- [1]. (***) Teorema: principio di sostituzione nei limiti. Sia $X \in \mathcal{T}_R$; sia $A \subset X$; sia $a \in \overline{A}$; siano $f, g : A \longrightarrow \mathbf{R}$; ... RISPOSTA
- [2]. (**) **Definizione di estremo inferiore di una funzione.** Sia A un insieme; sia $f:A\longrightarrow \mathbf{R}$; sia $\alpha\in\mathbf{R}$; si dice che α è estremo inferiore di f se ...

- [3]. (**) Teorema sul criterio del confronto asintotico per integrali impropri su semirette positive con funzioni di ordine asintotico inferiore. Sia $a \in \mathbf{R}$; siano $f,g:[a,+\infty[\longrightarrow \mathbf{R};$ siano f,g continue; siano $f \geq 0, g \geq 0$; sia $f(x) \leq_{x \to +\infty} g(x)$; allora ... RISPOSTA
- [4]. (*) Teorema sulla linearità per gli integrali impropri. Sia $a \in \mathbf{R}$; siano $f, g : [a, +\infty[\longrightarrow \mathbf{R} ; \text{ siano } f, g \text{ continue} ; \text{ sia } t \in \mathbf{R} ; \text{ gli integrali impropri su di una semiretta positiva } \int_a^{+\infty} f \in \int_a^{+\infty} g \text{ siano convergenti} ; \text{ allora si ha } \dots$ RISPOSTA
- [5]. (E) Dire il comportamento della serie $\sum_{n=0}^{\infty} \frac{1+n^3 5^n}{2+3n!}$ motivando la risposta. RISPOSTA
- [6]. (O) **Topologia di R**^N. **Derivate.** Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. * Dare la definizione di punto interno ad un sottoinsieme di \mathbb{R}^N e di interno di un sottoinsieme di \mathbb{R}^N .
 - 2. * Dare la definizione di punto aderenza (o di chiusura) per un sottoinsieme di \mathbf{R}^N e di chiusura di un sottoinsieme di \mathbf{R}^N .
 - 3. * Dare la definizione di punto di frontiera di un sottoinsieme di \mathbf{R}^N e di frontiera di un sottoinsieme di \mathbf{R}^N .
 - 4. * Dare la definizione di punto isolato di un sottoinsieme di \mathbb{R}^N ,
 - 5. *** Enunciare e dimostrare il teorema sul rapporto fra continiutà e derivabilità.

[1]. (***) Significato geometrico di t argomento di un numero complesso. Sia $z \in C^*$; sia $t \in \mathbf{R}$; allora t è un argomento di z geometricamente significa che . . .

Matricola

RISPOSTA

- [2]. (**) Definizione del numero di Nepero. Si pone $e=\dots$ RISPOSTA
- [3]. (**) **Definizione di minorante**. Sia $A \subset \mathbf{R}$; sia $m \in \mathbf{R}$; si dice che m è minorante di A se ... RISPOSTA
- [4]. (*) Teorema sulla potenza di esponente naturale di un prodotto. Siano $x, y \in \mathbf{R}$; sia $n \in \mathbf{N}$; allora si ha $(xy)^n = \dots$ RISPOSTA
- [5]. (E) Calcolare il seguente integrale

$$\int_0^1 \frac{1}{2x^2 + 1}, dx \ .$$

RISPOSTA

- [6]. (O) Numeri reali. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. * Dare la definizione di grado di un polinomio.
 - 2. * Dare la definizione di funzione polinomiale ed enunciare il teorema sul principio di identità dei polinomi.
 - 3. ** Dare la definizione di quoziente e di resto per la divisione di polinomi.
 - 4. ** Dare la definizione di divisibilità fra polinomi.
 - 5. *** Enunciare e dimostrare il teorema sul rapporto fra continuità e derivabilità.

