PROGRAMMA DI ANALISI MATEMATICA L-B

Corsi di Laurea in Ing. Civile (L-Z), Ing. Gestionale (A-K), Ing. dei Processi Gestionali (A/K) (Prof. Ravaglia)

Anno Accademico 2005/06

Simboli: I= introduzione intuitiva, D = definizione, T = teorema C = criterio deduttivo, d = dimostrazione, e = enunciato, A = assioma. Le indicazioni numeriche si riferiscono al testo Carlo Ravaglia: Analisi Matematica II. Ad esempio l'indicazione "21.1.2 Derivata direzionale: D1" significa la definizione 1 di della sottosezione (21.1.2) intitolata "Derivata direzionale" del volume Analisi Matematica II. Quando la definizione o il teorema è indicato attraverso una frase il riferimento viene messo fra parentesi. La presenza di asterischi segnala l'importanza dell'argomento; maggiore ne è il numero e più l'argomento è importante.

Presupposti di Analisi Matematica I e di Geometria

Tutti gli argomenti dei corsi di Analisi Matematica I e di Geometria aventi riferimento con argomenti del corso di Analisi Matematica II.

14 Calcolo differenziale in \mathbb{R}^N

14.1 Derivate parziali: 14.1.2 Derivata direzionale: D*** 14.1.2.1; significato geometrico della derivata direzionale (I*); 14.1.3 Derivate parziali in un punto: D*** 14.1.3.1; significato geometrico della derivata parziale (I*); 14.1.4 Gradiente in un punto: D** 14.1.4.1; 14.1.5 Matrice jacobiana in un punto: D** 14.1.5.1; 14.1.6 Funzioni di classe C¹ su aperti: D* 14.1.6.1. 14.2 Estremanti relativi e gradiente: 14.2.1 Estremanti relativi e gradiente: T*** 14.1.7.1 (d), 14.2.2 Punti critici: punto critico (D 14.2.2.1*); 14.3 Derivate parziali di ordine superiore: 14.3.2 Classi di funzioni: funzioni di classe C^n (I); 14.3.3 Teorema di Schwarz: T^{***} 14.3.3.1 (e). 14.4 Differenziabilità: 14.4.1 Funzione differenziabile in un punto: D*** 14.4.1.1; 14.4.2 Derivata di una funzione in un punto: definizione di trasformazione lineare da \mathbb{R}^N a \mathbb{R}^M (D***), D*** 14.4.2.1; 14.4.3 Differenziabilità e incremento: T*** 14.4.3.1 (d), T 14.4.3.2 (e); 14.4.4 Differenziabilità e continuità: T*** 14.4.4.1 (e); 14.4.5 Differenziabilità e derivate direzionali: T*** 14.4.5.1 (e); 14.4.6 Differenziabilità e derivate parziali: matrice di una trasformazione lineare (D**), espressione della matrice della derivata (T*** 14.4.6.1 (e)); 14.4.7 Differenziabilità per funzioni di una variabile: T* 14.4.7.1 (e); 14.4.8 Teorema del differenziale totale: T** 14.4.8.1 (e); 14.4.9 Differenzialilità della somma e del prodotto per uno scalare: T 14.4.9.1 (I)); 14.4.10 Differenziabilità per la funzione composta: T** 14.4.10.1 (I)); derivata parziale di una funzione composta (T** 14.4.10.2 (e)); **14.5 Differenziabilità per funzioni scalari**: 14.5.1 Differenziabilità di una funzione scalare in un punto: differenziale di una funzione scalare in un punto (D*** 14.5.1.1); 14.5.2 Forme lineari: vettore associato ad una forma lineare (D*), base canonica di $L(\mathbf{R}^N;R)$ (D*); espressione di una forma lineare come combinazione lineare delle proiezioni (T); 14.5.3 Vettore associato al differenziale: espressione del valore del differenziale di una funzione in un punto (T*** 14.5.3.1 (d)), vettore associato al differenziale in un punto (T** 14.5.3.2 (d)), gradiente come vettore ortogonale alle ipersuperfici di livello (I); espressione del differenziale come combinazione lineare delle proiezioni (T (14.5.3.3)). 14.5.4 Espressione canonica del differenziale: espressione canonica del differenziale (D*); 14.6 Teorema del valor medio: 14.6.1 Segmento di \mathbb{R}^{N} : D** 14.6.1.1; 14.6.4Funzioni con derivata nulla: T* 14.4.1.2 (e). 14.7 Diffeomorfismo: 14.7.1 Omeomorfismo: D* 14.7.1.1; 14.7.2 Diffeomorfismo D* 14.7.2.1; 14.7.3 Derivata della funzione inversa: D* 14.7.3.1; 14.7.4 Teorema dell'invertibilita locale: teorema dell-invertibilità locale (T* 14.7.4.1 (e)); 14.7.5 Coordinate polari piane: D** 14.7.5.1, T* 14.7.5.2, un diffeomorfismo relativo alle coordinate polari piane (T 14.7.5.3 (e)); 14.7.6 Coordinate sferiche in R³ D** 14.7.6.1, T* 14.7.6.1; 14.7.7 Coordinate cilindriche in R³: D1* 14.7.7.1; 14.8 Estremanti relativi e differenziale secondo: 14.8.1 Forme bilineari: Forma bilineare (D* 14.8.1.1), matrice di una forma bilineare (T* 14.8.1.1); 14.8.2 Differenziale secondo in un punto: D** 14.8.2.1; 14.8.3 Matrice hessiana di una funzione in un punto: D** 14.8.3.1; 14.8.4 Forme bilineari simmetriche: Forme bilineari simmetriche (D**); 14.8.5 Forme bilineari simmetriche semidefinite e definite: D** 14.8.5.1; 14.8.6 Caratterizzazione delle forme bilineari semidefinite e definite: T** 14.8.6.1 (e); 14.8.7 Caratterizzazione delle forme bilineari definite: T** 14.8.7.1 (e); 14.8.8 Estremanti relativi e differenziale secondo: T** 14.8.8.1 (e).

