* (s (20) — ial(21)) DY DS,
QEJG/

Remark 2.19. It is well known that for every compact set K C €2 and for
every multi-index o, there exists a positive constant C' such that

DS (T2 (-, Q)| < Cdig (2,¢) 9271 v 20,¢ € K, 2 #£ ¢
By Lemma 2.17, we also have
Do (2)T2 (- QI < Csy (2,() 927101

Fixing an open subset  of R3, a positive constant M and two points
20,z € ), we set

Qur ={C € Q:dy(20,() > Mdy (20, 2)}. (2.33)

This set is defined in such a way that the function z — I'; (2, () is smooth,
if ¢ belongs to Q5. Indeed, if M is sufficiently large, then, by (2.6),
1 1

dZo(Z7O > %dm('zmo - dZO(Z07Z) > (5 - M)dZO(ZUvC)v (2'34)

for every ¢ € Q.

Proposition 2.20. Let k € N. Let i € CE*(Q) and let K be a compact
subset of Q. There is a positive constant C, such that, for every multi-index
o, |lo| =k, we have
(Do (2) = Do(20)) Iz (-5 ) 0.35)
2.35
=C (dzo (207 Z)dzo (207 C)_Q+1_k + dZo (Z(), Z)adzo (207 C)_Q+2_k) )

for every z,zy € K, ¢ € Qpr defined in (2.33) for suitable M > 0.
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Proof. We apply Lemma 2.17, and denote I, = {o: k, = 0}. Then, we
have

(Dy(2) — Da(Zo))FzO(w C)

P
QGIU\IO' neJ,
+ZCQ(H D, u(z) H D, u(z0) )D )(ZO)F (+,¢)
ocl, nedy redy

+ 3 G [T Dutz) (DFO(=) = DY) (z0) ) Ty ().

ocl,  MEJo

Now we estimate each term separately. By simplicity let us call them Sy,
So, S3 respectively. We first note that if with M > C, ( € Qp; and zZ € Q is
such that d, (20, 2) < d4, (20, 2), then we have

1
dzo( C) > Cdzo(ZOaC) dz0(207 ) > CdZO(ZO’C) - dzo(207z)
(by definition of /)
d (20, C). (2.36)
We first consider S;
S11<C Y day(z0,2)FeHd, (2,079l <
lo|<lo]+k,
(using (2.33), (2.34), the fact that |g| < |o| + k, and that K is bounded)
< Oty (20, 2)dzg (20, ()21,

Analogously we can estimate So. Indeed, since D,u € C* for every p such
that |u| < k and |g| < |o]|, we get

|Sa] < Cduy (20, 2)*dag (20, () "2,
Finally
1S3 < > Cy | Dz <D(ZO)( ) — DéZO)(zo)) [ (5 Q) =
lol<lo|  nuel,
(by the mean value theorem, for some z such that d.,(zo, 2) < d4,(z0,2))

= 3 G080 (2), (Voo DGO (250 (-, O))

lol<lo|



NONLINEAR ULTRAPARABOLIC EQUATION 723

3
< N D day(20,2) duy (2,¢) 9T

lo|<lo|  r=1
(by (2.36), and the definition of /)
< CdZO (ZOa Z)dZO (ZOa C)—Q+1—|U| .
The main results of this section are contained in the following statement.

Proposition 2.21. Let k € N, @ € CX*(Q) and K be a compact subset
of Q. There exist two positive constants C and M, such that

[ Do (2)L2(+, €) — Do (20) L2 (-, €|
¢ (dZO (207 Z)dzo (207 C)iQJrli‘o‘ + dzo (Z(), Z)adzo (207 C)7Q+27‘0|) >

for every multi-indez o, |o| =k, and for every z,zo € K, ( € Qus defined in
(2.33).

(2.37)

The proof of the above statement relies on the following.

Lemma 2.22. Let Q be a bounded open set, u € C}L’Q(Q), K a compact
subset of Q and M > 0. Then there exists a positive constant My such that

‘(Q%D) (C) D (_6,(;)(()))3‘ < MO(dzo (207 C)deo (Z07 Z)a + dZo (207 <)2dzo (z07 Z))?)

