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Abstract

In this paper we consider a mean-field model of interacting diffusions for the monetary reserves in
which the reserves are subjected to a self- and cross-exciting shock. This is motivated by the financial
acceleration and fire sales observed in the market. We derive a mean-field limit using a weak convergence
analysis and find an explicit measure-valued process associated with a large interbanking system. We
define systemic risk indicators and derive, using the limiting process, several law of large numbers results
and verify these numerically. We conclude that self-exciting shocks increase the systemic risk in the

network and their presence in interbank networks should not be ignored.
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1 Introduction

An important financial issue is understanding the risk in financial systems with interacting entities. Many
previous research focuses on contagion through interbank lending agreements, however contagion can occur
through multiple other channels, e.g. linked balance sheets that may result in fire sales (see e.g. Capponi and
Larsson [7] and Chen et al. [J]) and the so-called financial acceleration. In Cont et al. [I0] the authors argue
that one should not ignore the compounded effect of both correlated market events and default contagion,
since it can make the network considerably more vulnerable to default cascades. Motivated by the above
mentioned research, we choose to model the effects of the self-exciting fire sales as well as the financial
acceleration by including a self- and cross-exciting Hawkes process, as introduced in Hawkes [2I], in the
dynamics for the monetary reserve of the bank and combine this with the default propagation through
interbank lending agreements to study the robustness of the network.

Modelling the financial network can be done using a so-called mean-field model. Here the matrix of
interbank borrowing/lending activities is exogenously specified and the dynamics of the banks’ monetary

reserves depend on stochastic idiosyncratic events and on an interaction term, modelled through an empirical
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distribution of the system states, which captures the type of interaction with the other nodes in the system.
One way of studying these interacting systems is by investigating the behaviour of the system as the number
of nodes approaches infinity (i.e. propagation of chaos). In Bo and Capponi [4] the authors consider
an interacting model of the monetary reserve processes where the drift term represents interbank short-
time lending and the monetary reserve is additionally subjected to a banking sector indicator which drives
additional in-/out-flows of cash. By means of a detailed weak-convergence analysis they conclude that the
underlying limit state process has purely diffusive dynamics and the contribution of the banking sector
jump process is reflected only in the drift. In Nadtochiy and Shkolnikov [23] the authors use the mean-field
approach with an interaction through hitting times in estimating systemic failure.

The large limit behavior of a system has also been studied in a portfolio setting. By means of a weak
converence analysis of Giesecke et al. [I7] study the behavior of the default intensity in a large portfolio
where the intensity is subjected to additional sources of clustering through exposure to a systematic risk
factor and a contagion term. The law of large numbers (LLN) result is proven under the assumption that the
systematic risk vanishes in the large-portfolio limit. In Giesecke et al. [18] the authors extend the previous
result for general diffusion dynamics for the systemic risk factor without the vanishing assumption, producing
a stochastic PDE for this density in the limit, as opposed to a PDE. In Spiliopoulos et al. [28] the LLN result
is extended by proving a central limit theorem (CLT) in a similar setting, thus quantifying the fluctuations
of the empirical measure (and thereby also the loss from default) around its large portfolio limits. In Bush
et al. [6] the large portfolio limit for assets following a correlated diffusion is shown to approach a measure
whose density satisfies an SPDE, while in Hambly and Kolliopoulos [20] a similar result is proven for a
stochastic volatility model for the asset price. Finally, Sirignano and Giesecke [26] and Sirignano et al. [27]
use mean-field and large portfolio approximation methods for the analysis of large pools of loans.

The aim of our paper is to investigate the systemic risk in a network when incorporating both self-
and cross-exciting shocks as well as interbank lending in the monetary reserve process of the bank. The
excitement comes from the effect that past movements in both the asset value of the bank itself as well as
that of its neighbors have on the current variations in its asset value. These effects are modelled using a
Hawkes process. Self-exciting processes have previously been used in portfolio credit risk computation from
a top-down approach, see Ait-Sahalia et al. [I], Errais et al. [I5] and Cvitanié et al. [I2]. In this work we
model the monetary reserve process of a bank through a mean-field interaction diffusion with an additional
Hawkes distributed jump term. We study the behavior of the system as the number of nodes approaches
infinity by deriving the weak limit of the empirical measure of this interacting system.

In particular our convergence result is based on the analysis of Delattre et al. [14], where the authors show
that the intensity of a Hawkes process in the limit of a fully connected network tends to behave as that of a
non-homogeneous Poisson process. We show that the underlying limit process for the monetary reserves of
the nodes has purely diffusive dynamics and the effect of the Hawkes process is reflected in a time-dependent
drift coefficient. Then we define several risk indicators and use the weak convergence analysis to derive the
law of large numbers approximations to explicitly show the effects of the Hawkes process on the risk in a
large interbank network. In the numerical section we then compare the LLN aproximations with the actual

values simulated through a Monte-Carlo method and conclude that in a model of interbank networks, the



default risk is indeed higher when we incorporate the self- and cross-exciting shocks.

The rest of the paper is structured as follows: in Section [2| we define the Hawkes process and give a
motivation for incorporating it in the interbank network. In Section [3] we introduce the mean-field model for
the log-monetary reserve process and study through simulations the effects of incorporating the self-exciting
jump intensity and in particular compare it to the independent Poisson intensity. In Section [4] we derive
the weak convergence of the empirical mean of monetary reserves, explicitly characterize the weak limit
measure-valued process and provide several results for extensions of the model. Finally, in Section [f] we
derive several measures of systemic risk in the network and numerically validate the accuracy of the derived

limiting process.

2 The framework

2.1 DMotivation

A known source of systemic risk in financial networks is the propagation of default due to interbank exposures
such as loans, where the failure of a borrowing node to repay its loans, may consequently cause a loss in
liquidity of the lenders as well, in this way propagating the default through the network. Besides interbank
exposures, another common cause of default propagation are fire sales. If one institution decides to liquidate
a large part of its assets, depressing the price, this causes a loss at the institutions holding the same assets,
creating a cross-exciting spiral across the institutions. Therefore, institutions that do not have mutual
counterparty exposure can still suffer financial distress if they have holdings of common assets on their
balance sheets. As illustrated by Glasserman and Young [19], the effects from these so-called fire sales can
be even greater than the contagion effects due to counterparty exposures.

A self-exciting effect present in financial networks is known as financial acceleration and refers to the
fact that current variations in the asset side of the balance sheet depend on past variations in the assets
themselves. In other words, a shock affecting the banks portfolio can cause creditors to claim their funds
back or tighten the credit conditions, in this way causing an additional shock for the bank.