[1]. (***) Definizione di valore di un integrale improprio su una semiretta positiva convergente. (Se nella definizione si utilizza la funzione integrale parziale s(x), esplicitarne il valore in x). Sia $a \in \mathbf{R}$; sia $f : [a, +\infty[\longrightarrow \mathbf{R} ; \sin f : a]$ continua; supponiamo che l'integrale improprio su una semiretta positiva $\int_a^{+\infty} f$ sia convergente; allora il valore dell'integrale improprio è ...

RISPOSTA

- [2]. (**) Teorema sulla equivalenza asintotica fondamentale su sh x. Per $x \to 0$, a che cosa è equivalente sh x? RISPOSTA
- [3]. (**) Teorema sul confronto asintotico fra infinitesimi di potenze e di esponenziali per $x \to -\infty$. Sia $\alpha \in \mathbf{R}_+^*$; sia $a \in \mathbf{R}$, a > 1; che relazioni di trascurabilità sussistono fra le funzioni $\frac{1}{|x|^{\alpha}}$ e a^x per $x \to -\infty$. RISPOSTA
- [4]. (*) **Definizione di proiezione** p_i . Sia $i=1,2,\ldots,N$; la proiezione p_i è la funzione \ldots RISPOSTA
- [5]. (E) Dire il comportamento della serie $\sum_{n=0}^{\infty} \frac{1+n^3 5^n}{2+3n!}$ motivando la risposta. RISPOSTA
- [6]. (O) Sviluppi in serie. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. ** Definire il coefficiente binomiale $\binom{a}{n}$, con $a \in \mathbf{R}$.
 - 2. ** Enunciare il teorema sullo sviluppo in serie di $(1+x)^a$.
 - 3. ** Dedurre dallo sviluppo in serie, le equivalenze asintotiche e lo sviluppo asintotico di $(1+x)^a$.
 - 4. *** Dare la definizione di rapporto incrementale di una funzione in un punto. Spiegare e giustificare il significato geometrico di rapporto incrementale di una funzione in un punto.
 - 5. *** Enunciare e dimostrare il teorema sulla relazione fra estremante relativo e derivata prima.

- [1]. (***) Definizione di integrale improprio su una semiretta positiva convergente. (Se nella definizione si utilizza la funzione integrale parziale s(x), esplicitarne il valore in x). Sia $a \in \mathbf{R}$; sia $f : [a, +\infty[\longrightarrow \mathbf{R} ; \text{ sia } f \text{ continua} ; \text{ si dice che l'integrale improprio su una semiretta positiva } \int_a^{+\infty} f \text{ è convergente se} \dots$ RISPOSTA
- [2]. (**) Teorema sulla derivata della somma di due funzioni. Sia $A \subset \mathbf{R}$; siano $f, g : A \longrightarrow \mathbf{R}$; siano f, g derivabili in a; allora f + g è derivabile in a e si ha $(f + g)'(a) = \dots$ RISPOSTA
- [3]. (**) Definizione di funzione derivabile in un punto rispetto a $\overline{\mathbf{R}}$. Sia $A \subset \mathbf{R}$; sia $f: A \longrightarrow \mathbf{R}$; sia a un punto non isolato di A; si dice che f è derivabile rispetto ad $\overline{\mathbf{R}}$ in a se . . . RISPOSTA
- [4]. (*) **Definizione di reciproco.** Sia $x \in \mathbf{R}$; sia $x \neq 0$; allora il reciproco di $x \in \mathbb{R}$... RISPOSTA
- [5]. (E) Dire il comportamento della serie $\sum_{n=1}^{\infty} \frac{2^n 5n^2}{n^5}$ motivando la risposta. RISPOSTA
- [6]. (O) **Derivate.** Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. ** Enunciare e dimostrare il teorema sulla derivata del reciproco moltiplicativo di una funzione. Enunciare il teorema sulla derivata del quoziente di due funzioni.
 - 2. ** Enunciare il teorema sulla derivata della composizione di due funzioni.
 - 3. ** Enunciare e dimostrare il teorema sulla derivata della funzione seno iperbolico.

