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Abstract

We compare the Dirichlet integrals of a function u on Rn and of an “approximately
spherical” rearrangement v of u according to a function f with “approximately
straight” lines of steepest variation, proving that the Dirichlet integral of v is ≤
of the product of a suitable constant times the Dirichlet integral of u; we give an
application for the elliptic rearrangements.
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Riassunto

Si confrontano gli integrali di Dirichlet di una funzione u su Rn e di un suo rior-
dinamento “approssimativamente sferico” secondo una funzione f avente le linee
di massima variazione “approssimativamente rettilinee”, provando che l’integrale di
Dirichlet del riordinamento è≤ del prodotto di un’opportuna costante per l’integrale
di Dirichlet della funzione; si dà una applicazione ai riordinamenti ellittici.

Introduction

Following G. Talenti (see [13]), we consider the rearrangements according to a real function
f . Roughly speaking, this means that as for the spherical rearrangements the rearranged
function increases (or decreases) with the hypersurfaces |x| = t, so for the rearrangements
according to f the rearranged function increases (or decreases) with the hypersurfaces
f(x) = t. In [9] the author deals with such rearrangements, giving definitions and pointing
out some proprieties.
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In [13], G. Talenti has proved that the Dirichlet integral of an increasing rearrangement
u? according to f of a function u is ≤ of the Dirichlet integral of u. He supposes f and u
defined in an open set X of Rn; on X he considers an absolutely continuous measure m;
he supposes that there exists on X an isoperimetric inequality q(m(E)) ≤ p(E), where
p(E) is the perimeter of E and q is a positive function; the isoperimetric inequality is
related to f by the equality

q(m{x ∈ X; f(x) > t}) = p({x ∈ X; f(x) > t}) ;

furthermore he supposes that the lines of steepest descent of f are straight; with some
other hypotheses, for p ∈ [1, +∞[, he proves

∫

X
|grad u?|p dm ≤

∫

X
|grad u|p dm

In this paper we consider on Rn the usual isoperimetric inequality; we rearrange a
function u defined in Rn according to a function f ; we suppose that the lines of steepest
variation of f are “approximately straight”; this means that there exists k1, k2 > 0 and a
positive function q such that

(∀x ∈ Rn) k1q(f(x)) ≤ |grad f(x)| ≤ k2q(f(x)) ;

we suppose that the rearrangement according to f is “approximately spherical”; this
means that there exists M > 0 such that for almost every t

Hn−1(f
−1{t}) ≤ MnV

1
n

n (λ({x ∈ Rn; f(x) < t}))n−1
n

(Hn−1 in the (n− 1)-Hausdorff measure, λ is the Lebesgue measure, Vn is the measure of
the unit ball of Rn); if v is an increasing or decreasing rearrangement according to f , for
p ∈ [1, +∞[, we prove

∫

Rn
|grad v|p dλ ≤

(
Mk2

k1

)p ∫

Rn
|grad u|p dλ .

If f(x) = |x|2, then Mk2

k1
= 1; in this case we obtain the classical result for the spherical

rearrangements. If f(x) =
∑n

i=1
x2

i

a2
i

we find a result for the elliptic rearrangements.

Regard to the hypotheses of regularity, we take u in W1,1
loc(R

n) and the rearranging
function f locally lipschitzian.

1 Monotone functions and rearrangements

We recall some of the definitions and results of [9]. We refer only to increasing functions,
implying the analogous notions for decreasing functions.
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Let a, b, c, d ∈ R, with a ≤ b, c ≤ d; let f : [a, b] −→ [c, d] increasing; let x ∈ [a, b];
we put f(x+) = inft∈]x, b] f(t) and f(x−) = supt∈[a, x[ f(t), where sup and inf are valued
respect the ordered set [c, d].

If g : [a, b] −→ [c, d] is another increasing function, we say that f is monotonically
equivalent to g if, for all x ∈ [a, b], f(x+) = g(x+), f(x−) = g(x−).

We have so defined an equivalence relation on the set of the increasing functions
f : [a, b] −→ [c, d]. Each equivalence class [f ]m has least and greatest element.

The class [f ]m has only one element f if and only if f is continuous and surjective.
Let f : [a, b] −→ [c, d] increasing; let g : [c, d] −→ [a, b] increasing; we say that g is

monotone inverse of f if for all x ∈ [a, b] and for all y ∈ [c, d]

(f(x) < y ⇒ x ≤ g(y)) and (y < f(x) ⇒ g(y) ≤ x) .