As has been mentioned in Cont et al. [I0], while interbank lending itself may not be a significant cause of
default propagation, it is important to account for both the correlated effects of default contagion through
lending agreements as well as exposure to common market events. Here, we choose to model the correlated
effects of the fire sales, financial acceleration and the interbank lending structure on both the default prop-
agation as well as overall loss in the network through a Hawkes counting process. The shocks affecting the
portfolio of the institution arrive conditional on the infinite history of previous shocks to both the institutions

own assets as well as those of the other nodes in the network provided that they share common assets.

2.2 Hawkes processes

Specific types of events that are observed in time do not always arrive in evenly spaced intervals, but can
show signs of clustering, e.g. the arrival of trades in an order book, or the contagious default of financial

institutions. Therefore, assuming that these events happen independently is not a valid assumption. A



Hawkes process (HP), also known as a self-exciting process, has an intensity function whose current value,
unlike in the Poisson process, is influenced by past events. In particular, if an arrival causes the conditional
intensity to increase, the process is said to be self-exciting, causing a temporal clustering of arrivals. Hawkes
processes can be used for modelling credit default events in a portfolio of securities, as has been done in
e.g. Errais et al. [I5] or for modelling asset prices using a mutually exciting jump component to model the
contagion of financial shocks over different markets (Ait-Sahalia et al. [I]). An overview of other applications
of Hawkes processes in finance, in particular in modelling the market microstructure, can be found in e.g.
Bacry et al. [3].

Let (Q2, F,F,P) be a complete filtered probability space where the filtration F = (F;);>¢ satisfies the usual
condition. Hawkes processes (Hawkes [21]) are a class of multi-variate counting processes (N}, ..., NM);>o
characterized by a stochastic intensity vector (A}, ..., AM);>¢ which describes the F;-conditional mean jump
rate per unit of time, where F; is the filtration generated by (N")1<;<am up to time ¢. Consider the set of
nodes Ip; := {1,..., M}. Define the kernel g(t) = (¢%7(t), (i,) € Ins x Ips) with g% (¢) : R4 — R and the
constant intensity u = (uf,i € Ips) with p’ € R

Definition 2.1 (Hawkes process). A linear Hawkes process with parameters (g, i) is a family of F-adapted

counting processes (N})ier,, +>0 such that:

1. almost surely for all i # j, (N})¢>0 and (N} )s>0 never jump simultaneously,

2. for every i € Iy, the compensator A¢ of N} has the form A} = fot Alds, where the intensity process

(AD)¢>0 is given by
M
N=nt > [ g sand. (2.1)
j=1710:t

In other words, g/ denotes the influence of an event of type j on the arrival of i: each previous event dNJ
raises the jump intensity (A\¢);ez,, of its neighbors through the function g*J. The compensated jump process
Ny — f(f Asds is a Fi-local martingale. For g a positive and a decreasing function of time ¢, the influence of
a jump decreases and tends to 0 as time evolves.

Following Proposition 3 in Delattre et al. [I4], one can rewrite the Hawkes process in the sense of Definition
as a Poisson-driven SDE with the i.i.d. family of F;-Poisson measures (7¢(ds,dz),i € Ip) with intensity

measure (ds,dz):

t [e’e]
Ng':// 1 M w'(ds,dz). (2.2)
0 0 {ng,t+Zlf[o,s[g“j(tfs)d]\fg}
=

Next we state a well-posedness result, based on Theorem 6 in Delattre et al. [14]:

Lemma 2.2 (Existence and uniqueness). Let g*J be locally integrable for all (i,3) € Iny X Ipr; there exists

. M .
a pathwise unique Hawkes process (N})icry +>0, such that > E[N}] < oo for all t > 0.
=1

1=



By introducing the pair {t, nk}izl, where t;, denotes the time of event k, ni € Iy is the event type and

M .
K; = Y N} is total number of event arrivals up to time ¢, we can rewrite the intensity as
i=1
K
)\i:/j,l-l-zgz’nk(t—tk), 1€ Iy
k=1

A common choice for ¢g*7(t) is an exponential decay function defined as
gii(t) = ai,jefﬁit,

so that ! jumps by o/ when a shock in j occurs, and then decays back towards the mean level u’ at speed

1
loc

B¢, Note that this function satisfies the local integrability property, i.e. g4 € LL (R, ). If g* is exponential
then the couple (IV¢, ;) is a Markov process [3]. The simulation of a Hawkes process can be done using what
is known as Ogata’s modified thinning algorithm, see for more details Ogata [24] and Daley and Vere-Jones
[13].

If the Hawkes process (Nf)ier,,.t>0 satisfies certain conditions, we have the following stationarity result
(see Brémaud and Massoulié [5] and Bacry and Muzy [2] for details), which will come in useful in the further

sections.

Proposition 2.3. Suppose that the matriz ® with entries fooo |g"7 (t)|dt has a spectral radius strictly less than
one. Then there exists a unique multi-variate Hawkes process (N})t>o for i € Iy with stationary increments

and the associated intensity as in (2.1) is a stationary process. Moreover we have E[|A\|?] < oc.

Furthermore, we remark here that a multi-dimensional Hawkes process with stationary increments is

uniquely defined by its first- and second-order statistics (Bacry and Muzy [2]).

3 The mean-field model

In this section we define the mean-field model for the log-monetary reserves of each of the nodes in the
model. The interaction between the nodes is defined through the drift term and additionally we consider

the reserve process to be subjected to a self- and cross-exciting Hawkes distributed shock.

3.1 Definition

Define F; = o(Wi,N),0 < s < t,i € N). Assume that, for i € I} the log-monetary reserves of the i-th
bank satisfies the following stochastic differential equation (SDE)

dX} = “M STXF - X]ydt + o'dW] + ¢'dN],
k=1
with Xé € R, the initial reserves for each bank and where a*>0,0">0and ¢ = éi/M < 0 are constants
for each i € I;. The process W (t) = {W/}M, is a M-dimensional Brownian motion, and N; = { N/} is
the vector of Hawkes processes with self-exciting intensity i as defined in With the drift term defined



in this way, if bank & has more (less) log-monetary reserves than bank i, i.e. X > X} (X} < X}), bank k
is assumed to lend (borrow) a proportion of the surplus to (deficit from) bank ¢, with proportionality factor
a'/M. A jump in the Hawkes process i affects the corresponding X through the proportionality factor ¢* and
increases the intensity )\{ for j € I if g7 (t) # 0. In this way the jump activity varies over time resulting
in a clustering of the arrival of the jumps and the shocks propagate through the network in a contagious
manner through the contagion function ¢g*J(¢). We thus interpret the jump term c'dN; as a self- and cross-
exciting negative effect that occurs due to financial acceleration and fire sales, resulting in a decrease in
a banks monetary reserve. In Bo and Capponi [4] the authors considered a similar mean-field model for
the monetary reserves but assumed the jumps to occur at independent Poisson distributed random times.
However, not accounting for the clustering effect of the jumps might cause a significant underestimation of
the systemic risk present in the network. We define a default level D < 0 and say that bank ¢ is in a default
state at time T if its log-monetary reserve reached the level D at time 7. We remark that in our model even
if bank 7 has defaulted, i.e. its monetary reserve reaches a negative level, it continues to participate in the
interbank activities borrowing from the counterparties until it e.g. reaches a positive reserve level again. In

other words, the level of monetary reserves takes in values in R. We will work in the following setting:

Assumption 3.4 (Parameters). We collect the parameters associated with the dynamics of the i-th mone-

tary reserve process ¢ € Iy as
p = (a', 0" ") € (Ry x Ry x R_).

