[1]. (***) **Definizione di derivata**. Sia $A \subset \mathbf{R}$; sia a un punto non isolato di A; sia $f : A \longrightarrow \mathbf{R}$; sia f derivabile in a; allora la derivata di f in $a \not \in ...$

RISPOSTA

- [2]. (**) **Definizione di** tg x. Sia $x \in \mathbf{R}$; sia $x \dots$ (definire tg x esplicitando le ipotesi su x) RISPOSTA
- [3]. (**) Definizione del numero di Nepero. Si pone $e=\dots$ RISPOSTA
- [4]. (*) **Definizione di funzione suriettiva.** Siano A e B due insiemi; sia $f:A\longrightarrow B$; si dice che f è suriettiva se ... RISPOSTA
- [5]. (E) Calcolare il seguente integrale indefinito

$$\int \frac{x^2}{x^3 + 1} \, dx \; .$$

RISPOSTA

- [6]. (O) Serie. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. *** Dare la definizione di somma parziale, di serie convergente e di somma di una serie.
 - 2. ** Dare la definizione di serie a termini positivi. Enunciare e dimostrare il teorema fondamentale per le serie a termini positivi.
 - 3. ** Enunciare e dimostrare il teorema sul criterio del confronto per le serie. Enunciare e dimostrare i due criteri del confronto asintotico.
 - 4. *** Enunciare e dimostrare il teorema sul rapporto fra continuità e derivabilità.

[1]. (***) Teorema sulla relazione fra estremante relativo e derivata. Sia $A \subset \mathbf{R}$; sia $f : A \longrightarrow \mathbf{R}$; sia $a \in A$; sia $f : A \longrightarrow \mathbf{R}$; sia

RISPOSTA

- [2]. (**) Teorema sull'integrale $\int \frac{1}{x} dx$. Si ha $\int \frac{1}{x} dx = \dots$ RISPOSTA
- [3]. (**) **Definizione di serie armonica.** La serie armonica è la serie RISPOSTA
- [4]. (*) Definizione di quoziente e di resto della divisione fra polinomi. Siano A(x) e B(x) polinomi reali; sia $B(x) \neq 0$; allora il quoziente Q(x) e il resto R(x) della divisione A(x): R(x) sono gli unici polinomi reali tali che . . . RISPOSTA
- [5]. (E) Calcolare il seguente integrale

$$\int_0^1 \frac{e^x}{1 + e^{2x}} \, dx \; .$$

RISPOSTA

- [6]. (O) Serie. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. *** Dare la definizione di somma parziale, di serie convergente e di somma di una serie.
 - 2. ** Enunciare e dimostrare il teorema sul criterio del confronto per le serie. Enunciare e dimostrare i due criteri del confronto asintotico.
 - 3. ** Dare la definizione di serie armonica generalizzata di esponente intero. Enunciare il teorema sul comportamento della serie armonica generalizzata di esponente intero. Dando per noto il comportamento della serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$, applicare il criterio del confronto asintotico allo studio della serie armonica generalizzata.
 - 4. ** Enunciare e dimostrare il teorema sul rapporto fra estremanti relativi e derivata prima.

[1]. (***) **Definizione di somma parziale.** Sia $(a_n)_{n\in\mathbb{N}}$ una successione di numeri reali; sia $n\in\mathbb{N}$; allora la somma parziale s_n della serie $\sum_{k=0}^{\infty} a_k$ è uguale a ...

RISPOSTA

[2]. (**) Teorema sull'integrazione per parti. Sia I un intervallo non degenere di \mathbf{R} ; siano $f, g: I \longrightarrow \mathbf{R}$; siano f, g di classe C^1 ; siano $x, y \in I$; allora risulta ...