The relation of inverse monotone is compatible with the equivalence relation of mono-
tone functions; so we can define the inverse monotone [f ]−1

m of a monotone class [f ]m.
There is an important not symmetric case: if g is monotone inverse of f , then f is

strictly monotone if and only if g is continuous and surjective; in this case g is the only
monotone inverse of f and g ◦ f is the identity. We note this monotone function g by
f−1,m.

Let f : [a, b] −→ [c, d] increasing; let g : [c, d] −→ [a, b] monotone inverse of f ; then
max([g]m) is the greatest element of the set of the functions which are monotone inverse
of f and min([g]m) is the least element of this set.

We have the following symmetric result.
Let f : [a, b] −→ [c, d] increasing; let g : [c, d] −→ [a, b] monotone inverse of f ; let

f1 = min([f ]m), f2 = max([f ]m), g1 = min([g]m), g2 = max([g]m); then

(∀x ∈ [a, b])(∀y ∈ [c, d]) f1(x) ≤ y ≤ f2(x) ⇔ g1(y) ≤ x ≤ g2(y) . (1)

Suppose g : [c, d] −→ [a, b] the greatest monotone inverse of f ; then

(∀x ∈ [a, b])g(f(x)) ≥ x . (2)

Suppose g : [c, d] −→ [a, b] the least monotone inverse of f ; then

(∀x ∈ [a, b])g(f(x)) ≤ x . (3)

The notion of rearrangement is stated in terms of image of a measure.
We recall that if (X, S, µ) is a measure space, if (Y, T ) a is measurable space, if

u : X −→ Y is such that for all A ∈ T , u−1(A) ∈ S, then the image u(µ) of the measure
µ is the positive measure on T such that for all A ∈ T , (u(µ))(A) = µ(u−1(A)).

If f : Y −→ R is positive and measurable respect the measurable space (Y, T ), then
we have in R ∫

Y
f(y) d(u(µ))(y) =

∫

X
f(u(x)) dµ(x) .
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Let (X,S, µ), (Y, T, ν) measure spaces; let I a closed interval of R; let us consider on I
the σ-algebra BI of the Borel sets; let u : X −→ I and v : Y −→ I measurable functions;
we say that u is a rearrangement of v if

u(µ) = v(ν) .

If Y is an interval of R (on which we consider the Lebesgue measure λ, i.e. the induced
measure on Y of the image of the Lebesgue measure on R by R −→ R, x −→ x) and if
v is increasing, we obtain the definition of increasing rearrangement. If Y is a ball of Rn

with centre 0 or Rn and if v satisfies |x| ≤ |y| ⇒ v(x) ≤ v(y) we obtain the definition of
increasing spherical rearrangement.

Let f : [a, b] −→ [c, d] increasing; the distributional derivative Dmeasf of f is the only
positive measure on the σ-algebra of the borelian B[a,b], such that for all x, x′ ∈ [a, b],
x ≤ x′,

(Dmeasf)([x, x′]) = f(x′+)− f(x−) .

It is interesting the relation between the distributional derivative and the image of a
measure: the distributional derivative of f is the image of the Lebesgue measure on [c, d]
by a monotone inverse g of f , i. e.

Dmeasf = g(λ) .

We consider a positive measure ν : B[a,b] −→ R; we say that ν is an exact measure if
there exists a closed interval J of R, and f : [a, b] −→ J increasing such that

Dmeasf = ν .

Let (X, S, µ) a measure space; let a, b ∈ R; let a ≤ b; let u : X −→ [a, b] measurable;
we say that u is a distributional function if the image measure u(µ) is an exact measure.

For a distributional function u : X −→ [a, b], a function m : [a, b] −→ [c, d] increasing,
such that

Dmeasm = u(µ)

is defined as an increasing distribution function of u.
From this, it follows at once that the increasing rearrangements of a distributional

function f are the monotone inverse functions of the increasing distribution functions of
f .

So the distributional functions are the functions u for which there exist increasing
rearrangements of u or equivalently for which we can (significantly) define a distribution
function of u.

We recall ([9], [3], [5]) that if a1 = ess.inf(u), b1 = ess.sup(u), then u is distributional
if and only if

1. (∀x, x′ ∈]a1, b1[ , x ≤ x′) µ(u−1([x, x′])) < +∞;

2. µ(u−1({b1})) = 0 or (∀x ∈]a1, b1[) µ(u−1([x, b1[)) < +∞;
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3. µ(u−1({a1})) = 0 or (∀x ∈]a1, b1[) µ(u−1(]a1, x])) < +∞.

We say that u : X −→ [a, b] is left (resp. right) convergent distributional if there exists
an increasing distribution function of u, m : [a, b] −→ [c, d], with c ∈ R (resp. d ∈ R).