We denote by J,, the Dirac-delta measure centered at  and we set

1 1
M _ M _ E: v
T = -E,lép“ Yo = 37 .715ng-

We assume lim ¢™ = Op=, i.e. pt — p* = (a,0,¢) as i — oo and lim gpé” =0y, ie. Xi — zasi— .
M—o00 M—o0

We take the exponential decay function for the contagion

- 1
gl (t—s) = (t—s):= Mae_ﬂ(t_s),

Mg
which is a locally square-integrable function with a, 5 € R;. Finally, the parameters are assumed to all be

bounded by a constant C,.
We remark here that the results developed in this paper hold also for more general distributions, i.e.

lim ¢™ =gand lim ) = ¢g, but for simplicity of the results we assume the parameter vector converges
M—o0 M—o0

to a constant vector.

Defining the reserve average as

1M
Xi = M Z XZ7
i=1
we can rewrite the SDE as a mean-field interaction SDE
dX} = a'(X; — X})dt + o'dW] + c'dN;. (3.3)

From (3.3]) we see that the processes (X}) are mean-reverting to their ensemble average (X;) at rate a'.



Lemma 3.5. There exists a unique solution (X}, ..., XM) to the system of SDEs given by (3.3)) fori € Ip;.

Proof. The proof is similar to Theorem 9.1 in Tkeda and Watanabe [22]. Define Y,' to be the solution of
the SDE ({3.3) without jumps. By Example 2 in Cox et al. [I1], we know that the SDE has a unique strong
solution (Y}, ..., Y,M). By definition of a Hawkes process we have that N!, ..., N¥ never jump simultaneously:
this implies the existence of an increasing sequence of jump times (7, )nen such that nl;rrgo Tp = +00. Then
we can define

Y}, 0<t<m,

x= | (3.4)
Y! 4 1p—;c, t = 11, if there is a jump in N*.

T1—

From Lemma we know that there exists a unique Hawkes process (Nti)tZO for ¢ € Iy, thus we can say
that Xt(i’l) is the unique solution to (3.3) for ¢ € [0,71]. Then we define X't(m) ont € [0,72 — 71] similar to
(B4) using as initial state X{ := X'0?) and driving factors W} := Wi — Wi and Nj := Nf, . — Ni.

Then we set

i XM 0<t<m,
t =N
X(Z’Q) 71 <t <o

t—71

So that X}, t € [0,72] is the unique solution to (3.3). Iterating the above process, we have that X} is

determined uniquely on the time interval [0, 7,,] for each n € N. O

3.2 Simulation
Consider, for the sake of illustration, the following SDE
dX! = a(X, — X})dt + odW} + cdN},

with Wtz = pWP4/1 — p?W}, where W}, i = 0, ..., M are independent Brownian motions and W, represents
common noise (similar to the setting in Carmona et al. [8]). We keep the parameters of the constant intensity
and the excitation function g*/ = a*Je~#"t fixed at p* = 10/M, §* = 2/M and o’ = 2/M and the initial

reserve value is set at Xg = 0.

Table 3.1: Parameters corresponding to the various scenarios of the realizations of (X{,i = 1,...,10).

|

o
e

Scenario H a ‘

o
No lending, independent BMs 01| 0 |02
Lending, independent BMs 100/1 0 0

No lending, correlated BMs 01| 0 |02
Lending and correlated BMs 1011 0 |02
Lending, correlated BMs and Poisson jumps || 10 | 1 | 0.2 | 0.2
Lending, correlated BMs and Hawkes jumps || 10 | 1 | 0.2 | 0.2



Figure 3.1: One realization of (X{,i = 1,...,10), ¢ = 1,...100 with no lending and independent Brownian
motions (left), lending and correlated Brownian motions (center) and lending, correlated Brownian motions

and the Hawkes distributed jump (with the jump times shown as dots) (right).

We consider several scenarios of the monetary reserve process denoted in Table 3.1] In Figure 3.1 we see
that the trajectories generated by the correlated Brownian motions with lending are more grouped than the
ones generated by independent Brownian motions without lending. The Hawkes shock, as expected, causes
much more trajectories to reach the default level, due to it being an additional source of default propagation.

Consider the default level D = —0.7. In Figure [3:2] we show the distributions of the number of defaults

M .
defined as P <Z (021<HT X; < D) = n), for the independent Brownian motion case, the dependent case
i=1 \0=t<

and the cases including a Poisson process and a Hawkes process. We observe that the mean-field interbank
lending causes most of the probability mass to be set around zero defaults, as opposed to the no lending
case when the density function is centered at 5 defaults. However, the lending component also adds a
non-negligible probability of all nodes defaulting at once. The correlation between the Brownian motions
affects the loss distribution only slightly. As expected, adding the self-exciting and clustering Hawkes process

increases the tail-risk even more so that the probability of all nodes reaching a default state rises significantly.



Figure 3.2: The distribution of the number of defautls in several different scenarios, as explained in Table
The parameters in the Monte Carlo simulated based on a discretized Euler-Maruyama scheme are M = 10,
T =1, 10000 simulations and 100 time steps.
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3.3 Dependency

As we have already seen in Figure [3.2] the Hawkes process increases the probability of multiple defaults
occuring at the same time more than an independent Poisson process does. It is therefore of interest to
study the dependence structure between the nodes in more detail. As is standard in multi-variate statistics,
see Poon et al. [25], a tool for assessing the (not necessarily linear) dependency between variables is the

measure p(q) given by
pla) = P (X' > Fil(q)| X! > Fj(@) . i € In,

the probability of one of the variables X? being above the gth quantile of its marginal distribution Fx:
conditional on the other variable X7 being above its gth quantile. To remove the influence of marginal
aspects it is typical to transform the data to a common marginal distribution, with e.g. a transformation
to unit Fréchet marginals (for details we refer to the methodology in Poon et al. [25]). In the presence
of a dependence between two nodes in our model, the probability of default of one firm conditional of the
default of the other will be significant. When computing the systemic risk present in interconnected financial
networks, quantifying this dependence is clearly of key importance. Note that in our model we have two key

dependencies present:

e Dependence through the drift term: a high X} results in a change in X! and X2 for s > ¢ due to the

interbank loans.

e Dependence through the Hawkes process: if AX} << 0 represents the occurence of a jump at time ¢,
then the likelihood of AX! << 0 and AX2 << 0 for s > t increases. We remark that the likelihood of

seeing the shock decreases with a larger s due to the mean-reverting excitation function ¢g*7 i, j € {1,2}.