RISPOSTA

- [3]. (**) Teorema sulla derivata del prodotto di una costante e di una funzione. Sia $A \subset \mathbf{R}$; sia $f : A \longrightarrow \mathbf{R}$; sia f derivabile in a; sia $c \in \mathbf{R}$; allora cf è derivabile in a e si ha $(cf)'(a) = \dots$ RISPOSTA
- [4]. (*) **Definizione di intorno di** $-\infty$. Sia $U \subset \overline{\mathbf{R}}$; si dice che U è un intorno di $-\infty$ se ... RISPOSTA
- [5]. (E) Calcolare il seguente limite $\lim_{n\to\infty} \frac{n^3-3^n}{n^4+3^n}$. RISPOSTA
- [6]. (O) Numeri reali. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. ** Definire n! ed i coefficienti binomiali $\binom{n}{k}$. Proprietà di simmetria dei coefficienti binomiali.
 - 2. ** Enunciare e dimostrare il teorema sulla espressione di $\binom{n}{k}$ come rapporto fra un prodotto e k!.
 - 3. ** Enunciare il teorema sull'espressione di $(a+b)^n$ (binomio di Newton).
 - 4. ** Trovare l'espressione di $(a+b)^4$.
 - 5. *** Dare la definizione di funzione derivabile in un punto e di derivata.

- [1]. (***) Teorema del valor intermedio. Sia $I\subset \mathbf{R};$ sia $f:I\longrightarrow \mathbf{R},$ sia $I\ldots$ RISPOSTA
- [2]. (**) **Definizione di estremo superiore di una funzione.** Sia A un insieme; sia $f:A\longrightarrow \mathbf{R}$; sia $\alpha\in\mathbf{R}$; si dice che α è estremo superiore di f se . . . RISPOSTA
- [3]. (**) Definizione del numero di Nepero. Si pone $e=\dots$ RISPOSTA
- [4]. (*) Teorema sulla somma di funzioni equivalenti a costanti per una funzione con somma delle costanti uguale a 0. Sia $X \in \mathcal{T}_R$; sia $A \subset X$; sia $a \in \overline{A}$; siano $f, g, h : A \longrightarrow \mathbf{R}^N$; siano $c_1, c_2 \in \mathbf{R}$; sia $g \sim_a c_1 f$ e $h \sim_a c_2 f$; sia $c_1 + c_2 = 0$; allora si ha $g + h \dots$ RISPOSTA
- [5]. (E) Tracciare il grafico di $(\frac{1}{2})^x$. RISPOSTA
- [6]. (O) Confronto asintotico. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. * Enunciare il teorema sulla somma di una funzione con una funzione trascurabile.
 - 2. * Enunciare il teorema sulla somma di funzioni di ordine inferiore e sulla somma di funzioni trascurabili.
 - 3. * Enunciare il teorema sulla somma di funzioni equivalenti a costanti per una funzione, nei due casi.
 - 4. *** Enunciare il teorema sul principio di sostituzione nei limiti.
 - 5. *** Enunciare e dimostrare il teorema su funzioni strettamente crescenti e segno della derivata.

[1]. (***) Definizione di valore di un integrale improprio su una semiretta positiva convergente. (Se nella definizione si utilizza la funzione integrale parziale s(x), esplicitarne il valore in x). Sia $a \in \mathbf{R}$; sia $f : [a, +\infty[\longrightarrow \mathbf{R} ; \sin f : a]$ continua; supponiamo che l'integrale improprio su una semiretta positiva $\int_a^{+\infty} f$ sia convergente; allora il valore dell'integrale improprio è ...

RISPOSTA

- [2]. (**) Teorema sull'integrale $\int \operatorname{ch}(\alpha x + b) dx$. $(\forall \alpha \in \mathbf{R}^*)$ $(\forall b \in \mathbf{R})$ si ha $\int \operatorname{ch}(\alpha x + b) dx = \dots$ RISPOSTA
- [3]. (**) Teorema: proprietà fondamentale delle funzioni circolari. Sia $z \in \mathbb{C}$; scrivere la relazione che lega $\sin^2 z$ e $\cos^2 z$.