The left (resp. right) convergent distributional functions are the functions u for which
there exist spherical increasing (resp. decreasing) rearrangements of u.

We recall [9] that if b1 = ess.sup(u) then u is a left (resp. right) convergent exact
measure if and only if

1. (∀x ∈ [a, b1[) µ(u−1([a, x])) < +∞ (resp. (∀x ∈]a1, b]) µ(u−1([x, b])) < +∞);

2. µ(u−1({b1})) = 0 or µ(u−1([a, b1[)) < +∞ (resp. µ(u−1({a1})) = 0 or
µ(u−1(]a1, b])) < +∞).

Following Talenti [13], we consider the rearrangements according to a function f . We
need some condition on f .

Let (Y, T, ν) a measure space; let f : Y −→ [α, β] measurable; we say that f is a
rearranging function if f is distributional and if

(∀t ∈ [α, β]) ν(f−1({t})) = 0 .

Let (X, S, µ), (Y, T, ν) measure spaces; let u : X −→ [a, b] µ-measurable; let v : Y −→
[a, b] ν-measurable; let f : Y −→ [α, β] ν-measurable; let f a rearranging function; we say
that v is an increasing rearrangement of u according to f if

(∀y, y′ ∈ Y ) (f(y) ≤ f(y′) ⇒ v(y) ≤ v(y′))

and if v is a rearrangement of u.

2 Ordinary derivative of monotone functions

Let a, b, c, d ∈ R; let a < b and c ≤ d; let f : [a, b] −→ [c, d] increasing (resp. decreasing);
let f(]a, b[) ⊂ R; let f ′ the ordinary derivative of f defined almost everywhere in ]a, b[;
then f ′λ is the absolutely continuous part of the measure Dmeasf |]a, b[; from this it follows
that if g : [a, b] −→ [c, d] is monotonically equivalent to f , than g′(x) = f ′(x) for almost
every x ∈]a, b[. More precisely we can find A ⊂]a, b[ such that λ(]a, b[ –A) = 0 and
such that every g ∈ [f ]m is derivable on A with the same derivative; it follows from the
following theorem.

Theorem 2.1 Let a, b, c, d ∈ R; let a < b and c ≤ d; let f : [a, b] −→ [c, d] increasing
(resp. decreasing); let f(]a, b[) ⊂ R; let f1 = min([f ]m) and f2 = max([f ]m); let x0 ∈
]a, b[; let f1 and f2 derivable at x0 and f ′1(x0) = f ′2(x0); then f is derivable at x0 and
f ′(x0) = f ′1(x0) = f ′2(x0).
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Proof. We have f(x0) = f1(x0) = f2(x0). Let x ∈]a, b[, x > x0; we have

f1(x)− f1(x0)

x− x0

≤ f(x)− f(x0)

x− x0

≤ f2(x)− f2(x0)

x− x0

;

from this it follows that f is derivable on the right and that f ′+(x0) = f ′1(x0) = f ′2(x0).
Analogously f is derivable on the left and f ′−(x0) = f ′1(x0) = f ′2(x0).
From this, the thesis.

It seems of some importance to precise when we can extend the usual rule for the
derivative of the inverse function to the derivative of an inverse monotone of a monotone
function f . We obtain this aim in the hypothesis of f strictly monotone. At the same
time, we give another propriety of the set A, that we have considered above.

Theorem 2.2 Let a, b, c, d ∈ R; let a < b and c ≤ d; let f : [a, b] −→ [c, d] strictly
increasing (resp. strictly decreasing); let f(]a, b[) ⊂ R; let f1 = min([f ]m) and f2 =
max([f ]m); let x0 ∈]a, b[; let f1 and f2 derivable at x0 and f ′1(x0) = f ′2(x0); then f−1,m

has derivative in R at f(x0) and

(f−1,m)′(f(x0)) =
1

f ′(x0)
.

Proof. Let g = f−1,m. We have g(f(x0)) = x0. Let y > f(x0); by (2), (3) we have

g(y)− x0

f2(g(y))− f(x0)
≤ g(y)− x0

y − f(x0)
≤ g(y)− x0

f1(g(y))− f(x0)
;

since g is continuous, we have

lim
y→f(x0)+

g(y)− x0

f2(g(y))− f(x0)
= lim

x→x0+

x− x0

f2(x)− f(x0)
=

1

f ′2(x0)

and analogously limy→f(x0)+
g(y)−x0

f1(g(y))−f(x0)
= 1

f ′1(x0)
.

From theorem (2.1) it follows that g has derivative in R on the right at f(x0) and that
g′+(f(x0)) = 1

f ′(x0)
.

