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Abstract

We give an upper bound for the measure of the coincidence set of the
solution of a variational inequality with constant obstacle, related to an
elliptic second order operator with lower order terms.

Riassunto

Problema con ostacolo costante e riordinamenti. Si dà una maggio-
razione della misura dell’insieme di contatto della soluzione di una dise-
quazione variazionale con ostacolo costante, con un operatore ellittico del
secondo ordine contenente i termini di ordine inferiore.

Key words: Schwarz symmetrization–Variational elliptic inequalities.

1 Introduction

We consider the obstacle problem

u ∈ K, (∀v ∈ K)
∫

Ω

(
a grad u

∣∣grad (v − u)
)

+
∫

Ω

(
b
∣∣gradu

)
(v − u)+

+
∫

Ω

cu(v − u) ≥
∫

Ω

f(v − u),

where the operator is elliptic and

K = {v ∈ H1
0 (Ω); v ≤ k}, k > 0 .

Our aim is to establish some properties of a solution of the problem, by
Schwarz symmetrization.

This technique has been developped first by Talenti [31] to compare the
solution of a homogeneous Dirichlet problem, whose equation does not include
first order terms, by the solution of a suitable homogeneous Dirichlet problem
with spherical symmetrical data; afterwards this method has been fitted to more
general cases: see Alvino-Trombetti [5, 6], Bandle [9], Chiti [14], P. L. Lions [27],
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Talenti [32], Alvino-Lions-Trombetti [1, 3, 4], Ferone-Posteraro [19], Giarruso-
Trombetti [22], Trombetti-Vasques [33]; in particular Alvino-Lions-Trombetti
[3] establish comparison results concerning equations with all lower terms.

Comparison results for solution to variational inequalities were first estab-
lished by Bandle-Mossino [10], who studied an obstacle problem with an elliptic
operator without fist order terms and with the obstacle vanishing on the bound-
ary (i.e. the obstacle ψ ∈ H1

0 (Ω). Results for a complete second order elliptic
inequality have been achieved by Alvino-Matarasso-Trombetti [7]. Other results
have been established by Posteraro-Volpicelli [30]. In the mentioned papers the
authors always suppose that the obstacle vanishes on the boundary; with this
hypothesis they can choose in the variational inequality, as test functions, the
two functions u± (u− t)+, obtaining from the inequality an equality and then
applaying the methods used for the equations. Besides the comparison results,
they obtain in a particular case a lower bound for the measure of the coincidence
set.

The obstacle problem, when the obstacle does not vanish on the boundary,
has been studied by Maderna-Salsa [28] for a variational inequality containing
only second order terms, with the obstacle constant on the boundary and with
regular data. By a replacement of the unknown function, they first obtain the
constant obstacle problem

u ∈ K, (∀v ∈ K)
∫

Ω

(
a gradu

∣∣grad (v − u)
) ≥

∫

Ω

f(v − u) ,

where
K = {v ∈ H1

0 (Ω); v ≤ 1} ;

then, introducing a function Φ (the contact funtion) depending only on the
measure of Ω and on f , they found that the unique solution of the equation
Φ(λ) = 1 is an upper bound of the measure of the coincidence set.

For a parabolic obstacle problem see Diaz-Mossino [18].

2 Hypothesis and results

Let Ω an open boundet set of RN , (N ≥ 2) with regular boundary. If S is a
(Lebesque) measurable subset of RN , |S| is the measure of S. If r > 0 and
a ∈ RN , B(a, r) (resp. B′(a, r)) is the open (resp. closed) ball of RN centered
in a and with radius r. VN is |B(0, 1)|. If φ : Ω −→ R is measurable the
(decreasing) distribution function of φ is the function

µφ : R −→ [0, |Ω|], t −→ |{x ∈ Ω; φ(x) > t}| ;

the decreasing rearrangement of φ is the function

φ∗ : [0, |Ω|] −→ R, s −→ sup({t ∈ R;µφ(t) ≥ s}) .
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For simplicty, we put φ+
∗ for the decreasing rearrangement (φ+)∗ of the positive

part φ+ of φ.
For an exhaustive statement of the proprieties of rearrangements, see [2], [9],

[15], [23], [24], [32], [29] for exemple.
We recall that if φ ∈ L1(Ω), then φ∗ ∈ L1([0, |Ω|]) and that

∫

A

f ≤
∫ |A|

0

f∗ , (1)

for a measurable subset A of Ω. As a conseguence of Polya-Szego theorem, we
recall that if φ ∈ H1