RISPOSTA

- [4]. (*) Definizione di norma in \mathbf{R}^N . Sia $x = (x_1, x_2, \dots, x_N) \in \mathbf{R}^N$; definire ||x||. RISPOSTA
- [5]. (E) Dire il comportamento della serie $\sum_{n=0}^{\infty} \frac{n!-5^n}{7^n}$ motivando la risposta. RISPOSTA
- [6]. (O) Confronto asintotico. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. * Enunciare il teorema sulla somma di funzioni di ordine inferiore e sulla somma di funzioni trascurabili.
 - 2. * Enunciare il teorema sulla somma di funzioni equivalenti a costanti per una funzione, nei due casi.
 - 3. * Enunciare il teorema sul prodotto di funzioni equivalenti.
 - 4. *** Enunciare il teorema sul principio di sostituzione nei limiti.
 - 5. *** Enunciare e dimostrare il teorema su funzioni strettamente crescenti e segno della derivata.

[1]. (***) Definizione di valore di un integrale improprio su una semiretta positiva convergente. (Se nella definizione si utilizza la funzione integrale parziale s(x), esplicitarne il valore in x). Sia $a \in \mathbf{R}$; sia $f : [a, +\infty[\longrightarrow \mathbf{R} ; \sin f : a]$ continua; supponiamo che l'integrale improprio su una semiretta positiva $\int_a^{+\infty} f$ sia convergente; allora il valore dell'integrale improprio è ...

RISPOSTA

- [2]. (**) **Definizione di** Arccos y. Sia $y \in \mathbf{R}$; supponiamo (esplicitate l'ipotesi su y) ... RISPOSTA
- [3]. (**) Teorema sulla condizione necessaria per la convergenza di una serie. Sia $\sum_{n=0}^{\infty} a_n$ una serie di numeri reali; . . .

RISPOSTA

- [4]. (*) Definizione di intervallo chiuso a sinistra e aperto a destra. Siano $a, b \in \overline{\mathbf{R}}$; sia $a \leq b$; si pone $[a, b[= \dots]]$ RISPOSTA
- [5]. (E) Calcolare il seguente limite $\lim_{n\to\infty} \frac{1+n^2-2^n}{3+n^5+5^n}$. RISPOSTA
- [6]. (O) Serie di potenze. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. ** Enunciare il teoremi sulle formule di addizione per le funzioni seno, coseno, seno iperbolico e coseno iperbolico.
 - 2. * Ricavare una delle tre formule di Werner relative $\sin x \sin y$, $\sin x \cos y$, $\cos x \cos y$.
 - 3. ** Enunciare e dimostrare il teorema sulle equivalenze fondamentali per $x \to 0$ relative a $\exp x 1$, $\sin x$,
 - 4. ** Enunciare e dimostrare il teorema sugli sviluppi asintotici per $x \to 0$ dell'esponenziale, del seno iperbolico, del coseno iperbolico.
 - 5. *** Enunciare e dimostrare il teorema su funzioni strettamente crescenti e segno della derivata.

- [1]. (***) **Definizione di estremo superiore.** Sia $A \subset \mathbf{R}$; sia $\alpha \in \mathbf{R}$; si dice che α è estremo superiore di A se ... RISPOSTA
- [2]. (**) Teorema sull'integrale $\int \cos x \, dx$. Si ha $\int \cos x \, dx = \dots$ RISPOSTA
- [3]. (**) **Definizione di** Arcsin y. Sia $y \in \mathbf{R}$; supponiamo (esplicitate l'ipotesi su y) ... RISPOSTA
- [4]. (*) Definizione di funzione somma di una serie di potenze. Sia $(a_n)_{n\in N}$ una successione di numeri complessi; sia B il cerchio di convergenza della serie di potenze $\sum_{n=0}^{\infty} a_n z^n$; la funzione somma della serie di potenze $\sum_{n=0}^{\infty} a_n z^n$ è la funzione