Figure shows the scatter plots for both an independent Poisson jump and a Hawkes jump. Already here
we see that the Hawkes jump seems to reflect a more strong dependency in the tails. In Figure we plot
the measure p(q) (for the left tail) compared to the 1 — ¢ function representing independence, for several
different parameter sets. We see that the Hawkes process shows significantly more dependence between the
two nodes for all quantiles compared to the Poisson process. In particular, we note that having only a jump
term in the monetary reserve process results in a significant tail probability, where the tail probability of
the Hawkes process is considerably higher than that of the Poisson process. This is to be expected since
the self-exciting nature of the jumps causes the extreme events in one node to influence extreme events in
the other node. Furthermore, incorporating the independent Brownian motion seems to reduce the tail risk
almost to zero, while adding the interbank loans in turn causes a slight increase in the tail risk, due to the

additional source of default propagation.

Figure 3.3: Scatter plots of X! and X? (M = 2) showcasing the dependence structure between the nodes in

the presence of a Poisson jump (left) and a Hawkes jump (right).

Figure 3.4: The measure p(q) quantifying the dependence of X} and X? (M = 2) with Poisson and Hawkes
jumps for the case of no Brownian motion, no interbank lending but only jumps (left, ¢ = 0, a = 0 and
¢ = —1), Brownian motion, no lending and jumps (center, o = 0.1, a = 0 and ¢ = —1) and Brownian
motion, lending and jumps (right, 0 = 0.1, @ = 0.5 and ¢ = —1). The other parameters in the Monte Carlo
simulation based on a Euler-Maruyama scheme are T' = 1, 500 simulations, 100 time steps, X = 0, p = 0,
with g/ = 0.1, 8 = 1.2, o™ = 1.2.

 Poisson process « « Poisson process © o Poisson process
o Hawkes process o o Hawkes process o o Hawkes process
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4 Mean-field limit

We derive theoretical mean-field limits for the monetary reserve process with a Hawkes jump term to show
the effects of considering this additional type of contagion on the total losses in the network in the case of the
number of nodes tending to infinity. Our derivations are based on Carmona et al. [8] and Bo and Capponi
[4]. In other words, we want to understand the behavior of the distribution of the process X; = (X}), i € In
as in when M — oco. Let the vector (p?, X}) take on values in the space O := (Ry x Ry x R_) x R.

Define the sequence of empirical measures as

M
1
vM = 7 > Sixiy, =0, (4.5)
i=1

on the Borel space B(O). In other words we keep track of the empirical distribution of the type, intensity
and monetary reserve for all nodes. Let S = P(O); the collection of Borel probability measures on O. Then
(vM);>0 is an element of the Skorokhod space Dg[0, 00), i.e. it can be viewed as an S-valued right-continuous,
left-hand limited stochastic process. For any smooth function f(p,z) € C°°(O) defined for (p,z) € O define

the integral w.r.t. the measure v by

of) = [ foa)utdp o), (4.6)
so that
1M
th\/f(f):MZf(pl,th)a t>0. (47)

Then we have X; = vM(I) where I(x) = x.

We want to understand the dynamics for v for large M. In deriving the limit of the process v} for
M — oo we use an argument similar to Bo and Capponi [4] and Giesecke et al. [I7]. In particular, the focus
here is on identifying the limiting dynamics, using the result of Delattre et al. [14] on the behavior of Hawkes
processes in a large system. We identify the limit through the generator of the limiting martingale problem
in Section and subsequently in Section we identify the limit process.

4.1 Weak convergence

We want to use the martingale problem to show that v converges to a limiting process. For notational

convenience we will write f(X}) := f(p’, X}). By the definition of a Hawkes process we have that for all

i # 7, (N})i>0 and (N} );>0 never jump simultaneously and a jump in one of the processes dNN; results in
only X/ having a jump of size c!. Therefore, applying Itd’s formula gives
df (X{) =a' 0, f(X}) [ (I) — X3)dt + 5(07)20u f(X])dlt + 0”0, f (X )dW]
+(f(Xi- +¢') = f(X))dN],

Then we have, using the definition of vM in (4.7),

vM(f) =3t (f) + /t vM Lt HyvM(Ids — /t vM (L2 f)ds + L i/t o0, f(XH)dW? (4.8)
t 0 o S s o S M P o T s s .

11



k M 3 1 u K ) ) 7 7
+ [ Nds+ 37 3 [ i e = rxi) v,

where we have defined the operators £* acting on f(p, X}) as

L) = aduf (0), Lf(p0) = az0uf0), L£f(p,2) = 5000 (,2),

so that
LMo o
ML) = Za 0.1 (0", X7), v (L2 ) Za’X 0uf (0", X7), wM(C2F) = 37 D 5(0)0ua (0", XJ).
i=1
Define for any smooth function ¢ € C*°(RY) with N € N and Borel measure v € S
®(v) = p(v(f)), (4.9)

with £ = (f1,..., fz) for f, € C*(0), n = 1,..,N and v(f) := (v(f1),....,v(fy)) € RN. Let S be the
collection of bounded measurable functions ® on S. Then S separates S and it thus suffices to show
convergence of the martingale problem for those functions. Then, by applying Itd’s formula to (v} (f))
and using the fact that ng := dN} — \idt and dW; are martingales and X;_ and \;_ are predictable, we
find for0<t<u

(M) = BWM) + / (CM 4+ DM 4 M) ds + M, — M,,
t

where (My)¢>0 is an initial mean-zero martingale and

N I/M
et = > P (L (1) = (L) + 0 (1),

n=1

. ¢( 2 Ofn(X}) 0f1(X))
D = 2M2Z afnafl Z<(”)2 o axt>

n,l=1 =1
FM = 30 (el () + ) — e ()] X,

where JtM’i(f) = (JtM’i(f1), ---,J,:M’i(fN)) and

T = P+ ) = FXD).