0 (Ω) and if φ ≥ 0, then φ∗ ∈ C(]0, |Ω|]), with φ∗(|Ω|) = 0.
Let L the differential second order operator

L : H1
0 (Ω) −→ H−1(Ω), v −→ −div (agrad v) +

(
b
∣∣grad v

)
+ cv ,

where a = (ai,j)i,j=1,2,...,N , (bi)i=1,2,N , and where we suppose the coefficients
aij , bi, c ∈ L∞(Ω) and satisfying the following conditions

(∀h ∈ RN )
(
a(x)h

∣∣h) ≥ M |h|2, M > 0 (2)
|b(x)| ≤ B, B ≥ 0 (3)
c(x) ≥ 0 (4)

for almost all x ∈ Ω.
Let k > 0 the costant we choose as obstacle and let

K = {v ∈ H1
0 (Ω); v ≤ k} (5)

the related closed, convex subset of H1
0 (Ω).

Let u ∈ K a solution of the variational inequality

(∀v ∈ K)
∫

Ω

(
a grad u

∣∣grad (v − u)
)

+
∫

Ω

(
b
∣∣grad u

)
(v − u)+

+
∫

Ω

cu(v − u) ≥
∫

Ω

f(v − u) , (6)

with f ∈ L2(Ω), such that f+ 6= 0.
Let I the coincidence set of u.
We need some regularity condition on u.
We suppose u ∈ C1(Ω); for this, it is sufficient to suppose the coefficients

aij ∈ C1(Ω), the bilinear form associated to L coercive and f ∈ Lp(Ω) with
p > N [12].

We also suppose that ∂I is a regular hypersurface of RN ; this condition is
more delicate; see [25], [13], [20], [8] for exemple, for this topic.

From the above hypotheses it follows at once:

(∀v ∈ H1
0 (Ω))

∫

Ω

(
a grad u

∣∣grad v
)

+
∫

Ω

(
b
∣∣gradu

)
v =

∫

Ω – I

(f − cu)v . (7)
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In reality, as the reader will be able to observe, we need the above regular-
ity conditions only in order that the equality in (7) is true for particular test
functions.

So we could replace these hypotheses with (7).
The basic result of the paper, of which the other ones are direct consequence,

is the following inequality on u+
∗ :

u+
∗ (s) ≤ N−2V

− 2
N

N M−1

∫ |Ω|

s

σ
2
N−2 exp

(
V
− 1

N

N M−1Bσ
1
N

)
·

·
(∫ σ

|I|
f+
∗ (r − |I|) exp

(
−V

− 1
N

N M−1Br
1
N

)
dr

)
dσ , (8)

for every s ∈]|I|, |Ω|].
This inequality leads on the consideration of the following functions:

Ψ : {(t, λ) ∈ [0, |Ω|]× [0, |Ω|]; t ≥ λ} −→ R, t −→

N−2V
− 2

N

N M−1

∫ |Ω|

t

σ
2
N−2 exp

(
V
− 1

N

N M−1Bσ
1
N

)
·

·
(∫ σ

λ

f+
∗ (r − λ) exp

(
−V

− 1
N

N M−1Br
1
N

)
dr

)
dσ ,

and

Φ :]0, |Ω|] −→ R, t −→ Ψ(t, t) .

We call Φ contact function. For B = 0, Φ is the function considerated in
[28].

As a direct consequence of (8) we obtain

k ≥ sup(Φ) ⇒ |I| = 0 and k < sup(Φ) ⇒ |I| ≤ Φ−1(k) .

From this, we give a sufficient condition for |I| = 0 in terms of Lp norms of
f+.

We compare u+
∗ with the decreasing rearrangements of the solutions of ho-

mogeneous Dirichlet problems with spherical symmetrical data.
Lastly we extend the results to an obstacle problem where the obstacle is

constant only on the boundary of Ω.