 $f: \dots$ RISPOSTA

- [5]. (E) Calcolare il seguente limite $\lim_{n\to\infty}\frac{1+n^2-2^n}{3+n^5+5^n}.$ RISPOSTA
- [6]. (O) Primitive ed integrali. Derivate.
 - 1. ** Enunciare e dimostrare il teorema sugli integrali indefiniti $\int \operatorname{ch} x \, dx$ e $\int \operatorname{ch}(\alpha x + b) \, dx$.
 - 2. * Calcolare il seguente integrale indefinito $\int \cos^3 x \, dx$.
 - 3. ** Enunciare e dimostrare il teorema sulla additività dell'integrale.
 - 4. *** Enunciare e dimostrare il teorema sulla relazione fra funzioni strettamente monotone e segno della derivata.

[1]. (***) Teorema su funzioni strettamente decrescenti e segno della derivata. Sia I un intervallo non degenere di \mathbf{R} ; sia $f:I\longrightarrow\mathbf{R}$; sia f continua su I; sia f derivabile su $\overset{\circ}{I}$; allora si ha ... RISPOSTA

- [2]. (**) Teorema sulla equivalenza asintotica fondamentale su sh x. Per $x \to 0$, a che cosa è equivalente sh x? RISPOSTA
- [3]. (**) Teorema sul comportamento della serie armonica generalizzata di esponente intero. Sia $p \in \mathbf{N}^*$; allora la serie $\sum_{n=1}^{\infty} \frac{1}{n^p} \dots$ RISPOSTA
- [4]. (*) **Definizione di serie a termini definitivamente positivi.** Sia $(a_n)_{n\in N}$ una successione di **R**; si dice che la serie $\sum_{n=0}^{\infty} a_n$ è a definitivamente termini positivi se si ha . . . RISPOSTA
- [5]. (E) Trovare il raggio di convergenza della seguente serie di potenze

$$\sum_{n=0}^{\infty} nz^n.$$

RISPOSTA

- [6]. (O) **Derivate.** Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. * Enunciare il teorema di Rolle. Spiegare il significato geometrico del teorema di Rolle.
 - 2. ** Enunciare e dimostrare il teorema di Lagrange (o del valor medio). Spiegare il significato geometrico del teorema di Lagrange.
- 3. ** Enunciare e dimostrare il teorema sulla derivata della somma di due funzioni. Enunciare il teorema sulla derivata di una costante per una funzione.

- [1]. (***) **Definizione di estremo superiore.** Sia $A \subset \mathbf{R}$; sia $\alpha \in \mathbf{R}$; si dice che α è estremo superiore di A se ... RISPOSTA
- [2]. (**) Teorema sul confronto asintotico fra infiniti di potenze ed esponenziali. Sia $p \in \mathbb{N}^*$; sia $a \in \mathbb{R}$; sia a > 1; allora fra n^p e a^n sussiste la relazione . . .

[3]. (**) Teorema sul confronto asintotico fra funzioni potenza di esponente reale per $x \to +\infty$. Siano $a, b \in \mathbf{R}$; sia a < b; esprimere le relazioni di trascurabilità fra x^a e x^b per $x \to +\infty$.

RISPOSTA

- [4]. (*) Teorema sulla proprietà fondamentale della potenza n-esima, che permette la definizione della radice n-esima aritmetica. Sia $n \in \mathbb{N}^*$; sia $a \in \mathbb{R}_+$; allora ... RISPOSTA
- [5]. (E) Trovare un argomento del seguente numero complesso esprimendolo senza l'uso di funzioni trascendenti

$$1-\sqrt{3}i$$
.