15 Forme differenziali lineari

15.1 Forme differenziali lineari: 15.1.1 Forma differenziale lineare: D* 15.1.1.1, 15.1.2 Campo di vettori: D* 15.1.2.1; 15.1.3 Campo di vettori associato ad una 1-forma: T* 15.1.3.1 (e), D* 15.1.3.1, T* 15.1.3.2 (d); 15.1.4 Espressione canonica di una forma differenziale: espressione di una forma differenziale attraverso il campo associato

e le forme differenziali dx_i (T** e D**); 15.1.5 Forma differenziale di classe C^p : forma differenziale continua (D 15.1.5.1), forma differenziale di classe C^p (D 15.1.5.2). 15.2 Forme differenziali esatte: 15.2.1 Forme differenziali chiuse: D*** 15.2.1.1, differenziale di una funzione come forma differenziale chiusa (T*** 15.2.1.1 (d)); 15.2.2 Forme differenziali esatte: primitiva di una forma differenziale (D*** 15.2.2.1), condizione affinchè una funzione sia una primitiva di una forma differenziale (T*** 15.2.2.1(d)), forme differenziali esatte (D*** 15.2.2.2), condizioni affinchè una forma differenziale sia esatta (T*** 15.2.2.2(d)); 15.2.3 Campi di vettori esatti: potenziale di un campo di vettori (D* 15.2.3.1), condizione affinchè una funzione sia un potenziale di un campo di vettori (T 15.2.3.1 (d)), campi di vettori esatti (D* 15.2.3.2); condizione affinchè un campo di vettori sia esatto (T* 15.2.3.2(d)); 15.2.4 Forme differenziali esatte e forme differenziali chiuse: (T*** 15.2.4.1 (d)). 15.2.5 Insieme delle primitive: (T 15.2.5.2 (e)). 15.3 Integrali di forme differenziali su traiettorie: 15.3.1 Traiettoria: D* 15.3.1.1, traccia di una traiettoria (D 15.3.1.2), punto iniziale e punto finale di una traiettoria (D* 15.3.1.3), traiettoria chiusa (D* 15.3.1.4), traiettoria in un insieme (D* 15.3.1.5), traiettoria di classe C^1 (D* 15.3.1.6); traiettoria di classe C^1 a tratti (D 15.3.1.7 (I)); 15.3.2 Integrale di una forma differenziale su una traiettoria: integrale curvilineo di una forma differenziale su una traiettoria di classe C^1 (D** 15.3.2.1); 15.4 Forme differenziali esatte e integrali su traiettorie: 15.4.1 Integrale del differenziale: T** 15.4.1.1 (d); 15.4.2 Integrale di una forma differenziale esatta: T* 15.4.2.1, integrale di una forma differenziale esatta su traiettorie con gli stessi estremi (T** 15.4.2.2(d); integrale di una forma differenziale esatta su una traiettoria chiusa (T** 15.4.2.3 (d)); una forma differenziale può essere chiusa senza essere esatta (T* (d)); 15.4.3 Forme differenziali esatte e integrali su traiettorie: (T** 15.4.3.1 (e)). 15.5 Teorema di Poincaré: 15.5.1 Insiemi stellati: insieme stellato rispetto ad un punto (D** 15.5.1.1); insieme stellato (D** 15.5.1.2); 15.5.2 Teorema di Poincaré: T** 21.5.2.1 (e); 15.5.3 Forme differenziali localmente esatte: D 15.5.3.1, forme differenziali chiuse e forme differenziali localmente esatte (T 15.5.3.1 (d)).