(2.38
for every z,zy € K and for every ¢ € Qs (the notation (-)3 in the left-hand
side denotes the third component of the considered vector). Moreover, if M
is sufficiently big, there exist two constants My, Mo > 1 such that, for every
z,z0 € K and for every ¢ € Qpr, we have

M [16050(C) @ (=02 (Ol < 1050l (2.39)

and, for every 6 € R® such that dH(G%O)(C),O) < dH(G,(ZZ)(C),H%O)(O), we
have

Proof. A straightforward computation gives
1
057(Q) @ (—017(0)) = (& — w0, to — 1, 5 (& — wo)(27 — t o)
1 B 1 B
+ Ta(20) (n = yo + u(z0)(1 — to)) — i (2) (n—y+u(z)(r —t)).

If we denote by 03 the last component of 9%0)(0 ® (—9£Z) (€)), we have

e

1
03] < 5z = 2ol (|7 = to] + |7 = ¢])
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5~ ) (1w )= )

(y — o + a(z0) (1 — to) — u(2)(1 — 1))

< C’l(\:r — zo|(|T — to| + |7 — ¢])

[Py gk aa)(r—t0)

+ |y — yo + u(20)(t — to)| + [t — 7l|u(2) — u(20) — Ua(20)(2 — 20)|
+ |t (20)[[t = 7|2 — x0)

< Co(dy (205 2) (dzg (20, O)? + dag (2, €)?) + dag (20, 2)“dig (20, C)?

+ dag (20, 2)% + dag (2, €)?dig (20, 2) T + dig (2, 0)dy (20, 2)) s

since u,; € Cg(€2). By using the inequality

dzy(2,¢) < C (dzy (20, 2) + dzy (20, €))
we then obtain
03] <C3(d (20, C)*dug (20, 2)) + dag (20, ()P (205 2)* + dig (20, 2)°
o (20, O)* T + dog (20, ) *dzg (20, 2) 1 9).

Since zg,z € K and ¢ € Qyy, from the above inequality we immediately
deduce (2.38). Moreover, using the fact that  is bounded and that ¢ € Qyy,
we get
1
1652(¢) & (=0)(C)) | < dag (20, 2) + (03]

) % dZO 9 3 dZ() ) 3 1
(]\Z;C)_‘_MO( 3\?@(0 + (;;C) )3;

then, by choosing M sufficiently great, we also obtain (2.39). Finally, if
A (05°(¢),0) < d (057(¢), 0 Z°>(g ), from (2.39) we obtain

)
1611 > drr(652(¢), 0) — dpr (6
0) -

0)(¢),0)
> dp(0$9(¢),0) — dr (057(¢), 050)(C))
> (1- Mil)dH(egg@(g),o) > M%dzo(z(),o-

This proves (2.40) and concludes the proof of the lemma. O
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Proof of Proposition 2.21. Let us first prove that, for every multi-index
o, |o| > 0, we have

|DET1(=61)()) — DA (-05(0))
<C (dZO(ZO, 2)%da (20, )" 9T271N 1 d, (20, 2)de (20, g)*QH*\oI) 7

for some positive constant C'. Indeed, we have

1D T (=65)(¢)) — DT (=657 ()] =

(2.41)

(by the mean value theorem and denoting Vg = (X, Y, 0g,))
= [(0$7(¢) @ (—0%)(C)), VaDET 1 (0))] <
(where dpr(857(¢), 8) < dr(85(¢),65°)(¢)))
< |& — 20| | Xy DET 1 (0)| + |t — to||[Yu DT 1 (6))|
+ (052 (C) & (—057(C)))3109, DET 1 (0)] <
(by (2.40) and (2.38))
< O(dag (20, 2) g (20, €)™+ dy (20, 2)%dg (20, ) 7@ F21).