RISPOSTA

- [6]. (O) **Topologia di R**^N. **Derivate.** Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. * Dare la definizione di punto interno ad un sottoinsieme di \mathbb{R}^N e di interno di un sottoinsieme di \mathbb{R}^N .
 - 2. * Dare la definizione di punto aderenza (o di chiusura) per un sottoinsieme di \mathbf{R}^N e di chiusura di un sottoinsieme di \mathbf{R}^N .
 - 3. * Dare la definizione di punto di frontiera di un sottoinsieme di \mathbb{R}^N e di frontiera di un sottoinsieme di \mathbb{R}^N .
 - 4. * Dare la definizione di punto isolato di un sottoinsieme di \mathbb{R}^N ,
 - $5.\ ^{***}$ Enunciare e dimostrare il teorema sul rapporto fra continiutà e derivabilità.

- [1]. (***) Teorema sulla completezza di R
 rispetto all'ordine. Sia $A\subset \mathbf{R};$ sia $A\neq\emptyset;$... RISPOSTA
- [2]. (**) **Definizione di** $\sin z$. Sia $z \in \mathbb{C}$; definire $\sin z$. RISPOSTA
- [3]. (**) Definizione di serie armonica generalizzata di esponente intero. Sia $p \in \mathbb{N}^*$; si chiama serie armonica generalizzata di esonenente p la serie ...

- [4]. (*) Teorema sulle componenti di una funzione continua. Sia $A \subset \mathbf{R}^N$; sia $f : A \longrightarrow \mathbf{R}^M$; sia $f = (f_1, f_2, \dots, f_m)$; sia $a \in A$; allora se f è continua in a se e solo se ... RISPOSTA
- [5]. (E) Dire se] $-\infty$, -1] è aperto e se è chiuso (rispetto allo spazio topologico ${\bf R}$. RISPOSTA
- [6]. (O) Integrali impropri. Derivate.
 - 1. *** Dare la definizione di integrale improprio su un intervallo limitato aperto a sinistra convergente e di valore dell'integrale improprio. Dare la definizione di integrale improprio su un intervallo limitato aperto a sinistra divergente positivamente, divergente negativamente, oscillante.
 - 2. ** Enunciare e dimostrare il teorema sull'integrale improprio di una potenza su un intervallo limitato aperto a sinistra.
 - 3. *** Dare la definizione di integrale improprio su una semiretta positiva assolutamente convergente. Enunciare il teorema sul rapporto fra convergenza e assoluta convergenza di un integrale improprio su una semiretta positiva.
 - 4. * Dare la definizione di integrale improprio su un intervallo aperto convergente e assolutamente convergente; dare la definizione di valore dell'integrale improprio su un intervallo aperto.
 - 5. *** Enunciare e dimostrare il teorema sulla relazione fra funzioni monotone e segno della derivata.

- [1]. (***) Significato geometrico del rapporto incrementale. Sia $A \subset \mathbf{R}$; sia a un punto non isolato di A; sia $f:A \longrightarrow \mathbf{R}$; sia $h \in -a+A$; allora il rapporto incrementale r(h) di f in a applicato ad h rappresenta . . . RISPOSTA
- [2]. (**) **Definizione di funzione continua in un punto.** Sia $A \subset \mathbf{R}^N$; sia $f: A \longrightarrow \mathbf{R}^M$; sia $a \in A$; si dice che f è continua in a se . . .

[3]. (**) Definizione di valore di un integrale improprio su un intervallo limitato aperto a destra convergente. Siano $a, b \in \mathbf{R}$; sia a < b; sia $f : [a, b[\longrightarrow \mathbf{R} ;$ sia f continua; supponiamo che l'integrale improprio su un intervallo limitato aperto a destra $\int_a^b f$ sia convergente; allora il valore dell'integrale improprio è ...