16 Equazioni implicite

16.1 Funzioni implicite: 16.1.1 Funzioni implicite in $\mathbf{R} \times \mathbf{R}$: soluzione di un'equazione implicita in $\mathbf{R} \times \mathbf{R}$ (D** 16.1.1.1); 16.1.2 Soluzioni massimali: D* 16.1.2.1; 16.1.3 Problema implicito: soluzione di un problema implicito in $\mathbf{R} \times \mathbf{R}$ (D** 16.1.3.1). 16.2 Funzioni implicite in $\mathbf{R}^N \times \mathbf{R}^M$: 16.2.1 Funzioni implicite in $\mathbf{R}^N \times \mathbf{R}^M$: soluzione di un'equazioni implicite in $\mathbf{R}^N \times \mathbf{R}^M$ (D* 16.2.1.1). 16.2.4 Problema implicito: D. 16.3 Teorema di Dini: 16.3.1 Teorema di Dini: teorema di Dini (T* 16.3.2.1 (e), T** 16.3.1.2 (e)).

17 Sottovarietà differenziali di \mathbb{R}^N

17.1 Sottovarietà differenziali parametrizzabili: 17.1.1 Varietà differenziali parametrizzabili di \mathbb{R}^N : D* 17.1.1.1; 17.1.2 Varietà lineari: varietà lineari (T 17.1.2.1 (e)); 17.1.3 Segmenti aperti: segmenti aperti (T 17.1.3.1 (e)); 17.1.4 Triangolo aperto: T 17.1.4.1 (e); 17.1.5 Simplesso aperto: T 17.1.5.1 (e); 17.1.7 Sottovarietà cartesiane: T 17.1.7.1 (e); 17.1.9 Spazio tangente: spazio tangente ad una sottovarietà differenziale parametrizzabile (D* 17.1.9.1). 17.2 Sottovarietà differenziali di \mathbb{R}^N : D 17.2.1.1; 17.2.2 Equazione cartesiana di una sottovarietà: T* 17.2.2.1 (e), sottovarietà definita da un'equazione f(x) = 0 (T* 17.2.2.2 (e)); 17.2.3 Spazio tangente: spazio tangente ad una sottovarietà (D 17.2.3.1)); 17.2.4 Spazio normale: spazio normale ad una varietà (D* 17.2.4.1), base per lo spazio normale (T* 17.2.4.1); 17.2.5 Varietà lineare tangente e varietà lineare normale: varietà lineare tangente (D* 17.2.5.1), varietà lineare normale (D* 17.2.5.2). 17.3 Estremanti relativi su varietà: 17.3.1 Massimi e minimi vincolati: massimi e minimi su varietà (T* 17.2.9.1 (e)); moltiplicatori di Lagrange (T* 21.2.9.2 (e)).

18. Equazioni differenziali

18.1 Equazioni differenziali del primo ordine: 18.1.1 Equazione differenziale: soluzione di un'equazione differenziale (D*** 18.1.1.1); 18.1.2 Soluzioni massimali: D* 18.1.2.1; 18.1.3 Equazione y' = f(x): T** 18.1.3.1 (d). 18.2 Equazione differenziale di forma normale: 18.2.1 Equazione differenziale di forma normale: D** 18.5.1.1; soluzione di un'equazione differenziale di forma normale (T*** 18.2.1.1); 18.2.2 Problema di Cauchy: soluzione di un problema di Cauchy per un'equazione differenziale di forma normale (T*** 18.2.2.1); 18.2.3 Problema di Cauchy per l'equazione y' = f(x): T** 18.2.3.1 (e). 18.2.4 Esistenza e unicità della soluzione del problema di Cauchy: esistenza ed unicità della soluzione massimale di un problema di Cauchy (T*** 18.2.4.1(e)). 18.3 Equazioni a variabili separate: 18.3.1 Equazioni a variabili separate: 18.3.1 Equazioni a variabili separate: 18.3.1 Equazioni a variabili separate: risoluzione di un problema di Cauchy per un'equazione a variabili separate come soluzione di un'equazione implicita (T** 18.3.2.1 (e)). 18.3.3 Equazioni a variabili separabili: 18.3.3 Equazioni differenziali