We will need the following result given in Theorem 8 in Delattre et al. [14]:

Theorem 4.6 (Propagation of chaos result for the Hawkes process). Consider the Hawkes process in the
sense of (2.2). For each M > 1 consider the complete graph with nodes Ipr. Let g : [0,00) — R be a locally

square-integrable function and set gv7 = Mg for all i,j € Ips. Define the limit equation

t 0o
M :/0 /0 Las (it att—s)amim.)y 7 (ds: d2), (4.10)
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where 7(ds, dz) is a Poisson measure on [0,00) x [0, 00) with intensity measure dsdz. Then we have dE[N;] =
Medt and

A = u+/o g(t — s)dE[N,]. (4.11)

In other words N = (Nt)t>0 s an inhomogeneous Poisson process with intensity \;. Let N;‘ be an i.i.d.
family of solutions to ([4.10) for i € Ips. Define Al fo |d(NE — NE)| and 6p(t) = E[AY,(t)]. Note that
this 0pr(t) does not depend on i due to exchangeabzlzty of both N} and N{. Then,

t
§M(t):/ E [|A — Al[] ds,
0
and for t € [0,T] we have

M — 00

In other words, when all nodes interact in the same way in the limit of the number of nodes going to
infinity, the Hawkes process reduces to an inhomogeoneous Poisson process and we have for any ¢ € I); the

following limit

M —o0

u
lim E [/ |)\i—)\s|ds} =0. (4.12)
t

The task is now to find the generator of the limiting martingale problem which we will use to determine
the process governing the dynamics of the monetary reserves in the limit, see e.g. Theorem 8.2 Chapter 4 of
Ethier and Kurtz [16]. For this we will use (4.12)) and define a Taylor-based simplification of JM as

N M .
< dp(M(f)) | 1 s Ofn(XY) 5
TM= oz, lM Zﬂ Mg © ] '

n=1

Using the triangle inequality we have

E |:/ |‘~75M_jstS:|

" e M,i i M N 8(,0 M,i i
Z £) + JMi(f)) — AL Z > a% J (F)| A|ds
M M N
+E / > [Z www] Ny [z G D) s >] s ]
t o |i=1 Ln=1 " i=1 Ln=1 n
w| M [N M [ N
+E| [ le W(éf(f’)ﬂf’i(ﬂ] Az—zlz %ijaf)] 5 ds].
t i=1 Ln=1 n i=1 ln=1 n

Applying a Taylor expansion to f € C°°(O) and using the boundedness of its derivatives and the definition
¢t =¢'/M |, we find

T = I, (4.13)
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where ™ ~ bM means lim [a™ —bM| =0 and
M— o0

%

s, L Of(X])
Jt (f) = Mﬁt

Similarly, using the Taylor expansion of ¢ € C*°(R") we have
Mgy 4 M iy o (v (£) ar
P (£) + T ) — (M (£) = D ap Jt (). (4.14)
n=1 n

Using the finiteness of A from Proposition equations (4.14)) and (4.13)), the boundedness of the
derivatives of f € C°°(O) by their supremum, i.e. ||f|| = sup |f(p,z)| and the bounds on the intensity

(p,x)€O
given in (4.12)) we have that
lim E U |TM — jSM|ds} =0.
M — 00 t
Similarly we have

u
lim ]E{/ |D§V1|ds} =0.
M—o0 t

Define the operator A acting on the function ®(v) defined in , as
ol AWM () w1 M M p2 M3 M ( p4
AD(v) =y === (M (L )M (D) = (L fa) + 0 (L2 ) + M (L4 10)) (4.15)

where £* := ¢\¢0,. Then we have the following result:

Lemma 4.7 (Limiting martingale problem). For any ® € S and 0 <t; < ... <tpq1 < 00, with m € N and
U, € L™(S) we have that A is the generator of the limiting martingale problem, i.e.

tm+1 m
lim E <q>(yg4n+1)q>(yg§)/ : Acp(ygf)du) [Tweih| =o. (4.16)
t

M—o0 .
m j=1

4.2 Limiting process

Given the limiting martingale problem (4.16) and assuming the existence and uniqueness of a limit point,
we want to find the limiting process v; that satisfies equation (4.16). Let p = (p*,z). Define the following

measure-valued process by
v (A) :=P(X;(p) € A4), (4.17)

where A € B(R) and the underlying limiting state process X (p) = (X:(p)):>0 is a diffusion with time-varying

coeflicients given by

Xi(p)=z+ /0 (a(Q1(s) — Xs(p)) + cAs) ds + a/o dWs, t>0, (4.18)

14



with )\ is defined in (#.11)) and

Q:1(t) =x+ c/t Asds. (4.19)
0

Notice that Q1 (t) satisfies the integral equation

Qi(t) =e (:v + /Ot e (aQ1(s) + ) ds) .

Using the definition of v in (4.17) we have that

w(I) = /O 2in(dz) = E[X,(p)]

where the underlying state process X,;(p) is given by (4.18)). Notice that

t
B = (o4 [ e (a@ie) + ) ds
0
from which it follows that

Q1(t) = (1), (4.20)
where I(x) = z. We now prove that , indeed satisfies the martingale problem in Lemma

Theorem 4.8 (Limiting process). The empirical measure-valued process v™ admits the weak convergence
vM v, as M — oo, where v is defined as in (4.17). Furthermore, v™(I) — Q.

Proof. Using the standard analysis of weak convergence as in Chapter 3 of Ethier and Kurtz [16], the weak
convergence v™ — v as M — oo follows from Lemma and Lemmas and uniqueness of the limit
point. In other words, if we define Q™ :=P(vM € B(Dg[0,00))), we have that QM converges to the solution
Q of the martingale problem generated by A in . Next we show that the we have Q = §,, i.e. the
limit measure-valued process v can indeed be represented as in . We have for f € C*°(0O) using the
definition in that

vi(f) = E[f(Xi(p))]. (4.21)

On the other hand, from (4.18) and using It6’s lemma, we have

t 0.2 t 92
FOGE) =f0) + [ 50D aQu(s) = aXulp) + A + G [ TLX p)as
vo [ Lx,m)aw,.
0 x

Then recalling the definition of the operators £* and the equality Q1(t) = v¢(I) from (4.20) we have

2 BLA(Xu())] = 5B [0 F(X(P))] + Qu(VE[ad (X, (0)] + E[eed f (X, (p))]

ot
— E[aX,(p)0. f(X¢(p))]

15



=E[L%f(Xi(p))] + ve(DE[L' (X (p))] + E[L*f(Xe(p))] — E[L*f(X:(p))]-

So that, using (4.21)) we find

de(vy) dyp dvi(fn)
dt < day, oz, v(f) dt
dp

o (ve(L2F) + v (L F)ve(D) + (L) = v (L2 )
(ve)-

So that for all functions ®(-) of the form (4.9) we have

I
?5 an ﬁMz

t
B(1y) = B(v,) + / AD(v)du,  0<s<t<oo

and hence 0, satisfies the martingale problem generated by .A. O
In other words, the propagation of chaos result from Theorem tells us that the empirical mean v
converges to a measure v whose underlying process X;(p) reflects the Hawkes process through a time-

dependent drift.

4.3 Extensions of the model

In this section we shortly present results for several possible extensions of results presented in Section 4] In
particular we derive the limiting empirical distribution when including a compound Hawkes process in the
monetary reserve model considered in ; a systematic risk factor, where the derivation is based on the
result from Giesecke et al. [I8]; and furthermore prove a central limit theorem based on Spiliopoulos et al.

[28] which quantifies the fluctuation of the empirical distribution around its large system limit.