Assertion (2.41) is then proved. Now we can apply Lemma 2.17, again
denoting I, = {0 : k, = 0}. We have

Do ()T () = Do(=)T(:, )|
(a 55)% LI DuiCz0) D) (z0)T (-, €)
v pnel,

o€l,
C
- [ DD - 0)|
v uGIQ
< Z C ‘ ZO h’g ]i][ Duu ZO (1)h H DM,EL(Z)MDéZO)(ZO)FZO(;C)|
EIG S nEIl,
+ 3 G| TT Du)[IDE)(2)T=,¢) = DE (z0)T -, €)
o€l, pel,

(by (2:29))

=3 Cofoyin TT Dutteo) - uxémg 11 Dyi()| [DF?) (20) T (- €)|
pnely

ocl, nel,
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> T[) |1 =056 - = (DT
QEI nely T
(by 2.41)
<O (denlz0, 2k (20, ) 7O -y (20, 2) ey (20, ) "0 719142)
o€l,

(since |o| < |o], Yo € I,)
<C (dzo (Z07 Z)dzo (Z07 €)7Q7|U|+1 + dZO (ZD, Z)adzo (ZO, C)*Q*VTHQ) )
Proposition 2.23. Let ¢ € COO(Q), Then

D) () (sl = > o(ODFVP)(z0¢ )

0€Js

where o denotes the law group (2.5) in G, and p, is a polynomial of 6{\{—
degree k, in the first two components of ¢ such that |o| < ko + |o], Vo € J5.

Proof. If we prove the assertion on the Heisenberg group, it will be proved
in any group (G, o), by the canonical change of variables. Let us start with
lo| = 1.

~ 6 - ~ ~ ~ ~
Xu(0)p(- @6 ")=(0p, —52503)90(91 — 01,0, — 02,05 — 03 — 5(6102 — 026,))

0. 0
= (Op — —233<P - —23390)(9 001 = (i -

= (Xpe)(0007) — 02050(00071).

This proves the claim since the (55 -degree of 05 is two. An analogous direct
computation shows that

Yu(0)(@(-007") = (Yug) (00 07") + 0:1030(0007").

The general assertion follows by iterating the previous arguments. O

020

(93@ 0283(,0) (9 o 9 )

In the sequel we shall need the following results.

Remark 2.24. If v € CF%(Q), the coefficients Cijjm i P¥u depend on the
derivatives of u of order less than or equal to k. Hence ¢; ., € C(Q). If
K is a compact subset of {2 and ¢ is a multi-index, then there exists C' > 0
such that

|DUPfu(C) — DUPZ";')U(CN < Cdyy(20,2)7,
and

|(Phul¢) = PaulC)) — (Pru(¢) — Pru(Q)] < Cdzg (20, 2)"dz (20, €)°,
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for every z,zg,( € K.

Remark 2.25. Let u € C5*(2), with 0 < k < 5. Then
IPEu(€) = PEu(Q)] < Cldey (20, 2)dug (20, C)F

for every z,zp € Q and ¢ € Qpy, where Q) is defined in (2.33).

3. REGULARIZATION RESULTS

In this section we prove Theorems 1.1 and 1.2. We consider the linear
equation in Q C R3,

Lau = Uy + Uty —us = f. (3.1)

We say that a function u € C(Q) is a classical solution of (3.1), if there exists
Ozzu € C(2) and equation (1.1) is satisfied at every point of Q. In order to
study the regularity of u, we first represent it in terms of the fundamental
solution I',:

(wp)(2) = [ Tl O) Lay ) (O) G (32)

for any C5°(€2) function ¢. Then we set, as usual,
Unt20) = [ T e €) L () (C) e (33)
where X,.(2, ) is a cut-off function, vanishing in a neighborhood of the pole

of I'y (2, ).

As we pointed out in the introduction we can not use the standard the-
ory, based on uniform convergence of U.(z, z9) and its derivatives to u and
its derivatives. Instead we use a different technique, introduced in [6] and
[7] and based on a weak definition of local uniform convergence and on the
representation of higher-order derivatives as limits of suitable different quo-
tients.

We represent the functions v and Ue in (3.2) and (3.3) as the sum of two
terms

u = I(-, 20) + I2(-, 20) Ue = I1(-, 20) + I2£(-, 20),
where I (-, z0) is C*°, I . uniformly converges to I;, while I5 . converges to
I in the sense of the following definition.