del primo ordine: 18.4.1 Sistema di equazioni differenziali del primo ordine: soluzione di un sistema di equazioni differenziali del primo ordine (D* 18.4.1.1); 18.5 Sistema di equazioni differenziali di forma normale: 18.5.1 Sistema di equazioni differenziali di forma normale: D* 18.5.1.1, T* 18.5.1.1; 18.5.2 Problema di Cauchy: problema di Cauchy per un sistema di equazioni differenziali di forma normale (D* 18.5.2.1); 18.5.3 Esistenza e unicità della soluzione del problema di Cauchy: esistenza ed unicità della soluzione massimale di un problema di Cauchy (T* 18.11.4.1 (e)). 18.6 Equazioni differenziali di ordine superiore al primo: 18.6.1 Equazioni differenziali di ordine superiore al primo: soluzione di un'equazione di ordine n (D* 18.6.1.1); 18.6.2 Equivalenza fra equazione di ordine n e sistema di n equazioni del primo ordine: equivalenza fra equazione di ordine n e sistema di n equazioni differenziali di ordine n di forma normale: 18.7.1 Equazioni differenziali di ordine n di forma normale: 18.7.1 Equazioni differenziali di ordine n di forma normale: soluzione di un'equazione di un problema di Cauchy per un'equazione differenziale di ordine n di forma normale (D* 18.7.1 Esistenza e unicità della soluzione del problema di Cauchy: esistenza ed unicità della soluzione massimale di un problema di Cauchy (T* 18.13.3.1 (e)). 18.7.5: Equazione $y^{(n)} = f(x)$: metodi per risolvere problemi di Cauchy (I): 18.7.6: Equazione f(x, y', y'') = 0: metodi per risolvere problemi di Cauchy (I).

19 Equazioni differenziali lineari

19.1 Equazioni differenziali lineari del primo ordine: 19.1.1 Equazioni differenziali lineari del primo ordine: soluzione di un'equazioni differenziali lineari del primo ordine (D*** 19.1.1.1); 19.1.2 Insieme delle soluzioni: T*** 19.1.2.1 (d), T** 19.1.2.2 (d); 19.1.3 Problema di Cauchy: soluzione di un problema di Cauchy per un'equazione differenziale lineare del primo ordine (D** 19.1.3.1), espressione della soluzione di un problema di Cauchy per un'equazione differenziale lineare del primo ordine (T** 19.1.3.1 (e)); 19.2 Sistemi di equazioni differenziali lineari: 19.2.1 Sistemi di equazioni differenziali lineari: soluzione di un sistema di equazioni differenziali lineari del primo ordine (D* 19.2.1.1); 19.2.2 Problema di Cauchy: soluzione di un problema di Cauchy per un sistema di un sistema lineare (D* 19.2.2.1); 19.2.3 Teorema fondamentale sul Problema di Cauchy: teorema di esistenza e unicità della soluzione di un problema di Cauchy per i sistemi di equazioni differenziali lineari (T* 19.2.3.2 (e)); 19.2.4 Sistemi lineari omogenei: D** 19.2.4.1; 19.2.5 Lo spazio vettoriale delle soluzioni: , T* 19.2.5.1 (d), spazio vettoriale delle soluzioni di un sistema omogeneo (T** 19.2.5.2(d)); 19.2.6 Dimensione dello spazio delle soluzioni del sistema omogeneo: T** 19.2.6.1 (e); 19.2.9 Sistema fondamentale ed integrale generale: sistema fondamentale di soluzioni (D** 19.2.9.1); integrale generale (D** 19.2.9.2); 19.2.10 Sistema omogeneo a coefficienti costanti: soluzioni reali e soluzioni complesse (D); 19.2.11 Autovalori e autovettori: D 19.2.11.1, D* 19.2.11.2, T* 19.2.11.1, D* 19.2.11.3, T 19.2.11.2, T 19.2.11.3; 19.2.12 Sistemi a coefficienti costanti e autovalori: condizione affinchè $\varphi(t)=e^{\lambda t}v$ sia una soluzione del sistema omogeneo (T* 19.2.12.1(d)), condizione affinchè $\varphi(t)=e^{\lambda t}v$ sia una soluzione non nulla del sistema omogeneo (T* 19.2.12.2 (d)); sistema fondamentale di soluzioni nel caso della matrice diagonalizzabile (T* 19.2.12.3 (e)); 19.2.13 Sistemi omogenei a coefficienti costanti reali: sistema fondamentale di soluzioni reale a partire da un sistema fondamentale di soluzioni complesso (T) (e); 19.2.14 Sistemi lineari non omogenei: T** 19.2.14.1 (e); 19.3 Equazioni differenziali lineari di ordine n: 19.3.1 Equazioni differenziali lineari di ordine n: soluzione di un'equazione differenziale lineare di ordine n (D*** 19.3.1.1); 19.3.2 Equivalenza fra equazione lineare di ordine n e sistema lineare di n equazioni del primo ordine: equivalenza fra equazione lineare di ordine n e sistema lineare di nequazioni del primo ordine (T) (e); 19.3.3 Problema di Cauchy: soluzione di un problema di Cauchy (D** 19.3.3.1), 19.3.4 Teorema fondamentale sul Problema di Cauchy: esistenza e unicità della soluzione del problema di Cauchy per le equazioni differenziali lineari di ordine n (T** 19.3.4.1 (e)); 19.3.5 Equazioni lineari omogenee di ordine n: D** 19.3.5.1; 19.3.6 Lo spazio vettoriale delle soluzioni: T** 19.3.6.1, spazio vettoriale delle soluzioni dell'equazione omogenea (T*** 19.3.6.2); 19.3.7 Dimensione dello spazio delle soluzioni dell'equazione omogenea: T*** 19.3.7.1 (e); 19.3.10 Sistema fondamentale ed integrale generale: sistema fondamentale di soluzioni (D** 19.3.10.1); integrale generale (D** 19.3.10.2); 19.3.11 Equazione omogenea a coefficienti costanti: soluzioni reali e soluzioni complesse (D); 19.3.12 Equazione caratteristica: condizione affinchè $e^{\lambda x}$ sia una soluzione dell'equazione omogenea (T** 19.3.12.1(d)); equazione caratteristica (D***); 19.3.13 Sistema fondamentale di soluzioni per l'equazione a coefficienti costanti: sistema fondamentale di soluzioni nel caso di radici distinte dell'equazione caratteristica (T* 19.3.13.1 (e)); sistema fondamentale di soluzioni nel caso di radici multiple dell'equazione caratteristica (T** 19.3.13.2 (e)); 19.3.14 Equazioni a coefficienti costanti reali: sistema fondamentale di soluzioni per le equazioni a coefficienti costanti reali (T** (e)) 19.3.15 Equazioni lineari non omogenee: T*** 19.3.15.1 (e); 19.3.16 Integrali particolari ed esponenziali: T* 19.3.16.1 (e), T* 19.3.16.2 (I), T* 19.3.16.3 (e), T* 19.3.16.4 (I).