3 An inequality on u+
∗

The inequalty stated by the following theorem is the base for all other results.
In the proof we applay to this case the methods of Talenti [32] and Alvino-
Lions-Trombetti [4].
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Theorem 1 Let u solution of (6), where K is fixed by (5); let u satisfy (7);
then for every s ∈]|I|, |Ω|] we have

u+
∗ (s) ≤ N−2V

− 2
N

N M−1

∫ |Ω|

s

σ
2
N−2 exp

(
V
− 1

N

N M−1Bσ
1
N

)
·

·
(∫ σ

|I|
f+
∗ (r − |I|) exp

(
−V

− 1
N

N M−1Br
1
N

)
dr

)
dσ . (9)

Proof. Let t ∈]0, k[. We have (u− t)+ ∈ H1
0 (Ω). Choosing in (7) v = (u− t)+,

we find∫

Ω,u>t

(
a grad u

∣∣gradu
)

+
∫

Ω,u>t

(
b
∣∣gradu

)
(u− t)+

+
∫

Ω – I,u>t

cu(u− t) =
∫

Ω – I,u>t

f · (u− t) .

Then for almost all t ∈]0, k[ we have

− d

dt

∫

Ω,u>t

(
a gradu

∣∣gradu
)

=

= −
∫

Ω,u>t

(
b
∣∣gradu

)−
∫

Ω – I,u>t

cu +
∫

Ω – I,u>t

f . (10)

From the ellipticy condition (2), using the incremental ratios, we obtain

−M
d

dt

∫

Ω,u>t

|gradu|2 ≤ − d

dt

∫

Ω,u>t

(
a gradu

∣∣gradu
)

. (11)

for almost all t ∈]0, k[.
Now we find upper bounds for the terms of the second side of (10).
From (3), using the coarea fomula [21], we find

−
∫

Ω,u>t

(
b
∣∣grad u

) ≤ B

∫

Ω,u>t

|gradu| ≤

≤ B

∫ k

t

(
− d

ds

∫

Ω,u>s

|gradu|
)

ds . (12)

Using the incremental ratios, by Schwarz inequality, we find

− d

ds

∫

Ω,u>s

|gradu| ≤
(
− d

ds

∫

Ω,u>s

|grad u|2
) 1

2

(−µ′u+(s))
1
2 . (13)

Then from (12) we find

−
∫

Ω,u>t

(
b
∣∣grad u

) ≤

≤ B

∫ k

t

(
− d

ds

∫

Ω,u>s

|grad u|2
) 1

2

(−µ′u+(s))
1
2 ds . (14)
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By coarea formula [21] we find

− d

ds

∫

Ω,u>s

|gradu| ds = PΩ(u > s) = PRN (u > s) (15)

for almost all s ∈]0, k[, where PΩ(u > s) (resp. PRN (u > s) is De Giorgi
perimeter of {x ∈ Ω; u(x) > s} relative to Ω (resp. RN ).

By the isoperimetric inequality we have

NV
1
N

N (µu+(s))1−
1
N ≤ PRN (u > s) (16)

for almost all s ∈]0, k[.
From (13), (15), (16) we find

NV
1
N

N (µu+(s))1−
1
N ≤

(
− d

ds

∫

Ω,u>s

|gradu|2
) 1

2

(−µ′u+(s))
1
2 (17)

and therefore
(

d

ds

∫

Ω,u>s

|grad u|2
) 1

2

(−µ′u+(s))
1
2 ≤

≤ N−1V
− 1

N

N (µu+(s))
1
N−1(−µ′u+(s))

(
− d

ds

∫

Ω,u>s

|grad u|2
)

for almost all s ∈]0, k[.
Then from (14) we have

−
∫

Ω,u>t

(
b
∣∣grad u

) ≤ N−1V
− 1

N

N B

∫ k

t

(µu+(s))
1
N−1(−µ′u+(s))·

·
(
− d

ds

∫

Ω,u>s

|gradu|2
)

ds . (18)

By (1) we have

∫

Ω – I,u>t

f ≤
∫

Ω – I,u>t

f+ ≤
∫ µu+ (t)−|I|

0

f+
∗ . (19)

From (10), by (11), (18), (19) and (4), we find

− d

dt

∫

Ω,u>t

|grad u|2 ≤ N−1V
− 1

N

N M−1B

∫ k

t

(µu+(s))
1
N−1(−µ′u+(s))·

·
(
− d

ds

∫

Ω,u>s

|gradu|2
)

ds + M−1

∫ µu+ (t)−|I|

0

f+
∗ (20)
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for almost all t ∈]0, k[.
Applying to (20) Gronwall lemma, we find

− d

dt

∫

Ω,u>t

|gradu|2 ≤

≤ M−1

∫ µu+ (t)−|I|

0

f+
∗ + N−1V

− 1
N

N M−2B exp
(
V
− 1

N

N M−1B(µu+(t))
1
N

)
·

·
∫ µu+ (t)

|I|

(∫ σ−|I|

0

M−1f+
∗

)
σ

1
N−1 exp

(
−V

− 1
N

N M−1Bσ
1
N

)
dσ (21)

for almost all t ∈]0, k[.
Setting in the last integral r = σ−|I| and integrating by parts, (21) becomes

− d

dt

∫

Ω,u>t

|grad u|2 ≤ M−1 exp
(
V
− 1

N

N M−1B(µu+(t))
1
N

)
·

·
∫ µu+ (t)−|I|

0

f+
∗ (r) exp

(
−V

− 1
N

N M−1B(r + |I|) 1
N

)
dr .