Definition 3.1. Let (F;) be a family of continuous functions on Q x €, let
f:Q =R, let « € (0,1) and k € N. We say that F.(z,z9) — f(z0), as
€ — 0, locally uniformly of order k + « if for every compact set K C 2 there
exists C' > 0 such that

|Fe(z,20) — f(20)] < CeM® V2,20 € K, dyy(2,20) < e.
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We next state an existence result for the derivatives D,u (introduced in
formula (2.31)).

Lemma 3.2. Let |o| > 1 and let u € qufl_l’a(Q), a function which can be
represented as u(z) = I1(z, z0) + I2(z, z0), where I is smooth as a function
of z in Q, and the function z — Dy (2)11(+, z0) is continuous in z uniformly
in zo. Assume that there exists a family Io. of smooth functions and a
continuous function I§ such that Iy (z,z0) — I2(20,20), as € — 0, locally
uniformly of order |o| + «, and Dyla (2, 20) — 15(20), as € — 0, locally
uniformly of order a. Then Dyu(zg) exists and, for every zy in €2,

Dou(z0) = Do (20)11(-, 20) + 15 (20)-

The proof is postponed to Subsection 3.1. In Subsection 3.2, we prove
Theorem 1.2 by using Lemma 3.2. Finally, in Subsection 3.3, we conclude
the proof of Theorem 1.1.

3.1. Derivatives and difference quotients. The main ideas of the proof
of Lemma 3.2 are already contained in [6] and [7], but the lemma is not
stated explicitly; hence we give here the proof. It is based on the following
definition:

Definition 3.3. If g : @ — R, for every z € 2 and h € R sufficiently small,
we define

Dy(2)g(h) = g(eXp(hZD(Zi)(z)) BEICA Y

For every multi-index o = (01,...,0.,) € {1,2}"™, we define by recurrence
Aa(z)g(h) - A(m)(z)(A(027...,0m)g(h)>(h)'
Remark 3.4. If g € CJ—f'(Q) then, by the mean value theorem, we have

Aa(z)g(h) = Dag(zh)a
for a suitable z;, such that dg(zp,z) < h. Hence there exists

lim Ay(2)g(h) = Dog(2)
uniformly on the compact sets.

As in [7], Remark 4.2, the following result holds.

Lemma 3.5. Let |o| > 1 and let g € Cg"*l(ﬂ). If there exists
li =
Jim Nyg(h) =w

uniformly on the compact subsets of 2, then there exists Dyg = w.
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Proof of Lemma 3.2 Since z +— [1(z, z9) is smooth, by Remark 3.4, we
have

Ao (h)11(+; 20)(20) — Do(20)11(:, 20),
as h — 0, locally uniformly on compact sets. On the other side
[As(20)12(+; 20) (h) — 13 (20)]
<[Ag(20)I2(+ 20) (h) = Ao (20)I2,(+, 20) (h)| + [Ag (20) L2, (-, 20) (h) — 15 (20)]

(by the hypotheses on the local uniform convergence of order k + « and
Remark 3.4)

< C1e® + |Dy(2n) 12,2 (-, 20) — 15 (20)] < Ce.

Then
Ao (z0)u(h) — Do(20)11(- 20) + 15 (20),

as h — 0, uniformly on the compact sets. By Lemma 3.5, we infer that
DU(Z[))U = DU(Z(])Il(', Zo) + Ig(ZO).

3.2. Linear operators with Cg’o‘ coeflicients. The aim of this subsection

is the proof of Theorem 1.2. Let K be fixed according to Remark 2.5 and

let K7 be any compact set K1 CC int(K). We study the regularity of u in

K. We fix a function ¢ € C3°(int(K)) such that ¢ = 1 in a neighborhood
of K. It is nonrestrictive to assume that, if z, zg € K1, then

Md,,(z0,2) < d.o(K1,supp(Ve)), Md,(z,20) < d.(K1,supp(Ve)), (3.4)
where M is the constant of Lemma 2.22.
Remark 3.6. With this choice of function ¢ and compact set K;, we have
Chd:(2,C) < dx(20,¢) < Cad(2,¢),  VCesupp(Vep),z,20 € K1 (3.5)

where (7, Cy are positive constants depending only on 4 and K. In partic-
ular,

dZo (ZOa Z) S CdZO (Za C)v VC € supp(V(p), Z,20 € K. (36)
Proof. By (3.4) and Proposition 2.4—(ii), we have