[1]. (***) Definizione di valore di un integrale improprio su una semiretta positiva convergente. (Se nella definizione si utilizza la funzione integrale parziale s(x), esplicitarne il valore in x). Sia $a \in \mathbf{R}$; sia $f: [a, +\infty[\longrightarrow \mathbf{R}; \sin f$ continua; supponiamo che l'integrale improprio su una semiretta positiva $\int_a^{+\infty} f$ sia convergente; allora il valore dell'integrale improprio è . . .

RISPOSTA

- [2]. (**) Teorema sull'espressione dell'esponenziale come potenza di base e. Sia $w \in \mathbb{C}$; allora si ha ... RISPOSTA
- [3]. (**) Definizione di integrale improprio su un intervallo limitato aperto a destra convergente. Siano $a, b \in \mathbf{R}$; sia a < b; sia $f : [a, b[\longrightarrow \mathbf{R} ;$ sia f continua; si dice che l'integrale improprio su un intervallo limitato aperto a destra $\int_a^b f$ è convergente se . . .

RISPOSTA

- [4]. (*) **Definizione di norma in R**^N. Sia $x = (x_1, x_2, ..., x_N) \in \mathbf{R}^N$; definire ||x||. RISPOSTA
- [5]. (E) Calcolare il seguente limite

$$\lim_{x \to 0} \frac{x - \operatorname{Arctg} x}{\sqrt[3]{1 + x^3} - 1} .$$

RISPOSTA

- [6]. (O) **Derivate.** Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. ** Dare la definizione di punto di massimo e di punto di minimo relativo per una funzione.
 - 2. *** Enunciare e dimostrare il teorema sulla relazione fra estremante relativo e derivata prima.
 - 3. ** Enunciare e dimostrare il teorema sulla approssimazione dell'incremento di una funzione mediante hf'(a). Espressione del teorema con il simbolo di Landau o(h).

- [1]. (***) **Definizione di rapporto incrementale**. Sia $A \subset \mathbf{R}$; sia a un punto non isolato di A; sia $f: A \longrightarrow \mathbf{R}$; sia $h \in -a + A$; allora il rapporto incrementale di f in a applicato ad h, r(h), è uguale a RISPOSTA
- [2]. (**) Teorema sulla caratterizzazione della convergenza per una successione. Sia $X \in \mathcal{T}_R$; sia $(a_n)_{n \in N}$ una successione di punti di X; sia $l \in X$; caratterizzare (utilizzando quantificatori, intorni, indici) la relazione

$$a_n \longrightarrow_{n \to \infty} l$$
.

- [3]. (**) Teorema sul comportamento della serie armonica. La serie armonica $\sum_{n=1}^{\infty} \frac{1}{n}$ è ... RISPOSTA
- [4]. (*) Teorema sul logaritmo di 1. Si ha $\log 1 = \dots$ RISPOSTA
- [5]. (E) Determinare il dominio naturale della seguente funzione reale di variabile reale

$$f(x) = \log \log \log x$$
.

RISPOSTA

- [6]. (O) Serie di potenze. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. * Enunciare il teorema che permette di definire il raggio di convergenza di una serie di potenze. Definire il raggio ed il cerchio di convergenza di una serie di potenze.
 - 2. * Enunciare il teorema sulla continuità della somma di una serie di potenze.
 - 3. * Enunciare e dimostrare il teorema sul raggio di convergenza della serie di potenze $\sum_{n=0}^{\infty} \frac{1}{n!} z^n$.
 - 4. *** Enunciare e dimostrare il teorema sul rapporto fra estremanti relativi e derivata prima.