Multiplying by −µ′u+(t) and using (17) we find

N2V
2
N

N (µu+(t))2−
2
N ≤ M−1 exp

(
V
− 1

N

N M−1B(µu+(t))
1
N

)
·

·
(∫ µu+ (t)−|I|

0

f+
∗ (r) exp

(
−V

− 1
N

N M−1B(r + |I|) 1
N

)
dr

)
(−µ′u+(t)) (22)

for almost all t ∈]0, k[.
Hence we have

−(u+
∗ )′(s) ≤ N−2V

− 2
N

N M−1s
2
N−2 exp

(
V
− 1

N

N M−1Bs
1
N

)
·

·
∫ s

|I|
f+
∗ (r − |I|) exp

(
−V

− 1
N

N M−1Br
1
N

)
dr (23)

for almost all s ∈]|I|, |Ω|].
By u+ ∈ H1

0 (Ω) we have u+
∗ ∈ C(]0, |Ω|) and u+

∗ (|Ω|) = 0.
From (23), integrating on [s, |Ω|], we obtain (9).

Remark 1 We remark that in regular hypotheses, for exemple if ai,j ∈ C1(Ω),
u ∈ C2(Ω – I) and ∂I is a regular hypersurface, (9) may be obtained in a faster
manner. In fact, setting for all t ∈ [0, k]

Et = {x ∈ Ω; u(x) > t} ,
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on Et – I we have L(u) = f . For almost all t ∈ [0, k], ∂Et is a regular hy-
persurface of RN ; so, integrating on Et – I and using grad u = 0 on ∂I, we
find ∫

∂Et

(
a gradu

∣∣ gradu

|gradu|
)
dH +

∫

Et

(
b
∣∣gradu

)
+

∫

Et – I

cu =
∫

Et – I

f ,

where H is the canonic measure on ∂Et.
From this we find

M

∫

∂Et

|gradu| dH ≤
∫ µu+ (t)−|I|

0

f∗+(r) dr + B

∫

Et

|gradu| . (24)

For almost all s ∈ [t, k], we have

µ′u+(s) =
∫

∂Es

1
|grad u| dH ;

so we find
∫

Et

|grad u| =
∫ k

t

PRN (u > s) ds ≤
∫ k

t

(∫

∂Es

|gradu| dH

) 1
2

(−µ′u+(s))
1
2 ds .

(25)
By the isoperimetric inequality we have

NV
1
N

N (µu+(s))1−
1
N ≤ PRN (u > s) ≤

(∫

∂Es

|grad u| dH

) 1
2

(−µ′u+(s))
1
2 . (26)

From (25) and (26) we find
∫

Et

|gradu| ≤ N−1V
− 1

N

N

∫ k

t

(∫

∂Es

|gradu| dH

)
(µu+(s))

1
N−1(−µ′u+(s)) ds .

(27)
So from (24) and (27) we find

M

∫

∂Et

|gradu| dH ≤
∫ µu+ (t)−|I|

0

f∗+(r) dr+

+N−1V
− 1

N

N B

∫ k

t

(µu+(s))
1
N−1

(∫

∂Es

|gradu| dH

)
(−µu+)′(s)) ds , (28)

Using Gronwall lemma to (28), we find

M

∫

∂Et

|gradu| dH ≤ M−1 exp
(
V
− 1

N

N M−1B(µu+(t))
1
N

)
·

·
∫ µu+ (t)−|I|

0

f+
∗ (r) exp

(
−V

− 1
N

N M−1B(r + |I|) 1
N

)
dr . (29)

Multiplying by −µ′u+(t) and using again the isoperimetric inequality from
(29) we find (22).
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4 Consequences

The results of this sections express relations between k and |I|; we find in
particular an upper bound for |I|.

The results are generalisations of those of [28], that we obtain for B = 0.