RISPOSTA

[4]. (*) Teorema sul prodotto di potenze di esponente naturale con la stessa base. Sia $x \in \mathbb{R}$; siano $n, m \in \mathbb{N}$; allora si ha

 $x^n x^m = \dots$

RISPOSTA

[5]. (E) Calcolare la derivata della funzione

$$f(x) = \cos(2x)\sin\log x .$$

RISPOSTA

- [6]. (O) **Derivate.** Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. *** Dare la definizione di funzione derivabile in un punto e di derivata di una funzione in un punto.
 - 2. *** Enunciare e dimostrare il teorema sulla relazione fra funzioni strettamente monotone e segno della derivata.
 - 3. * Dare la definizione di funzione convessa, di funzione concava, di funzione strettamente convessa, di funzione strettamente convessa, di funzione strettamente concava. Enunciare il teorema sulla relazione fra stretta convessità e segno della derivata seconda.

- [1]. (***) Teorema sulla relazione fra continuità e derivabilità. Sia $A \subset \mathbf{R}$; sia a un punto non isolato di A; sia $f:A \longrightarrow \mathbf{R}$; che relazione sussiste fra derivabilità in a e continuità in a? RISPOSTA
- [2]. (**) Teorema sulla derivata della funzione arcocoseno. Si ha $\frac{d}{dx}$ Arccos $x=\dots$ RISPOSTA
- [3]. (**) Teorema sulla derivata della funzione arcoseno. Si ha $\frac{d}{dx} Arcsin x = \dots$ RISPOSTA
- [4]. (*) Teorema sul carattere locale della continuità. Sia $A \subset \mathbf{R}^N$; sia $f: A \longrightarrow \mathbf{R}^M$; sia $a \in A$; sia U un intorno di a; allora f è continua in a se e solo . . . RISPOSTA
- [5]. (E) Dire il comportamento della serie $\sum_{n=0}^{\infty} \frac{n+2^n}{n^3+3^n}$ motivando la risposta. RISPOSTA
- [6]. (O) Funzioni elementari reali. Derivate.
 - 1. * Esprimere il seno iperbolico reale attraverso l'esponenziale. Avendo presente tale espressione, tracciare il grafico della funzione seno iperbolico reale.
 - 2. * Dare la definizione di argomento seno iperbolico di y. Definire la funzione argomento seno iperbolico e tracciarne il grafico.
 - 3. * Enunciare e dimostrare il teorema sulla derivata della funzione argomento seno iperbolico.
 - 4. *** Dare la definizione di rapporto incrementale di una funzione in un punto. Spiegare e giustificare il significato geometrico di rapporto incrementale di una funzione in un punto.
 - 5. *** Enunciare e dimostrare il teorema sulla relazione fra continuità e derivabilità.

[1]. (***) Teorema su funzioni decrescenti e segno della derivata. Sia I un intervallo non degenere di \mathbf{R} ; sia $f:I\longrightarrow\mathbf{R}$; sia f continua su I; sia f derivabile su $\stackrel{\circ}{I}$; allora si ha ... RISPOSTA

[2]. (**) Definizione di funzione strettamente crescente. Sia $A \subset \mathbf{R}$; sia $f : A \longrightarrow \mathbf{R}$; si dice che f è strettamente crescente se ...

RISPOSTA

- [3]. (**) **Definizione di serie geometrica.** Sia $q \in \mathbb{R}$; allora serie geometrica di ragione q (e primo temine 1) è la serie ... RISPOSTA
- [4]. (*) Definizione di radice n-esima di indice dispari. Sia $x \in \mathbf{R}$; sia $y \in \mathbf{R}$; sia $n \in \mathbf{N}^*$; sia n dispari; si dice che y è radice n-esima di indice dispari di x se . . .

RISPOSTA

[5]. (E) Studiare la convergenza del seguente integrale improprio

$$\int_1^{+\infty} \frac{x}{\sqrt{x^3 + 1}} \, dx \; .$$

RISPOSTA

- [6]. (O) Primitive ed integrali. Derivate.
 - 1. ** Enunciare e dimostrare il teorema sugli integrali indefiniti $\int \frac{1}{\cos^2 x} dx$ e $\int \frac{1}{(\sin x)^2} dx$.
 - 2. * Calcolare il seguente integrale indefinito $\int \operatorname{ctg}^2 x \, dx$.
 - 3. ** Enunciare il teorema sulla primitiva di $(f \circ \varphi) \cdot \varphi'$.
 - 4. * Calcolare il seguente integrale indefinito $\int \cosh^3 x \, dx$.
 - 5. *** Enunciare e dimostrare il teorema sulla relazione fra estremante relativo e derivata prima.