4.3.1 Compound Hawkes process

If we include a compound Hawkes process in the initial log-monetary reserve SDE, i.e.

i M
dX} = C‘M ST(XF — X]ydt+ o'dW] + c'dS],

where
N
W
j=1
where Z is an i.i.d. random variable with distribution function F, independent of N; and W}, such that

M
lim % > 0zi = y. Then the limiting process is given by
M—o00 i=1 !

Xi(p)=x+ /o (a (Q1(s) — Xs(p)) + cy/_\s) ds + O’/ dWs, t>0.

0
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4.3.2 Systematic risk factor exposure

Similar to the analysis of Giesecke et al. [I8] we can show that considering a non-vanishing systematic
risk factor common to all the nodes in the system, we obtain a non-deterministic limiting behavior. Let
Vi =0(Vs,0 < s <t)and F;, = o((Vs, N\,Wi),0 < s < t,i € N). Consider the following model for the

log-monetary reserves

dX} = a"(X; — X})dt + o'dW} + ¢'dN} + p'dY;,
d}/t - bO(}/t)dt + UO(YVt)dV;ﬁv YO = Yo,

where V is a standard Brownian motion independent of W} and N;. In other words, W} represents a source
of risk which is idiosyncratic to a specific name, while Y; is a systematic risk factor driven by a Brownian
motion that is common to all the nodes in the network with the parameter 8¢ representing the sensitivity
of node 7 to the Y. The systematic risk factor causes correlated changes in the monetary reserve process
and thus acts as an additional source of clustering. As usual assume p' := (a?, 0%, c?, 8¢) — p* := (a,0,¢, B).
Following the derivation in Giesecke et al. [I8] and defining ®(y,v) = ¢1(y)p2(v(f)), and applying It6’s

lemma as in the derivations for the original model we obtain for 0 < ¢ < u

BV, rl) = (Vi) + [ (@1 (V)CH + o (VDY 4 pr (YT 4 B ds+ [ B2V, + My - M,
t t

where we have defined

N

UM
B imor () 3 22O (25, 1)+ a0 (10,0150 + 03101 (1))

n=1
N

+ ay(Pl(Yt) Z

n=1

Opa(v(F))

ooy (£5,1.)

N VM
B2 (1) Y- 2248, ) 4 0040, (Vi) a ()

n=1

with £ f(p,z) := B'bo(y). f (p,x) + 5(6")%05(y)0x f (p, ) and LS f(p,x) := B'oo(y)dsf(p,x). Taking the
limit of M — oo, using the limits derived in Section and the vanishing of the martingale in the limit (see
also Lemma 7.2 in [I8]) and defining

vie(f) = E[f(Xe(p)[ V4],
with
t - t t
X,(p) = +/ (a (1) — Xu(p)) + cAs) ds + a/ W, + 6/ av.,
0 0 0
we obtain for the limiting process 14 the following SPDE

Ay (f( X)) = (e (L' f (X)) (D) — (L2 F (X)) + v (L2 F(X0)) + v (L (X)) + v (L3, f(Xe))) dt
+ (LS, f(X4))dV,
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where we use Lemma B.1 and B.2 in Giesecke et al. [I8] to show that E [fg XSdVS|Vt] fo [Xs|Vs]dVs.
The systematic risk factor thus does not vanish in the limit, and results in the stochastic partial differential
equation for the limiting process of the empirical measure, instead of the deterministic behavior in the

original model.

4.3.3 A Central Limit Theorem result

Consider again the model defined in (3.3). In order to improve the first-order approximation of v given in
[4.17), we can analyze the fluctuations of ™ around its large system limit . Following Spiliopoulos et al.
[28] define

EM = VMM - uv,).

M weakly converges to the fluctuation limit = in an appropriate space

The signed-measure-valued process =
(in particular the convergence is considered in weighted Sobolev spaces in which the sequence =M, M € N
can be shown to be relatively compact; for discussion on this space, as well as the existence and uniqueness
of the limiting point we refer to Sections 7,8 and 9 in Spiliopoulos et al. [28]). We start by deriving an
expression for Z;. Some terms in this expression will vanish in the limit of M — oo, and using the tightness
of the processes (see Section 8 in Spiliopoulos et al. [28]) and continuity of the operators in the expression

M

for Z* we can pass to the limit and find the expression that the limiting fluctuation process satisfies.

Subtracting v; from v we find

d=M(f) = (ML NENI) + v (DEM (L F) = ZML2 ) + 2L F) + (L)) dt + dMY(f)
M M
Iy Z( (X} + ) — f(X})dNy — W\?%Zé?]\g

i=1

M
+ VM (AZ D (FXG ) = FXDA — v (£4f)>

i=1

where the martingale term is defined as

MMy =VM <MZ/ o0y fAW! + / Z adel)

Using the limiting expressions for the Hawkes jump term and a Taylor approximation from Section we

have

(4.22)

M
V| S ) 700D ~ 5y

M\F H Ox?

Thus one can show by taking the limit M — oo, using (4.22) and Assumption that the sequence
EM t €0, T)} aen converges in distribution to the limit point {=; € [0,T]} that satisfies

E(f) = Zo(f) + / (WML ZI) + vs(D)ES (LY f) — E(L2f) + E(L3f) + E(Lf)) ds + My (f),

0
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where {M,, ¢ € [0,T]} is the distribution valued, continuous square integrable martingale with a deterministic
quadratic variation to which the sequence {MM t € [0,T]}aen converges in distribution (note: unlike in
the LLN cases, the martingale term does not vanish in the CLT scaling case). By a martingale CLT (see
7.1.4 in Ethier and Kurtz [16]) M is Gaussian. This implies the following second-order approximation

d _ .. . . . .
l/tM ~ v+ ﬁ:t, giving a more accurate approximation for finite banking systems.

5 Systemic risk in a large network

In this section we introduce several systemic risk indicators to quantify the risk in our network and to
show the particular dependence of the risk on the underlying parameters. We first remark on the difference

between the monetary reserve with a Hawkes process and one with an independent Poisson process:

Remark 5.9 (Independent Poisson process versus Hawkes process). Consider an independent Poisson pro-

cess with intensity p. It is straightforward to see that
— t —
A= M+/ ae P9\ ds > p,
0

since we assume o, 8 > 0. Therefore, for ¢ < 0 we have that Q,(t) < Qi(t), with Q; and Q; being the
averages from a Poisson jump with intensity A; and a jump with intensity p respectively. Thus, in the limit
M — oo, using v™(I) — Q1 (t), we have as expected that the Hawkes process increases the default risk in

the network.