20 Integrale di Riemann su intervalli di \mathbb{R}^N

20.1 Intervalli di R^N: 20.1.1 Intervalli di \mathbf{R}^{N} : intervallo di \mathbf{R}^{N} (D* 20.1.1.1) D 20.1.1.2; 20.1.2 Misura di un intervallo: D** 20.1.3.1, D** 20.1.3.2. **20.2 Insiemi di misura nulla**: 20.2.1 Insiemi equipotenti: insiemi equipotenti (D); 20.2.2 Insiemi numerabili: insiemi numerabili (D); 20.2.3 Somma di una famiglia numerabile di numeri reali positivi: somma di una famiglia numerabile di numeri reali positivi (D); 20.2.4 Insiemi di misura nulla: D* 20.1.4.1; 20.2.5 Definizione di quasi dappertutto: D* 20.2.8.1; 20.3 Funzioni di Riemann: 20.3.1 Funzioni continue quasi dappertutto: D* 20.3.1.1; 20.3.2 Funzioni di Riemann: D** 20.3.2.1; 20.4 Integrale secondo Riemann su un intervallo: 20.4.1 Scomposizione di un intervallo: D** 20.4.1.1; 20.4.2 Somme superiori e somme inferiori: D*** 20.4.3.1. 20.4.3 Integrale superiore e integrale inferiore: D*** 20.4.3.1, relazione fra integrale inferiore ed integrale superiore (T* 20.4.4.1 (e)); 20.4.4 Somme e funzioni di Riemann: T** 20.4.5.1 (e); 20.4.5 Integrale: integrale di una funzione di Riemann su un intervallo (D*** 20.4.5), significato geometrico di integrale (I**); 20.4.7 Somme di Riemann: scelta relativa ad una scomposizione (D* 20.4.7.1); somme di Riemann (D** 20.4.7.2), 20.4.8 Integrale come limite delle somme di Riemann rispetto all'orientazione $\delta \to 0$: T* 20.4.8.1 Riemann (e); 20.4.9 Proprietà dell'integrale: Linearità dell'integrale (T* 20.4.9.1 (e)), positività dell'integrale (T* 20.4.9.2 (e)), monotonia dell'integrale (T* 20.4.9.3 (e)), integrale di funzioni uguali quasi dappertutto (T* 20.4.9.4 (e)), valore assoluto di un integrale (T* 20.4.9.5 (e)), teorema di media integrale (T* 20.4.9.6 (e)), teorema di media integrale per funzioni continue (T* 20.4.9.7 (e)), additività dell'integrale (T* 20.4.9.8 (e)). 20.5 Integrale su intervalli di R: 20.5.1 Integrale da x a y: integrale di Riemann da x a y (D* 20.5.1.1); 20.5.2 Funzione integrale: D*** 20.5.2.1, T 20.5.1.2 (e); 20.5.3 Continuità della funzione integrale: T* 20.5.3.1 (e); 20.5.4 Teorema fondamentale del calcolo integrale: T*** 20.5.4.2 (d); 20.5.5 Formula di Leibniz-Newton: T*** 20.5.5.1 (d), integrale di una funzione continua come variazione di una primitiva (corso di Analisi L-A) come integrale di Riemann da x a y (corso di Analisi L-B) (T* 20.5.5.2(d)); 20.5.6 Alcune derivate di integrali: deriva di $\int_x^{x_0} f(T(d))$. 20.6 Integrale sul prodotto di due intervalli: 20.6.1 Integrale sul prodotto: T 20.6.2.1