[1]. (***) **Definizione di funzione derivabile in un punto**. Sia $A \subset \mathbf{R}$; sia a un punto non isolato di A; sia $f: A \longrightarrow \mathbf{R}$; si dice che f è derivabile in a se . . .

RISPOSTA

[2]. (**) Definizione di parte reale di un numero complesso. Siano $a, b \in \mathbf{R}$; definire la parte reale del numero complesso a+ib.

RISPOSTA

[3]. (**) Definizione di serie divergente negativamente. Sia $(a_n)_{n\in N}$ una successione di numeri reali; si dice che la serie $\sum_{n=0}^{\infty} a_n$ è divergente negativamente se ...

RISPOSTA

[4]. (*) Teorema sull'integrale improprio $\int_1^{+\infty} x^{\alpha} a^x dx$ Sia $a \in \mathbf{R}$, sia a > 0 e $a \neq 1$; sia $\alpha \in \mathbf{R}$; allora l'integrale improprio $\int_1^{+\infty} x^{\alpha} a^x$ è convergente se e solo se ...

RISPOŠTA

[5]. (E) Calcolare il seguente integrale

$$\int_0^1 x \sqrt{x^2 + 1} \, dx \; .$$

RISPOSTA

- [6]. (O) Confronto asintotico. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. * Enunciare il teorema sulla somma di una funzione con una funzione trascurabile.
 - 2. * Enunciare il teorema sulla somma di funzioni di ordine inferiore e sulla somma di funzioni trascurabili.
 - 3. * Enunciare il teorema sulla somma di funzioni equivalenti a costanti per una funzione, nei due casi.
 - 4. *** Enunciare il teorema sul principio di sostituzione nei limiti.
 - 5. *** Enunciare e dimostrare il teorema su funzioni strettamente crescenti e segno della derivata.

- [1]. (***) Teorema sugli zeri di una funzione continua. Sia $I \subset \mathbf{R};$ sia $f: I \longrightarrow \mathbf{R},$ sia $I \dots$ RISPOSTA
- [2]. (**) Teorema sulla derivata della funzione esponenziale di base a. Sia $a \in \mathbb{R}_+^*$; si ha $\frac{d}{dx}a^x = \dots$ RISPOSTA
- [3]. (**) **Teorema sulla proprietà fondamentale di** *i*. Qual'è la proprietà fondamentale del numero complesso *i*? RISPOSTA
- [4]. (*) **Definizione di funzione di classe** C^{∞} . Sia $A \subset \mathbf{R}$; sia A un intervallo non degenere o A aperto; sia $f: A \longrightarrow \mathbf{R}^N$; si dice che f è di classe C^{∞} se . . . RISPOSTA
- [5]. (E) Calcolare la derivata della funzione

$$f(x) = (\sin x)^{\cos x} .$$

- [6]. (O) Serie. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. *** Dare la definizione di somma parziale, di serie convergente e di somma di una serie.
 - 2. * Enunciare il teorema sul criterio del rapporto per le serie
 - 3. * Enunciare e dimostrare il teorema sul comportamento della serie $\sum_{n=1}^{\infty} \frac{n^p a^n}{n!}$.
 - 4. ** Enunciare e dimostrare il teorema sul confronto asintotico $n^p a^n$ e n!. Confronto asintotico fra esponenziali a^n e fattoriale n!.
 - 5. ** Calcolare a partire dalla definizione la derivata della funzione $f(x) = \frac{1}{x}$.