5.1 Risk indicators

Here we show how one can measure the systemic risk in a large network using the limiting dynamics X;(p).
We propose to compute systemic risk in the mean-field model based on the fraction of banks that have
transitioned from a normal to a defaulted state. We define the risk indicator as the expected value of the
fraction of banks that throughout time ¢ € [0,T] have dropped below the default level D,

0<t<T

SRM::ii]l  xiep)-
]\41_:1 {mln X;<D

Note that from Theorem K.8| we have Mlim vM = v, for a continuous function f of X;. For the indicator
— 00

function over t € [0, 7] we consider the approximate relationship to hold

lim SRM ~ E

M— o0

1
()]
in which the average over the indicator function of the M monetary reserve processes is thus replaced by
the indicator of the limiting process.
Furthermore, similar to Bo and Capponi [4] we can define the average distance to default as

1 &L
MZXfl-
=1

ADDM(t) :=E
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Note that (v}M; M € R) is uniformly integrable, i.e. for each t > 0
sup E UVtM(I)‘z} < 00,
MeN

the proof of which is similar to the proof of Lemma[A]in Appendix [A]and Lemma B.2 in Bo and Capponi

[4]. Then for the average distance to default indicator we use the following limiting result

lim ADD(t) = Q:(t)

M —o00
with Q1 (¢) as in (4.20]). Note that in the case of independent Poisson jumps with intensity A, the limit of the
ADD indicator is given by N}im ADD™(t) = z + cAt. This is in contrast to the case of the Hawkes jumps
—00
for which we have  lim ADDM(t) =z + cfot Asds.
—o00

5.2 Numerical results

We set M = 300, i.e. sufficiently large, and analyze how our approximation formulas for the various indicators
of systemic risk compare to the corresponding Monte-Carlo estimate. The latter is obtained by simulating

M interacting processes X}, i € I5; using an Euler approximation of (3.3)).

Remark 5.10 (Computation of ;). Define the partition of [0,7] as 0 = to < t; < ... < tx = T with
At :=t; —t;—1. Then we approximate the integral in (4.11]) as

5‘t11+1 ~ j\ti + Atg(At);\t“
and \g := . Using the approximated \; we compute Q(t) as
Q1(tit1) = Qu(t;) + Atehy,,

where Q1(0) = z.

Table 5.1: Monte Carlo estimates versus the LLN approximation for the systemic risk indicators with
n=001,a=1,8=12,a=0.5,0=0.5,¢é=—-02and D =0.

‘ Monte Carlo Approximation

zo | SR | ADD(T) | SR | ADD(T)
0.002 | 0.945 | 0.007 0.949 | 0.007
0.1 | 0.821 0.096 0.816 | 0.096
0.2 | 0.658 0.197 0.652 0.197
0.5 | 0.252 0.497 0.261 0.497
0.8 | 0.057 | 0.797 0.058 | 0.797
1 0.016 | 0.998 0.017 | 0.997
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Table 5.2: Monte Carlo estimates versus the LLN approximation for the systemic risk indicators with
uw=005a=1 6=12,a=0.5,06=05¢=—-02and D=0.

‘ Monte Carlo

Approximation

x| SR | ADD(T) | SR | ADD(T)

0.01 | 0.947 | -0.005 0.946 | -0.007
0.1 | 0.826 0.085 0.830 0.083
0.2 | 0.669 0.186 0.653 0.183
0.5 | 0.262 0.486 0.269 0.483
0.8 | 0.061 0.785 0.061 0.783

1 0.017 0.985 0.016 | 0.0.983

In Table [5.1] and we present the results for our approximation and the Monte-Carlo estimates for
5000 simulations, 100 time steps, T = 1 and M = 300. As expected the systemic risk in the network, as
quantified by both SR and ADD, decreases as the initial monetary reserve value increases. Furthermore, a
higher mean jump intensity p results in a less stable network. In Figure we show the LLN estimates for
the systemic risk and the average distance to default for the Hawkes and Poisson process for different values
of the initial reserve xg. Our claims of the Hawkes process adding an additional default risk in the model are
verified also in these numerical results, as the systemic risk indicator for the Hawkes process is considerably
larger, while the average monetary reserves are consistently lower than for an independent Poisson process.
Therefore, the self- and cross-exciting shock modelled through the Hawkes process is an additional form of

contagion in the network, resulting in the network being more prone to a systemic risk event.

Figure 5.1: LLN estimates for the systemic risk (L) and LLN estimates for the average distance to default
(R) at time T'=1 with p =0.2, «a =12, 8=12,a=0.5,0 =0.5, c= —1 and D = 0 for a independent

Poisson process and the Hawkes process for g € [0, 1]
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5.2.1 Calibrating the model

Calibration of the model considered in with heterogeneous coefficients, in particular for the large
banking system, is a complex task. In Ait-Sahalia et al. [I] the authors considered a calibration for a Hawkes
diffusion model used to model asset returns and developed method of moments estimates for the parameters
of the model. Even after making simplifying assumptions on the intensity, the model was fitted only on pairs
of assets. The calibration of the mean-field SDE with Hawkes jumps for a large number of banks is therefore
besides the scope of this paper and left for further research. However, the limiting expression derived in
Section can be used to derive a simple and efficient way of calibrating the model. In particular, we can
calibrate the average distance to default given by Q1 (¢) in by fitting it to an average of a sufficiently
large number of assets, resulting in the calibrated parameters z, ¢, i, « and 8. In particular, consider the
asset price as a proxy for the monetary reserve process and consider the average of the components of the
S&P500 index over the period of 2008-07-14 until 2008-10-21. Calibrating the deterministic expression for
Q1(t) to the actual average distance to default we obtain the following set of parameters: p = 0.3, = 1300,
a =0.07, 3 =0.11 and ¢ = —1.6. It can be argued that the the assumption of regularity of the parameters
in the limit (see Assumption is too strong and disenables calibrating to actual excitation. Nevertheless,
using this simple and efficient way of calibrating the model, we see from the left-hand side of Figure [5.2
that contagion is sufficiently captured; in particular note that the Poisson process is unable to model the
necessary contagion as seen from the right-hand side of Figure while the SDE with the Hawkes process

provides a much better fit.

Figure 5.2: Calibrated model for @1 on the S&P500 data showing excitation effects (L) and the average of
5000 simulated SDE paths of X;(p) (R)
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6 Conclusion

In this paper we have studied the effects of considering an additional self-exciting and clustering shock that

impacts the monetary reserve or asset value of the nodes of the interbank system. The nodes are assumed
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to interact through the drift, and additionally are subjected to a Hawkes-distributed shock. In this way the
jump activity varies over time resulting in jump clustering and the shocks propagate through the network
in a contagious manner. This allows us to model both default propagation due to interbank loans as well as
propagation due to linked balance sheets and financial acceleration. We started with a numerical analysis of
the interbank model in which we showed that the Hawkes jumps results in a non-negligible tail-probability of
multiple defaults occuring at the same time. We then considered the effects of the Hawkes process in a mean-
field interaction model for the monetary reserve process and derived a weak convergence of the empirical mean
to a measure whose underlying process reflects the Hawkes process through a time-dependent drift term.
Finally we defined several risk indicators and their LLN approximations which can be used for quantifying
the risk in large systems and showed that the LLN estimates perform accurately compared to Monte-Carlo
simulations. We conclude that the clustering Hawkes jumps result in an additional and important source of

default propagation in the network and should not be ignored.
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A Proofs

The next Lemma is a boundedness result of the moment estimate of the log-monetary reserve process.