1
dZO (207 C) S C(dzo (207 Z) + dz(zv C)) S C(Mdzo (Z(), C) + dz(z7 C>)7
V¢ € supp(Ve); thus, if M is sufficiently large, we get

dz(20,C) < Cd,(z,(), (3.7)

for every ¢ € supp(Vep). Exchanging the role of zp and z in (3.7), we get
(3.5).
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Proposition 3.7. Let us assume that the coefficient @ in equation (3.1)

is of class CE75(Q), 2 < k < 6, and that f is of class CE™2%(Q). Let

u € Cg_l’o‘(Q) be a classical solution of (3.1). Then, for every z,zy € K,

u = up can be represented as
u(z) = up(z) = / D.0(2 Q)N (G, 20) dC (3.8)
Q

+/Qon(ZaC)N27k(Ca 20) d¢ + /QFZO(Z,C)N&]C(Q,ZQ) dc.
where Nj (-, 20) is supported in the support of ¢, and
(i) supp(N1(:, 20)) € supp(Ve) and
IN1(C, 20) = Ni(C, 2)| < Cdzy (20, 2)" dzy (20, )3 (3.9)
(ii) Nog(-,20) is of class C* and for every multi-index o
[ Do (Q) N2,k (-5 20) = Do (Q)Noi(+ 2)| < Cdzy(20,2)",  VC € K

(iii) there exists a constant C, dependent only on the choice of ¢ and K,
such that for every ¢ € K and z, 2y € K;

‘N3J€(C7 ZO)| < Cdl,:o_2+a(zo’ C)7 (310)
N3 (¢, 20) = N k(€ 2)] < Oy (20, 2) dig (20, ()2 (3.11)
Proof. By definition of the fundamental solution, we have

up(z) = / Py (2, €) Ly () (€) dC = / Poy(2,C) (uLsgp + 2XuX ) d¢
Q

Q

[ Do (2, O Lau(O)p(C) dC + / Top (2, C) Ly — La)u(C)p(C) dC

Q

(2, ) (ulzp + 2XuX ) d¢ (3.12)

+

Fay (2. O)F(C)p(C) dC / Pao (2, O)(@ — PLa) (Q)0u(Q)(C) dC.
Q

In order to use a uniform notation, in the sequel we will set szou =0 for k
a negative integer. Then, for every k£ > 2, we have

(@ — Py )()dyu(C) = (P4 'a(¢) — PLa(¢)) (uy(¢) — P tun(C))
+ (P a(¢) — Pou(Q)) Phy ug(€) + (@ — PEa) () d,u(C).
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Then (3.8) is satisfied by inserting these expressions in formula (3.12) and
by choosing the kernels N1, N, and N3 as follows:

N1(¢, 20) = u(C) Lz e(C) + 2Xu(¢) X(C),

Nak(C,20) = PE2F(Q)e(C) + (P u(¢) — PLa(Q) Ph uy (Op(€),

N3k(C,20) = (F(¢) = PE2F(0)e(€) + (@(¢) — PE a(¢))un(¢)e(¢)
+ (PE'a(¢) — PLa(Q)) (un Q) = PE uy(0)(€)-

Let us prove (i). The support of Ni(+,zp) is clearly a subset of supp(Vp).
Formula (3.9) can be proved as follows:

[N1(C, 20) = N1(C, 2)| = [u(C) (Lzyp(¢) — Lz¢(¢))]
= [u(Q)] |P5,a(¢) — PIa(C)| [0y ()] <
(by Remark 2.25)
<C (dZO (20, 2)'T% 4 d., (20, 2)%d, (20, C)) < Cdyy (20, 2)%d2, (20, C).