- [1]. (***) Teorema su funzioni strettamente crescenti e segno della derivata. Sia I un intervallo non degenere di \mathbf{R} ; sia $f:I\longrightarrow\mathbf{R}$; sia f continua su I; sia f derivabile su $\overset{\circ}{I}$; allora si ha ... RISPOSTA
- [2]. (**) Definizione di potenza di esponente complesso. Sia $x \in \mathbb{R}_+^*$; sia $z \in \mathbb{C}$; allora x^z è posto uguale a ... RISPOSTA
- [3]. (**) Definizione di funzione strettamente crescente. Sia $A \subset \mathbf{R}$; sia $f: A \longrightarrow \mathbf{R}$; si dice che f è strettamente crescente se ... RISPOSTA
- [4]. (*) Esercizio. Calcolare il seguente integrale indefinito

$$\int \operatorname{tg} x \, dx \; .$$

- [5]. (E) Calcolare la derivata della funzione $f(x) = \sqrt{\sin x^3 + 5}$. RISPOSTA
- [6]. (O) Primitive ed integrali. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. ** Enunciare e dimostrare il teorema sugli integrali indefiniti $\int \frac{1}{\cos^2 x} dx$ e $\int \frac{1}{(\sin x)^2} dx$.
 - 2. * Calcolare il seguente integrale indefinito $\int \operatorname{ctg}^2 x \, dx$.
 - 3. ** Enunciare il teorema sulla primitiva di $(f \circ \varphi) \cdot \varphi'$.
 - 4. * Calcolare il seguente integrale indefinito $\int \cosh^3 x \, dx$.
 - 5. *** Enunciare e dimostrare il teorema sulla relazione fra estremante relativo e derivata prima.

- [1]. (***) Teorema sulla relazione fra continuità e derivabilità. Sia $A \subset \mathbf{R}$; sia a un punto non isolato di A; sia $f:A \longrightarrow \mathbf{R}$; che relazione sussiste fra derivabilità in a e continuità in a? RISPOSTA
- [2]. (**) Definizione di valore assoluto. Sia $x \in \mathbf{R}$; definire |x|. RISPOSTA
- [3]. (**) Teorema: formula d'Eulero. Sia $z \in \mathbb{C}$; esprimere sin z attraverso l'esponenziale. RISPOSTA
- [4]. (*) Definizione del discriminante di un polinomio di secondo grado. Siano $a, b, c \in \mathbb{R}$; sia $a \neq 0$; il discriminante del polinomio $ax^2 + bx + c$ è uguale a . . . RISPOSTA
- [5]. (E) Risolvere la seguente disequazione

$$\begin{cases} x^2 + 3x + 2 > 0 \\ -2x + 7 < 0 \end{cases}$$

- [6]. (O) Numeri reali. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. *** Dare la definizione di estremo superiore di un insieme di numeri reali.
 - 2. * Dare la definizione di radice di un polinomio.
 - 3. * Enunciare il teorema che lega le radici di un polinomio con la divisibilità per x-a.
 - 4. * Dare la definizione di radice di molteplicità m.
 - 5. *** Enunciare e dimostrare il teorema sul rapporto fra continuità e derivabilità.

[1]. (***) Definizione di valore di un integrale improprio su una semiretta positiva convergente. (Se nella definizione si utilizza la funzione integrale parziale s(x), esplicitarne il valore in x). Sia $a \in \mathbf{R}$; sia $f : [a, +\infty[\longrightarrow \mathbf{R} ; \sin f : a]$ continua; supponiamo che l'integrale improprio su una semiretta positiva $\int_a^{+\infty} f$ sia convergente; allora il valore dell'integrale improprio è ...

RISPOSTA

[2]. (**) Teorema sul criterio del confronto asintotico per integrali impropri su semirette positive con funzioni di ordine asintotico inferiore. Sia $a \in \mathbf{R}$; siano $f,g:[a,+\infty[\longrightarrow \mathbf{R};$ siano f,g continue; siano $f \geq 0, g \geq 0$; sia $f(x) \leq_{x \to +\infty} g(x)$; allora . . .