Lemma A.1. Forn=1,2 and T > 0 we have

M
1 Sn
- JE[Xl } .
ogtgsil},pMeNM; | t‘ < e

Proof. Let n € {1,2}. Recall the constant C}, bounding the parameters (pt, X§) from assumption From

It0’s formula we have
. . . t . _ ) 1 . t .
B X1 = [131) +a'E | [ a1 (8, - xids| + 508 | [t - i)

t t
+o'E U n|XSi|”‘1dW§} +E [/ [ X2+ " = |1X2"] dN;} .
0 0

Using Young’s inequality we have

M
D IXITHXE] - atnl X
k=1

ainXtin_l)_(t —a'n| X} "X} < ai%
| M

< Gy SOIXE (20 - DG IXI™
k=1

Applying Young’s inequality twice yields

nn—1), , e _mnn—=1) (n—=2 _.. 1 o
12X1n < in 7 n
M=) gy < MO (P22 ey L
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nn—1) (n—2 _, 1 1
< - S .
- 2 ( n 4 +n+n—1cp>

Finally, using Young’s inequality and Proposition 2.3 there exists a constant C,, independent of M such that
B | [ e - i an| =2 | [ (el - i) adas)
0 0
1 b i : 1 (.
< -E U |t X2 =) 4 |cl|2"ds} + -E U ()\Zs)2ds}

2 0 2 0
t .
<C,(1+E {/ |X§|”ds] .
0

The statement then follows from applying Gronwall’s Lemma and the fact that the limiting constants are
independent of M. O

In order to conclude weak convergence of the emplrlcal measure vM to v; we need to determine the
limiting martingale problem (as done in Section , show uniqueness of the limit point and its existence
(i.e. tightness of the sequence of measure-valued processes). We provide here a sketch of the proof for
the latter. We have to prove that the sequence of measure-valued processes {v*} /ey defined by are
relatively compact when viewed as a sequence of random processes on the Skorokhod space Dg([0, 0]), the
collection of cadlag functions from [0, o) to S. This is necessary to ensure that the laws of v have at least
one limit point (see also Chapter 2 and 3 of Ethier and Kurtz [I6]). The complication arising from using a
Hawkes process is the feedback loop in the intensity, however due to Theorem we know that the intensity
is bounded and thus the system will not explode. The relative compactness will be implied by the following
two Lemmas: Lemma on compact containment and Lemma on the regularity of the vM’s.

Lemma A.2. For every T > 0 and any smooth function f € C*(0), we have

lim sup IP’( sup |[vM(f)| > m) =0.
M=o MeN  \0<t<T
Proof. From (4.8) we have the following decomposition
v () =w' (f) + A + BM + ¢ + DY (1.23)

where we have defined
AM = / Zalﬁ FXH@MT) — XT)ds, (1.24)
M._ i\2 i
B =g [ ;(w Ouf(X1)ds,
oM .= / Z (00, f(X)AW}]),

M

1 M o , _
DM 1:/0 [le F(Xg+c') = f(X52))| dN.
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Then we need to bound E { sup |()£VI|] for each of the terms defined above. Denote for f € C*°(QO) the

0<t<T
supremum norm with ||f|| = sup |f(p,z)|. We will use the dominating constant C), from assumption
(p,x)€0O

For AM, BM, CM the estimates are similar to Bo and Capponi [4] and we omit the details here and just

give the estimates

i ofll /T 1 & } of
E AM|| < i / — N E[|1X!?d -
OiltlET| | —CZD ax 0 M; [| s|] S+CP 81)
[ C, ||0%f
E BM|| <« 2P| ZL
OE?ET' ‘ ' =72 || 022
E| sup |CM| < CrC,y 3fH (T +1).
L0<t<T

Then we have by the mean-value theorem and using Proposition [2.3] which implies the existence of a constant
C, such that E[X{] < Cy that

]E[ sup |Dg‘4|} Z]E

0<t<T

If (X2 + ') = f(X)IdN;

0

%Zd‘/g E[X\]ds

<[zl eror

Using Lemma[AT] we can find a positive constant C' such that

sup E [ sup ’thw(f)’:| <C.
MeN  lo<i<T

Define E;[-] := E[-|F].
Lemma A.3. Let h(z,y) = |z —y|Al for any x,y € E. Then there exists a positive random variable Hps(7y)
with }/%Elle%E[HM(’m =0 such that for adll0 <t <T,0<u<vyand 0 <v<~vyA1, we have
Ee [0, (), v ()R @M (), v, (5] < Ee[Har ()],
where the function f € C*(0).
Proof. We have from
(Vt]\-&/{u - () = A%—u A+ Bt+u Otjy‘,{u -+ Mt+u M+ P t+u - B,
where AM, BM CM are defined in and

M

it [ ot - gy a

=1
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tq M ) _ ) .
rM ::/o [M ;(f(X‘HCZ)*f(Xi_)) Ayds,

where we have used the fact that the compensated counting process Ni := Nj — [] Ads is a F-local
martingale. We have
2 2
h2 (V%u(f)a thvl(f)) <16[ |At+u AM‘ + |Bt+u Btjw’ + |OtAJ/£u - Ct]vl‘
2
+ ML, = MY | P - P,

Let 0 < u < «y. For the bounds on the first three differences we refer to Lemma 3.5 in Bo and Capponi [4].
For the fourth difference, using the martingale property and It6 Isometry for the martingale (MM) with
quadratic variation [Ny, N;] = Ny, the mean-value theorem, Assumption and Proposition and the
bound (6.1) in Giesecke et al. [I7] we find

B [| ML, — MY | = B || — [
M t+u
_ZEt[/ i{fch) (X;’_)|2dN4
i=1 t
M t+u g . o,
S om [ [ e - o ]
i=1 t
2 M t+u
%ﬁ %ZE,& [/ Agdt}
af* 11 & ) ]
o A2t
w3

<035
With the mean-value theorem and Assumption we find

t+u ) )
Pfu =M =Y [ i) - x| s
1 tu
i Z / |AL|ds
- 1
_Cp2H8x MZ<+/ dt)
Then using Lemma [A-T] and Proposition 2.3] we can finish the proof. O

Then if uniqueness of the limit point »; holds (see e.g. the proof of Lemma C.1 in [4]), we can thus

conclude that the sequence vM converges weakly to the limit point v, and we thus conclude that weak

convergence holds.
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