21 Integrale di Lebesgue in \mathbf{R}^N

21.1 Integrale di una funzione continua positiva su un compatto: 21.1.1 Integrale di una funzione continua su un compatto: D* 21.1.1.1; 21.2 Insiemi misurabili: 21.2.1 Insiemi misurabili: D* 21.2.1.1; 21.3 Funzioni misurabili secondo Lebesgue: 21.3.1 Funzioni misurabili: D* 21.3.1.1; 21.3.4 Parte positiva e parte negativa: D* 21.3.4.1, T* 21.3.4.1 (e), D* 21.3.4.3, T* 21.3.4.2 (e), T 21.3.4.3 (e); **21.4 Integrale di funzioni** misurabili positive: 21.4.1 Integrale di una funzione misurabile positiva: D* 21.4.1.1; 21.4.2 Integrale di una funzione misurabile positiva a valori in $\overline{\mathbf{R}}$: D* 21.4.2.1, definizione di integrale di una funzione misurabile positiva a valori in $\overline{\mathbf{R}}$ (D*); 21.4.3 Integrali di funzioni positive convergenti: D* 21.4.3.1; 21.4.5 Additività numerabile dell'integrale di funzioni positive: T 21.4.5.1 (I); 21.5 Misura di un insieme misurabile: 21.5.1 Misura di un insieme misurabile: D** 21.5.1.1; 21.5.2 Insiemi integrabili: D* 21.5.2.1. 21.7 Limite sotto il segno di integrale: 21.7.2 L'integrale di Riemann come integrale di Lebesgue: T 21.7.2.1 (e); 21.7.3 Integrali impropri e integrali di Lebesgue di funzioni misurabili positive: T 21.7.3.1 (e); 21.8 Integrale sul prodotto di insiemi misurabili: 21.8.1 Prodotto di due insiemi misurabili: T 21.8.1.1 (e); 21.8.2 Integrale di una funzione definita quasi dappertutto: integrale di una funzione definita quasi dappertutto (D); 21.8.3 Integrale sul prodotto di due insiemi misurabili: T** 21.8.3.1 (e); 21.8.4 Proiezioni in un prodotto cartesiano: D 24.8.4.1; 21.8.5 Immagine di un punto in un grafico: D* 21.8.5.1; 21.8.6 Funzioni $F(x,\cdot)$ e $F(\cdot,y)$: D 21.8.6.1: 21.8.7 Integrale su un sottoinsieme del prodotto cartesiano: T** 21.8.7.1 (e); 21.8.8 Formule di riduzione per gli integrali doppi: T*** 21.8.8.1 (d), T*** 21.8.8.2 (d); 21.8.9 Formule di riduzione per gli integrali tripli: T*** 21.8.9.1 (d), T*** 21.8.9.2 (d). 21.9 Cambiamento di variabile negli integrali: 21.9.1 Cambiamento di variabile negli integrali su insiemi misurabili: T*** 21.11.2.1 (e); 21.9.2 Parametrizzazione in misura: D 21.11.3.1 (I); 21.10 Funzioni integrabili secondo Lebesgue: 21.10.1 Funzioni integrabili secondo Lebesgue: D* 21.12.1.1, T** 21.12.1.2 (d); 21.10.2 Criterio di integrabilità: T 21.10.2.1 (e); 21.10.3 Integrale di una funzione integrabile: T* 21.10.3.1 (e), D* 21.10.3.1. 21.11 Applicazioni geometriche: 21.11.3 Area della regione limitata da un'ellisse: D 21.11.3.1, T* 21.11.3.1 (d); 21.11.9 Volume del cono: D* 21.13.9.1, T* 21.13.9.1 (d); 21.11.10 Volume della regione limitata da un'ellissoide: D 21.11.10.1, T* 21.11.10.1 (d);

21.11.12 Volumi di solidi di rotazione: D* 21.11.12.1, volume di un solido di rotazione (T* 21.11.12.1 (d)); 21.11.13 Baricentro: D* 21.11.13.1; 21.11.14 Teorema di Guldino: T* 21.11.14.1 (d).