RISPOSTA

- [3]. (**) Teorema sulla primitiva di $(f \circ \varphi) \cdot \varphi'$. Sia $A \subset \mathbf{R}$; sia $\varphi : A \longrightarrow \mathbf{R}$; sia $B \subset \mathbf{R}$; sia $\varphi(A) \subset B$; siano $f, F : B \longrightarrow \mathbf{R}$; siano $A \in B$ privi di punti isolati; sia φ derivabile; sia F una primitiva di f; allora ... RISPOSTA
- [4]. (*) Definizione di intervallo chiuso Siano $a,b\in\overline{\mathbf{R}};$ sia $a\leq b;$ si pone $[a,b]=\ldots$ RISPOSTA
- [5]. (E) Risolvere la seguente equazione reale e determinare la molteplicità delle radici

$$x^4 + x^2 - 12 = 0.$$

RISPOSTA

- [6]. (O) **Derivate.** Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. ** Enunciare e dimostrare il teorema sulla approssimazione dell'incremento di una funzione mediante hf'(a). Espressione dell'incremento con il simbolo di Landau o(h).
 - 2. ** Enunciare e dimostrare il teorema sulla derivata della somma di due funzioni. Enunciare il teorema sulla derivata di una costante per una funzione.
 - 3. ** Enunciare e dimostrare il teorema sulla derivata della funzione coseno.

- [1]. (***) Teorema sulla completezza di R
 rispetto all'ordine. Sia $A\subset \mathbf{R};$ sia $A\neq\emptyset;$... RISPOSTA
- [2]. (**) Teorema sulla derivata della funzione tangente. Si ha $\frac{d}{dx}$ tg $x=\dots$ RISPOSTA
- [3]. (**) Teorema sul confronto asintotico fra potenze di esponente intero per $x \to +\infty$. Siano $n, m \in \mathbb{Z}$; sia n < m; che relazioni di trascurabilità sussistono fra le funzioni x^n e x^m per $x \to +\infty$. RISPOSTA
- [4]. (*) Teorema sulla somma di una funzione con una funzione trascurabile. Sia $X \in \mathcal{T}_R$; sia $A \subset X$; sia $a \in \overline{A}$; siano $f, g : A \longrightarrow \mathbf{R}$; sia $g \not \prec_a f$; allora si ha $(f+g) \dots$ RISPOSTA
- [5]. (E) Calcolare il seguente limite $\lim_{n\to\infty} \frac{n^2 2n + 3^n}{5^n n!}$. RISPOSTA
- [6]. (O) Primitive ed integrali. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. * Calcolare $\int \cos^2 x \, dx$
 - 2. * Enunciare il teorema sulla formula di Taylor con resto di Lagrange.
 - 3. *** Dare la definizione di integrale definito.
 - 4. ** Enunciare e dimostrare il teorema sulla linearità dell'integrale.
 - 5. *** Enunciare e dimostrare il teorema sulla relazione fra continuità e derivabilità.

- [1]. (***) Teorema su funzioni strettamente crescenti e segno della derivata. Sia I un intervallo non degenere di \mathbf{R} ; sia $f:I\longrightarrow\mathbf{R}$; sia f continua su I; sia f derivabile su $\overset{\circ}{I}$; allora si ha ... RISPOSTA
- [2]. (**) Teorema sulla derivata della funzione inversa di una funzione strettamente decrescente per un punto in cui la derivata della funzione è 0. Sia I un intervallo non degenere di \mathbf{R} ; sia $f:I\longrightarrow \mathbf{R}$; sia f continua e strettamente decrescente; sia $a\in I$; sia f derivabile in a rispetto ad $\overline{\mathbf{R}}$; sia f'(a)=0; allora f^{-1} è derivabile rispetto ad $\overline{\mathbf{R}}$ in f(a) e si ha