Condition (ii) easily follows from the definition of Ny and Remark 2.24.
Let us prove (3.10) for k = 2:

N32(¢,20) = (F(O—F(20))(C)+(@(C) = Pya(€)) uy(Qp(C) < Cdy (20, )"
We observe that, for every k > 3,
PI7lu(¢) = PLu(¢) = O (ds(20.€)%),  as ¢ — z0.
Hence, we get
N33(¢,20) = (F(C) = Py £(Q) (€) + (a(¢) = P2 a(C)) uy(Qe(¢)
+ O (dzy(20,¢)?) = O (dz(20,0)'T*), as ¢ — 2.

This proves (3.10) for k = 3. We can proceed analogously for k£ > 4.
Let us prove (3.11):

N3 (¢, 20) = Na g (¢, 2)] < |PET2f(C) = PE2F(O)1e(0)]

+ |PE u(¢) — PLa(Q)||PE uy(¢) — PE- 4un( Olle(Q)l

+ |(PE T u(¢) — PLa(¢)) — (PEa(¢) — PLa(O))lug(¢) — P *uy(Q)le ()]

+ |PEMu(¢) — PEa(O)Jun(Olle(Q)] <

(by Remark 2.25 and Remark 2.24)
< Cdey (20, 2)dzg (20, )2
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Remark 3.8. As stated in formula (3.3), we introduce a cut-off function
Xz0.c(%, ¢) with the following properties:

() Xare(0) € CR(Q[0,1]);
( Xzo,a(za C) =0 if dzo(Z7C) < 2635;
( ) XZO,E(Z7C) =1if dzo(z C) > 4C¢;
(iv) | Do (2)X2p,e (- Q)| < M, for every multi-index o;
for every zg,( € €, € > 0, where C is the constant in (2.6).
Proof. We consider a smooth function g, defined in terms of the compo-

sition law (2.5) of G,,. We assume that g,, is (5/(\Z0)

one and that

3 _ )
1%0(5Q) S 920(CTH02) < 7dy(2,0), Yz (.
We next denote by x a C*°([0, +00), [0, 1]) function such that

-homogeneous of degree

5 3
x(s) =0, fOTSﬁz, x(s) =1, for s> 3

_ gzO(C_loz)
and we define x,,(2,() = X(—255 ).

Proposition 3.9. Assume that u is of class Ck L ), with2 < k <6, and
that it can be represented as in (3.8), for every z,zy € K, with the kernels
N1, Noy and Ns . satisfying (i), (ii) and (iii). Then u is of class CE(Q2).

Proof. Since u is represented as in (3.8), we apply Lemma 3.2 to it. If we
set

I (2, 20) = /Q Loy (2, ONI(C, 20) ¢ and Tz, 20) = /Q Do (2 O)Nos (€ 20) dC.

then z — I1(z, 20) is C*°, since N1((, z0) is null in a neighborhood of the
pole of I, (2, (), by (i) and (3.6). Also I (-, 29) is C* since, by the change
of variable (7! 0 z = w, it can be represented as

Ig7k(z,zo):/f‘20( L0)Nop(z 0w, 20) do, (3.13)

where Ny (-, z0) is of class C5°(€2). Next, we set

IS,k:(zaZO)_/Qrzo(zaC)NS,k(CaZO)dC

and, for every multi-index o of height |o| =k,

Ig,k(ZO) = /DU(Z())FZO(-,C)Nng(g,Zo) dC (314)
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We remark that I, is well defined and continuous by (iii). Let us define

Type(z 20) = / T, (2 )Xo (25 O N3 (€, 20) dC.

Q

Clearly I3 (-, 20) is smooth.
In order to apply Lemma 3.2, we have only to prove that

sup  |I3x(2,20) — I3 pe(z, 20)] < CePTe, (3.15)
dzo(20,2)<e
sup  [Dy(2)13ke(c, 20) — I3 1 (20)| < Ce, (3.16)

dzq(20,2)<e

where C' is a positive constant which depends only on Kj;. Then we will
deduce that

DO—U(ZQ) = DU(ZO)Il(', Z()) + DO—(ZO)IQ,]C(‘, Z[)) + Ig(:k(ZO). (317)
Indeed, we have, by (iii),