22 Integrazione di funzioni su sottovarietà di \mathbb{R}^N

22.1 Graamiano di m vettori: 22.1.1 Graamiano di m vettori: D* 22.1.1.1; 22.1.2 Quadrato simbolico di una matrice: D* 22.1.2.1, graamiano e quadrato simbolico (T* 22.1.2.1 (e)); 22.1.3 Prodotto vettoriale di n-1 vettori:

D* 22.1.3.1, T* 22.1.3.1 T 22.1.3.2 (e), T 22.1.3.3 (e), prodotto vettoriale e graamiano (T* 22.1.3.4 (e)). 22.2 Integrazione su sottovarietà parametrizzabili: 22.2.2 Integrale di una funzione misurabile positiva su un sottoinsieme di una sottovarietà parametrizzabile: D** 22.2.3.1; 22.2.3 Integrale curvilineo: integrali curvilinei di funzioni (T*** 22.2.3.1 (d)); 22.2.4 Integrale di superficie: simboli di Gauss E, F, G (D*** 22.2.4.1), integrali di superficie di funzioni (T*** 22.2.4.1(d)); 22.2.5 Integrale di ipersuperficie: T* 22.2.5.1; 22.2.6 Integrale su una ipersuperficie cartesiana: integrale di funzioni su una varietà cartesiana (T** 22.2.6.1 (e)); 22.2.7 Misura di un insieme su una sottovarietà parametrizzabile: misura di un sottoinsieme misurabile di una varietà parametrizzabile (D*** 22.2.7.1); 22.2.8 Funzioni integrabili su sottoinsiemi di una sottovarietà parametrizzabile: funzione integrabile secondo Lebesgue su un sottoinsieme di una varietà parametrizzabile e integrale di una funzione integrabile su un sottoinsieme di una varietà parametrizzabile (D* 22.2.8.1). 22.3 Integrale di funzioni su sottovarietà: 22.3.1 Integrale di funzioni su sottovarietà (I) 22.4 Sottovarietà lipschitziane: 22.4.1 Sottovarietà lipschitziane: (I) 22.4.2 Integrale di una funzione su una sottovarietà lipschitziana: (I) 22.5 Sottovarietà di \mathbb{R}^N con bordo: 22.5.1Semispazio di riferimento di \mathbb{R}^n : D 22.5.1.1 22.5.2 Sottovarietà differenziale di \mathbb{R}^N con bordo: (I) 22.5.3 Punti interni e punti di bordo di una sottovarietà con bordo: (I) 22.4.2 Integrale di una funzione su una sottovarietà differenziale con bordo: (I) 22.4.2 Sottovarietà lipschitziana con bordo: (I) 22.6 Applicazioni geometriche: 22.6.2 Lunghezza di una circonferenza: T** 22.6.2.1; 22.6.4 Lunghezza della cicloide: T* 22.6.4.1; 22.6.5 Lunghezza di un'elica circolare: T* 22.6.5.1; 22.6.9 Area di una superficie cilindrica: T** 22.6.9.1; 22.6.10 Area di una superficie conica: T** 22.6.10.1; 22.6.11 Area di una superficie sferica: T** 22.6.11.1; 22.6.13 Area di una superficie di rotazione: D* 22.6.13.1, T* 22.6.13.1; 22.6.14 Baricentro di un sottoinsieme compatto di una sottovarietà: D* 22.6.14.1; 22.6.15 Teorema di Guldino per le superfici di rotazione: T* 22.6.15.1.