- [3]. (**) Teorema sul criterio del confronto per gli integrali impropri su semirette positive. Sia $a \in \mathbf{R}$; siano $f, g : [a, +\infty[\longrightarrow \mathbf{R}; \text{ siano } f, g \text{ continue}; \text{ siano } f \geq 0, g \geq 0; \text{ sia } f \leq g; \text{ allora} \dots$ RISPOSTA
- [4]. (*) **Definizione di opposto.** Sia $x \in \mathbb{R}$; allora l'opposto di x è ... RISPOSTA
- [5]. (E) Calcolare il seguente limite $\lim_{n\to\infty} \frac{n^3-2^n}{n^4+2^n}$. RISPOSTA
- [6]. (O) Funzioni elementari reali. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. * Dare la definizione di π .
 - 2. ** Tracciare il grafico della funzione seno.
 - 3. ** Scrivere la relazione fra punti con uguale seno.
 - 4. *** Dare la definizione di rapporto incrementale di una funzione in un punto. Spiegare e giustificare il significato geometrico di rapporto incrementale di una funzione in un punto.
 - 5. ** Enunciare e dimostrare il teorema di Lagrange (o del valor medio). Spiegare il significato geometrico del teorema di Lagrange.

- [1]. (***) Teorema sulla completezza di R
 rispetto all'ordine. Sia $A\subset \mathbf{R};$ sia $A\neq\emptyset;$... RISPOSTA
- [2]. (**) **Definizione di infinito.** Sia $X \in \mathcal{T}_R$; sia $A \subset X$; sia $a \in \overline{A}$; sia $f : A \longrightarrow \mathbf{R}$; si dice che f è infinita in a se ... RISPOSTA
- [3]. (**) Teorema sulla derivata del prodotto di due funzioni. Sia $A \subset \mathbf{R}$; siano $f, g : A \longrightarrow \mathbf{R}$; siano f, g derivabili in a; allora fg è derivabile in a e si ha $(fg)'(a) = \dots$ RISPOSTA
- [4]. (*) **Definizione di funzione identica di R e suo grafico.** Definire la funzione identica di **R**; tracciarne il grafico, RISPOSTA
- [5]. (E) Trovare l'interno di ${\bf N}$ (rispetto allo spazio topologico ${\bf R}$. RISPOSTA
- [6]. (O) Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. ** Enunciare e dimostrare il teorema sulla derivata del reciproco moltiplicativo di una funzione. Enunciare il teorema sulla derivata del quoziente di due funzioni.
 - $2.\ ^{**}$ Enunciare il teorema sulla derivata della composizione di due funzioni.
 - 3. ** Enunciare e dimostrare il teorema sulla derivata della funzione seno iperbolico.

- [1]. (***) Definizione di serie assolutamente convergente. Sia $(a_n)_{n\in N}$ una successione di numeri reali; si dice che la serie $\sum_{n=0}^{\infty} a_n$ è assolutamente convergente se . . . RISPOSTA
- [2]. (**) Teorema sull'integrale $\int x^n dx$, con $n \in \mathbb{N}$. Per ogni $n \in \mathbb{N}$ si ha $\int x^n dx = \dots$ RISPOSTA
- [3]. (**) Teorema: formule di duplicazione per il coseno Sia $x \in \mathbb{R}$; allora si ha $\cos(2x) = \dots$ RISPOSTA
- [4]. (*) L'insieme dei numeri reali considerato come sottoinsieme di C. Quando si considera l'insieme dei numeri reali come un sottoinsieme di C, con il simbolo R si intende l'insieme RISPOSTA
- [5]. (E) Dire per quali valori di $x \in \mathbf{R}$ la serie $\sum_{n=0}^{\infty} (7x)^n$ è convergente; per tali x determinare la somma della serie. RISPOSTA
- [6]. (O) **Derivate.** Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. *** Dare la definizione di rapporto incrementale di una funzione in un punto. Spiegare e giustificare il significato geometrico di rapporto incrementale di una funzione in un punto.
 - 2. *** Dare la definizione di funzione derivabile in un punto e di derivata di una funzione in un punto.
 - 3. * Dare la definizione di funzione derivabile in un insieme e di funzione derivata prima.
 - 4. ** Enunciare e dimostrare il teorema sulla derivata di una costante.
 - 5. * Enunciare e dimostrare il teorema sulla relazione fra estremanti relativi e derivate d'ordine superiore.