I3 1(2, 20) — I3 ke (2, 20)| < Ch / sy (2, )79 2d (20, Q)P 2 dC
oy (2:0) <2

<Cy / Aoy (2, )92 (dy (20, 2)F 721 4 dy (2, OF 2T dC < CeFFe,
dzg(2,0)<2¢

since d, (20, 2) < € and (3.15) holds. We remark that

Da(fg) = Z C(Uv U,7JII)D0/fDU”ga
lo’|+|o" |=|o]
for some constants c¢(c,¢’,¢”). Thus, we have
Do (2) 13 ke (5 20) — I3 (20)| < [Bi(e)| + |Ba(e)| + [Bs(e)l,

where

Bi(e) = /Q (Do (2) — D (20))T s (+ C)Xope (22 ) N (€. 20) .
Bs(e) —/QDJ(ZO)on(',C) (1 = Xz0.6(2,€)) N3 (¢, 20) dC,

By(e) = /Q > c(0,0",6")Dgr(2)T2 (-, C) Do (2) X0, (25 ) N i (¢ 20) .
o/ |+1o" 1=l ],
lo’ |0
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Let us estimate each term separately. We observe that, for every ¢ €
Supp(Xz,c(2,¢)), we have d,,(z,¢) > 2Ce, where C is the constant in (2.6);
then

1
dzo (ZOa C) > Edzo (Za C) - dZo (Z07 Z) > €. (318)
Thus, by Proposition 2.20, we get
[Bi(e)] <

Cl /Q (dZO (Z(], z)dZO (Z(], C)_Q_1+a + dZO (207 z)adzo (ZO, C)_Q+a) XZQ,E(Z7 C) dC
(by (3.18))

=2 / (2d2y (20, O) @71 4 % (20, C)~9H?) | (Q)]dC < Ce®.
dzo (ZO)C)ZE

By Remark 2.19 and since da, (20, ¢) < C(dz (20, 2) + day (2, C)), we obtain

Ba@ <G [ e < cen
dzg(20,0)<C(144C)e

Finally, by using again Remark 2.19 and property (iv) of x, ., we obtain

|B3 (E)| < Z M / dzo (Z, g)_Q+2_|U,|dzo (Zo, g)'g‘—Q-i-adC

0.//|
IR e<diy (20,0 < (1448
< Ce*.
This concludes the proof of (3.16).

Lemma 3.10. Assume that u is of class 0’5‘17“(9), with2 <k <6, a> %,
and that it can be represented as in (3.8), for every z,zo € K, with the
kernels N1, Noj, and N3y, satisfying (i), (i) and (iii). Then

(i) Dyu € C2(Q), for every multi-index o of height k;

(ii) Dyru € C}O}; (Q), for every multi-index o’ of height k — 1,
for every o’ € (0, ).

Proof. Let us prove (i). In formula (3.17), we gave an explicit expression
of D,u as a sum of three terms. Since these terms have similar behaviour
and D17 is the simplest one, we study only IS, and Dy15 k.

Let us start with I{,. Let M = M(K) be as in Lemma 2.22 and let
be the set defined in (233) Then, we have

I3 (2) — I5 p(20) = A1(2, 20) + A2(2, 20) + As(z, 20) + Aa(z,20),  (3.19)
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where

Az, 20) = /Q (Do(2)T(,€) = Do (20) g (- O)) Na (G, 20) dC,

As(z,20) = ; Do (2)T2(+, ¢) (N3 (¢, 2) — N3.x(C, 20)) dC,

As(z, 20) = /Q o, DT ONs(6, 20

Ag(z,70) = /Q o Do ONs (G 20)

We get immediately, by Remark 2.19,
|A3(Zv ZO)|’ |A4(Zv ZO)’ < Cdzo (207 Z)a'

Moreover, by Proposition 2.21, we have

|A1 (Zv ZO)| < Cl/Q (dzo (207 z)dzo (207 C)_Q+a_1 +dz0 (207 Z)adzo (Z(), C)_Q+a) dC
M
< Cdy (20, 2)°.