Corollary 1 Let |I| 6= 0; then we have:

k ≤ N−2V
− 2

N

N M−1

∫ |Ω|

|I|
σ

2
N−2 exp

(
V
− 1

N

N M−1Bσ
1
N

)
·

·
(∫ σ

|I|
f+
∗ (r − |I|) exp

(
−V

− 1
N

N M−1Br
1
N

)
dr

)
dσ . (30)

Proof. By µu+(|I|−) = k and continuity of u+
∗ at |I|, it follows that u+

∗ (|I|) = k;
then, choosing in (9) s = |I|, we obtain (30).

If we consider in the second side of (30) |I| as a variable, we obtain the
function Φ, that we have called contact funtion [28]. Hence relation (30) becomes

k ≤ Φ(|I|) . (31)

From the hypothesis that f+ 6= 0, it follows that the contact function is
strictly decreasing.

In fact for every t ∈]0, |Ω|], setting

Dt = {(σ, s); t ≤ σ ≤ |Ω|, 0 ≤ s ≤ σ − t} ,

we have

Φ(t) = N−2V
− 2

N

N M−1

∫ ∫

Dt

σ
2
N−2 exp

(
V
− 1

N

N M−1Bσ
1
N

)
f+
∗ (s)·

· exp
(
−V

− 1
N

N M−1B(s + t)
1
N

)
dσds ;

let t′, t ∈]0, |Ω|], t′ < t; we have Dt ⊂ Dt′ ; so we have

Φ(t′)− Φ(t) ≥ N−2V
− 2

N

N M−1

∫ ∫

Dt′
σ

2
N−2 exp

(
V
− 1

N

N M−1Bσ
1
N

)
f+
∗ (s)·

·
(
exp

(
−V

− 1
N

N M−1B(s + t′)
1
N

)
− exp

(
−M−1BV

− 1
N

N (s + t)
1
N

))

dσds ≥ 0 ;

since f+ 6= 0, the integral is not 0; so we have Φ(t′)−Φ(t) > 0; this proves that
Φ is strictly decreasing.

Assumed Φ :]0, |Ω|] −→ [0, sup(Φ)[, we can consider Φ−1.
From (31) we obtain the following corollary.
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Corollary 2 We have:

1. k ≥ sup(Φ) ⇒ |I| = 0;

2. k < sup(Φ) ⇒ |I| ≤ Φ−1(k).

Proof. Let k ≥ sup(Φ); suppose |I| 6= 0; since Φ is strictly decreasing, by (31)
we have

k ≤ Φ(|I|) < lim
t→0

Φ(t) = sup(Φ) ;

so we have k < sup(Φ), contradiction. This proves (1).
Let k < sup(Φ). If |I| = 0, we have |I| ≤ Φ−1(k). Supposed |I| 6= 0, by (31)

we have k ≤ Φ(|I|), and then |I| ≤ Φ−1(k). This proves (2).

As in [28], by Hölder inequality, the condition k ≥ sup(Φ), may be easily
obtained for p > N

2 as conseguence of inequalities on Lp norms of f+.

Corollary 3 Let p > N
2 ; let f+ ∈ Lp(Ω); let

‖f+‖p ≤ kNV
2
N

N Mp−1(2p−N) exp
(
−V

− 1
N

N M−1B|Ω| 1
N

)
|Ω| Np

2p−N ;

then we have |I| = 0.

Remark 2 The second side of (9) may be related to the solution of a homoge-
neous Dirichlet problem with spherical symmetrical data.

For this, we set

R = N
√
|Ω|/VN and Ω̃ = B(0, R) ,

so that |Ω| = |Ω̃|.
For every λ ∈ [0, |Ω|], we set

Uλ : Ω̃ −→ R, x −→
{

Ψ(λ, λ) for VN |x|N ≤ λ
Ψ(VN |x|N , λ) for λ < VN |x|N < R

and

fλ : Ω̃ −→ R, x −→
{

0 for VN |x|N ≤ λ
f+
∗ (VN |x|N − λ) for λ < VN |x|N < R

For every λ ∈ [0, |Ω|] we have Uλ ∈ H1
0 (Ω̃) and Uλ is the solution of the

homogeneous Dirichlet problem

(∀v ∈ H1
0 (Ω̃)M

∫

Ω̃

(
grad Uλ

∣∣grad v)
)
+

+B

∫

Ω̃

( x

|x|
∣∣gradUλ(x)

)
v(x) dx =

∫

Ω̃

fλv

10



[32].
Furthermore the decreasing rearrangement of Uλ is related to Φ; precisely

we have

Uλ∗(s) =
{

Φ(λ) for 0 < s ≤ λ
Φ(s) for λ < s < |Ω| .