23 Integrale di forme differenziali

23.1 Relazione di equivalenza: 23.1.1 Relazione di equivalenza: relazione di equivalenza (D) (I); 23.1.2 Classi d'equivalenza: classi d'equivalenza (D) (I); 23.1.3 Insieme quoziente: insieme quoziente (D) (I). 23.2 Spazi vettoriali orientati: 23.2.1 Orientazione di uno spazio vettoriale: basi equivalenti (D* 23.2.1.1), D 23.2.1.2, spazi vettoriali orientati (D), orientazione canonica di \mathbb{R}^N (D*). 23.3 Sottovarietà parametrizzabili orientate 23.3.1 Sottovarietà parametrizzabile orientata: parametrizzazioni equivalenti (D); orientazione di una varietà parametrizzabile (D); varietà parametrizzabile orientata (D); 23.3.2 Orientazione dello spazio tangente: D* 23.3.2.1; 23.3.3 Versore tangente: D* 23.3.3.1, espressione del versore tangente (T* 23.3.3.1 (d)); 23.3.4 Orientazione dello spazio normale: D* 23.3.4.1; 23.3.5 Versore normale: D* 23.3.5.1, espressione del versore normale (T* 23.3.5.1 (d)). 23.3.7 Sottovarietà orientabile:(I). 23.4 Gli spazi vettoriali $A_m(\mathbb{R}^N)$: 23.4.3 Forme multilineari: D 23.4.3.1; 23.4.4 Forme multilineari alternanti: definizione di forma m-lineare alternante (D), prodotto esterno di m forme lineari (D); 23.4.5 Lo spazio vettoriale $A_m(\mathbf{R}^n; R)$: base dello spazio vettoriale delle forme *m*-lineari alternanti (T 23.4.5.1 (e)); 23.4.6 Base di $A_n(\mathbb{R}^n)$: T 23.4.6.1 (d),D 23.4.6.1; 23.4.7 Base di $A_{n-1}(\mathbb{R}^n;R)$: le n-1-forme lineari \hat{p}_i (D), T 23.4.7.1 (e), base canonica complementare di $A_{n-1}(\mathbf{R}^n)$ D 23.4.7.1. **23.5** m-forme differenziali: 23.5.1 m-forma differenziale: D* 23.1.1; 23.5.2 Espressione di una m-forma differenziale: espressione di una m-forma attraverso le forme differenziali dx_i (T* (d)); 23.5.3 Funzione associata ad una N-forma: funzione associata ad una N-forma (D); 23.5.4 Famiglia complementare associata a una N-1-forma: le N-1-forme $d\hat{x}_i$ (D), espressione di una N-1forma attraverso le $d\hat{x}_i$ (T (d)), campo di vettori complementare associato a una N-1-forma (D); 23.5.5 Campo di vettori complementare per N=3: 23.6 Integrale su una sottovarietà parametrizzabile: 23.6.2 Integrale di una m-forma: T^{**} 23.6.2.1; 23.6.3 Integrale di una 1-forma: T^{***} 23.6.3.1 (d); 23.6.4 Integrale di una 2-forma: T^{**} 23.1.7.1 (d); 23.6.6 Varietà differenziali di dimensione N: varietà differenziali di dimensione N (T,I), orientazione canonica di un aperto di \mathbb{R}^N (D, I); 23.6.7 Integrale di una N-forma: T 23.6.7.1 (d); 23.9 Lavoro di un campo di vettori: 23.9.1 Lavoro di un campo di vettori: D* 23.9.1.1; 23.9.2 Lavoro di un campo di vettori e forma differenziale associata al campo: T* 23.9.2.1 (d)). 23.10 Flusso di un campo di vettori: 23.10.1 Flusso di un campo di vettori: D* 23.10.1.1; 23.10.2 Flusso di un campo di vettori e forma differenziale associata in modo complementare al campo: $T^* 23.10.2.1$ (e)).

24 Teorema di Stokes su sottovarietà con bordo

24.1 Orientazione indotta sul bordo: 24.1.2 Orientazione indotta sul bordo: orientazione indotta sul bordo (I); 24.1.2 Orientazione indotta sul bordo di sottovarietà di dimensione 1: orientazione indotta sul bordo di sottovarietà di dimensione 2: orientazione indotta sul bordo di sottovarietà di dimensione 2: orientazione indotta sul bordo di sottovarietà di dimensione 2: orientazione indotta sul bordo di un dominio regolare: orientazione indotta sul bordo di un dominio regolare: orientazione indotta sul bordo di una m-forma: 24.2.1 Differenziale esterno di una m-forma: D* 24.2.1.1. **24.3 Teorema di Stokes**: 24.3.1 Teorema di Stokes: T** 24.3.1.1 (e); 24.3.2 Teorema di Stokes applicato alle sottovarietà di dimensione 1: T* 24.3.2.1 (e, I); T* 24.3.2.2 (e, I) 24.3.3 Formula di

Green nel piano: T* 24.3.3.1 (d); 24.3.4 Rotore di un campo: T* 24.3.3.1 (d), D* 24.3.4.1; 24.3.5 Formula di Stokes per superfici di ${\bf R}^3$: T* 24.3.5.1 (d); 24.3.6 Divergenza di un campo di vettori: T* 24.3.6.1 (e), D* 24.3.6.1; 24.3.7 Teorema della divergenza T* 24.3.7.1 (e). 24.3.8 Misura di domini regolari: T 24.3.8.1 (e).