- [1]. (***) Teorema sulla completezza di R
 rispetto all'ordine. Sia $A\subset \mathbf{R};$ sia $A\neq\emptyset;$... RISPOSTA
- [2]. (**) Definizione di somma fra numeri complessi. Siano $(a,b),(c,d)\in \mathbb{C}$; definire (a,b)+(c,d). RISPOSTA
- [3]. (**) Teorema sull'integrale $\int (\alpha x + b)^n dx$, con $n \in \mathbf{Z}$. $(\forall n \in \mathbf{Z}, n \neq -1)$ $(\forall \alpha \in \mathbf{R}^*)$ $(\forall b \in \mathbf{R})$ si ha $\int (\alpha x + b)^n dx = \dots$ RISPOSTA
- [4]. (*) Definizione di funzione derivabile in un insieme. Sia $A \subset \mathbf{R}$; sia A privo di punti isolati; si dice che f è derivabile su A se . . . RISPOSTA
- [5]. (E) Calcolare il seguente integrale indefinito

$$\int \sqrt{5x+3}\,dx\;.$$

- [6]. (O) Primitive ed integrali. Derivate. Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. * Considerando la decomposizione di una funzione razionale in fratti semplici, come si calcolano $\int \frac{1}{x^2+px+q} dx$ e $\int \frac{ax+b}{x^2+px+q} dx$?
 - 2. * Considerando la decomposizione di una funzione razionale in fratti semplici, con quale procedimento si calcolano $\int \frac{1}{(x^2+px+q)^n} dx \ e \int \frac{ax+b}{(x^2+px+q)^n} dx?$
 - 3. *** Dare la definizione di integrale definito.
 - 4. ** Enunciare e dimostrare il teorema sulla linearità dell'integrale.
 - 5. *** Enunciare e dimostrare il teorema sulla relazione fra continuità e derivabilità.

- [1]. (***) Significato geometrico dell'integrale di una funzione di segno qualunque. Siano $a, b \in \mathbf{R}$; sia $f : [a, b] \longrightarrow \mathbf{R}$; sia f : [a, b
- [2]. (**) **Definizione di** $\sin z$. Sia $z \in \mathbb{C}$; definire $\sin z$. RISPOSTA
- [3]. (**) **Definizione di** Arcsin y. Sia $y \in \mathbf{R}$; supponiamo (esplicitate l'ipotesi su y) ... RISPOSTA
- [4]. (*) Teorema sulla radice n-esime di 0. Sia $n \in \mathbb{N}^*$; sia $z \in \mathbb{C}$; allora z è una radice n-esima di 0 se e solo . . . RISPOSTA
- [5]. (E) Calcolare il seguente integrale

$$\int_0^1 \frac{x}{x+2} \, dx \; .$$

- [6]. (O) **Derivate.** Rispondere alle seguenti domande, esplicitando le ipotesi:
 - 1. * Dare la definizione di incremento di una funzione in un punto. Dare la definizione di punto isolato di un insieme e di traslato di un insieme.
 - 2. *** Dare la definizione di rapporto incrementale di una funzione in un punto. Spiegare e giustificare il significato geometrico di rapporto incrementale di una funzione in un punto.
 - 3. *** Dare la definizione di funzione derivabile in un punto e di derivata di una funzione in un punto.
 - 4. * Dare la definizione di funzione derivabile in un insieme e di funzione derivata prima.
 - 5. * Enunciare e dimostrare il teorema sulla relazione fra estremanti relativi e derivate d'ordine superiore.