As Uλ ∈ H2(Ω̃), we also note that, for λ 6= 0, Uλ is solution of the constant
obstacle problem with spherical symmetrical data

K̃ = {v ∈ H1
0 (Ω̃); v ≤ Φ̃(λ)} ,

(∀v ∈ K̃)M

∫

Ω̃

(
gradU

∣∣grad (v − U)
)
+

+B
∫
Ω̃

(
x
|x|

∣∣gradU(x)
)
(v(x)− U(x)) dx ≥ ∫

Ω̃
gλ(v − U) .

where gλ ∈ L2([0, |Ω|]), gλ ≥ 0, gλ(x) = fλ(x) for λ < VN |x|N < R, gλ(x)
arbitrary for VN |x|N ≤ λ.

As f+ 6= 0, the coincidence set of Uλ is B′(0, N
√

λ/VN ), whose measure in λ.
It is now possible to interpret (9) as an inequality between decreasing rear-

rangements of solutions of constant obstacle problems.
In fact for λ = |I|, (9) gives at once

(∀s ∈]0, |Ω|] u+
∗ (s) ≤ U|I|∗(s) .

We remark that we compare the decreasing rearrangements of the solutions
of two constant obstacle problems with different value of the constants.

We have

0 ≤ λ1 ≤ λ2 ≤ |Ω| ⇒ (∀s ∈]0, |Ω|) Uλ2∗(s) ≤ Uλ1∗(s) .

In fact, let s ∈ [λ2, |Ω|]; let us prove Uλ2∗(s) ≤ Uλ1∗(s) i. e.

∫ σ

λ1

exp
(
−V

− 1
N

N M−1Br
1
N

)
f+
∗ (r − λ1) dr ≥

≥
∫ σ

λ2

exp
(
−V

− 1
N

N M−1Br
1
N

)
f+
∗ (r − λ2) dr (32)

for every σ ∈ [s, |Ω|]; let

ψ :]0, σ[−→ R, λ −→
∫ σ

λ

exp
(
−V

− 1
N

N M−1Br
1
N

)
f+
∗ (r − λ) dr ;

from

ψ(λ) =
∫ σ−λ

0

exp
(
−V

− 1
N

N M−1B(r′ + λ)
1
N

)
f+
∗ (r′) dr′

11



it follows at once that ψ is decreasing; this means (32). Since Uλ1∗ (resp. Uλ2∗) is
equal to Φ(λ1) (resp. Φ(λ2)) on ]0, λ1] (resp. ]0, λ2]), we have Uλ2∗(s) ≤ Uλ1∗(s)
for all s ∈]0, |Ω|].

So for 0 ≤ λ ≤ |I| we have

(∀s ∈]0, |Ω|]) u+
∗ (s) ≤ Uλ∗(s) .

In particular we have

(∀s ∈]0, |Ω|]) u+
∗ (s) ≤ U0∗(s) .

Remark 3 We may extend the previous results to an obstacle problem where
the obstacle is constant only on the boundary of Ω.

Let ψ : Ω −→ R such that ψ is continuous, ψ − k ∈ H1
0 (Ω) and L(ψ − k) ∈

L2(Ω); let
K̂ = {v ∈ H1

0 (Ω); v ≤ ψ}
the related closed, convex subset of H1

0 (Ω).
Let û ∈ K̂ a solution of the variational inequality obtained from (6) replacing

K with K̂. Denoting by Î its coincidence set, we suppose

(∀v ∈ H1
0 (Ω))

∫

Ω

(
a grad (u− ψ + k)

∣∣grad v
)

+
∫

Ω

(
b
∣∣grad (u− ψ + k)

)
v =

=
∫

Ω – I

(f − L(ψ − k)− cu)v .

Let
f0 = f − L(ψ − k) and u0 = û− ψ + k .

Then u0 ∈ K and u0 is solution of the variational inequality obtained from
(6) replacing f with f0; moreover û and u0 have the same coincidence set.

So, denoted Φ̂ the contact function corresponding to f̂+, we have

1. |Î| 6= 0 ⇒ k ≤ Φ̂(|Î|);
2. k ≥ sup(Φ̂) ⇒ |Î| = 0;

3. k < sup Φ̂ ⇒ |Î| ≤ Φ−1(k).
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