By Remark 2.19 and condition (iii) of Proposition 3.7, we have

|As(z, 20)| < O / (2, ¢)~ (20, 2)° ()] dC <
Qar

(by (2.34) which holds for every ¢ € Q)y, for every o/ < «)

< Chdzy (20, 2)” / dzy (20,C) 9T 0(O)| ¢ < Cdy(20,2)™ . (3.20)
Qpr

This concludes the proof of the Hélder continuity of I, of order o, for every
o' < a. Let us consider I . By (3.13),

I (2, 20) = /on (W)Nai(z o w_l, 20) dw,

where N3 ((, 20) is introduced in Proposition 3.7 and I',j(w) = I';,(w,0).
We have to show that D,(20)l2x(,20) € C2(Q). By differentiating the
above integral, we obtain

Dy (20)1I2 k(-5 20) = /on (w)Dg(20)Na (- 0 w 20) dw =
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(by Lemma 2.17)

= Z (i (20)) [ Duatz / o (W) D§) (20) No (- 0w ™!, 20) dw =

o€l, (Ue(20)) =

(by Proposition 2.23)

—Z Iz 11 Duu(zo Z/ 20(@)py (W) DS (20) No g (-ow ™, 20) dw.

o€l um ZO nEJ, veJ’

Each term of this sum is of the form | T, (z0,¢)¥(C, z0)d¢, where 9(-, z9) €
Ci° () and, by property (ii) of Ny,

W(Cazo) - "/}(C7 Z)’ < CdZO(Zo,Z)a.

Thus each term can be treated separately as I. 3k

The proof of (ii) is analogous. O
Proof of Theorem 1.2 As a consequence of Proposition 3.9 and Lemma
3.10, the assertion is true for 2 < k < 6. Now we assume k& > 7 and we
proceed by induction. Let us assume that u,u € C”f 1 Q) and f = Lgu €
C’J—f 22(Q)). We prove that u € Ca ().

By assumption u, € 05_4’0‘(9). Thus, differentiating the equation with
respect to the variable y, we get Lg(uy) = fy — tUyuy € C’k 50‘((2). By
induction, u, € Cck- 8/ (Q) for o' € (0, ).

On the other hand, u, € O{_j‘la(o) and, differentiating the equation with
respect to z, we have Lg(uy) = fo — tiguy € Ch~ S (Q), for o/ € (0,a).
Therefore, by induction, u, € Czl—ffl’a (Q) for &/ € (0, ).

Finally, Yzu € C”f_?”a(Q) and, differentiating the equation with respect
to Yz, we have Lg(Yau) = Yaf + tgpuy + 2Ugugy € C’If 40! (Q), for every
o/ < a. Thus, by induction, Yzu € CE~ 2,0 (Q) for o € (0,«). This proves
that u € C’f—ja( Q) for any a € (0,1).

3.3. The nonlinear operator. In this subsection we prove the regularity
of the classical solutions of (1.1).

Proof of Theorem 1.1. We first show that u € Co®(f), for every a €
(0,1). Then, by Theorem 1.2, it will follow that u € C&**(2) for every k € N
and a € (0,1). Thus, by Remark 2.13, the thesis will be proved.

Since u is a classical solution of (1.1), we have only to show that Xu €
C¢(K) for a fixed compact set K and for every a € (0,1). Representing u
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by formula (3.8), we infer that

Xu(e) = [ X, 0u(0c,
for some suitable ¢ € Cy(2) and zp € Q2. We have
[ Xu(z) = Xu(zo)| < A1(2, 20) + A2(2, 20),
where, for Q) defined in (2.33),

Ai(2, 20) :/Q\Q [(X(2) = X (20))T (-, O [ (O] dC,

Az(z, 20) :/Q (X (2) = X(20))= (-, O ¥ (Q)] dC.
M
By Remark 2.19, we obtain the following estimate of A;(z, 2) :

Ai(z,20) < Cy /Q . (dz(2,0) "9 + dug (20, Q) 9M) dC < COdy (20, 2).

On the other hand, by Proposition 2.20, we have

A2(27 ZO) < C/Q (dZO (ZO’ Z)dzo (ZO) C)iQ + dzo (Z07 Z)adzo (Z(), C)fQJrl) dC

< Cdzo (207 Z)a>
for every aw € (0,1). Thus the proof is completed. O
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