Analogously we see that g has derivative in R on the left at f(x0) and that g′−(f(x0)) =
1

f ′(x0)
.

From this, the thesis.

3 Distribution function for u ∈ W1,1
loc(Ω)

In this section we consider a distributional function u ∈ W1,1
loc(Ω) (Ω connected); let m a

distribution function of u; we shall prove that m is strictly increasing; if grad u(x) 6= 0 a.
e., we shall prove that m is locally absolutely continuous.
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Let Ω an open set of Rn; let A ⊂ Ω; we denote by ϕA the characteristic function of A
defined on Ω. We denote by λ the Lebesgue measure on Rn, on R and on a measurable
set of Rn or R.

Let u : Ω −→ R; let u ∈ BVloc(Ω); we recall the following expression of the Radon
measure |grad u| as integral of positive measures (Coarea formula):

|grad u| =
∫ +∞

−∞
|grad ϕ{x∈Ω; u(x)<t}| dλ(t) . (4)

Let a, b ∈ R, a ≤ b; if u ∈ W1,1
loc(Ω), then (4) becomes

ϕ{x∈Ω; a≤u(x)≤b} · |grad u| = ϕ{x∈Ω; a<u(x)<b} · |grad u| =
∫ b

a
|grad ϕ{x∈Ω; u(x)<t}| dλ(t) . (5)

Let u ∈ W1,1
loc(R

n); changing eventually u in in set of measure 0, we can always suppose
that ess.sup(u) = sup(u), and ess.inf(u) = inf(u).

Theorem 3.1 Let Ω a connected open set of Rn; let u ∈ W1,1
loc(R

n); let ess.sup(u) =
sup(u) and ess.inf(u) = inf(u); let a = inf(u) and b = sup(u); let us consider u : Ω −→
[a, b]; let u distributional; let c, d ∈ R, with c ≤ d; let m : [a, b] −→ [c, d] an increasing
(resp. decreasing) distribution function of u; then m is strictly increasing (resp. strictly
decreasing).

Proof. Let y1, y2 ∈ [a, b], with y1 < y2. Suppose by contradiction that m(y1) = m(y2).
Then we have m(y1+) = m(y2−). By definition of distributional function, we have
λ({x ∈ Ω; y1 < u(x) < y2}) = m(y2−)−m(y1+) = 0. Then we have

∫

{x∈Ω; y1<u(x)<y2}
|grad u| dλ = 0 . (6)

By (5) we have

∫

{x∈Ω; y1<u(x)<y2}
|grad u| dλ =

∫ y2

y1

(∫

Ω
d|grad ϕ{x∈Ω; u(x)<t}|

)
dλ(t) . (7)

For all t1, t2 such that y1 < t1 < t2 < y2, we have

{y ∈ Ω; ϕ{x∈Ω; u(x)<t1}(y) 6= ϕ{x∈Ω; u(x)<t2}(y)} ⊂ {y ∈ Ω; t1 ≤ u(y) < t2} ;

then we have
ϕ{x∈Ω; u(x)<t1}(y) = ϕ{x∈Ω; u(x)<t2}(y)

for almost every y ∈ Ω; then we have

grad ϕ{x∈Ω; u(x)<t1} = grad ϕ{x∈Ω; u(x)<t2} ;

then the function t −→ ∫
Ω d|grad ϕ{x∈Ω; u(x)<t}| is a constant C on ]y1, y2[; by (6) and

(7) we have C(y2 − y1) = 0; then C = 0; then for all t ∈]y1, y2[ the vectorial measure
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grad ϕ{x∈Ω; u(x)<t} is 0; then ϕ{x∈Ω; u(x)<t} is almost every constant; let t ∈]y1, y2[; we have
ϕ{x∈Ω; u(x)<t}(y) = 0 for almost every y ∈ Ω or ϕ{x∈Ω; u(x)<t}(y) = 1 for almost every y ∈ Ω;
then we have t ≤ ess.inf(u) or t ≥ ess.sup(u); this is absurd.

Let u ∈ W1,1
loc(R

n); let b = ess.sup(u) = sup(u) and a = ess.inf(u) = inf(u); let us
consider u : Ω −→ [a, b]; let u distributional; let c, d ∈ R, with c ≤ d; let m : [a, b] −→ [c, d]
an increasing (resp. decreasing) distribution function of u; then m(]a, b[) ⊂ R; so we can
consider the derivative of m at t ∈]a, b[, which exists for almost every t ∈]a, b[.

Theorem 3.2 Let Ω a connected open set of Rn; let u : Ω −→ R; let u ∈ W1,1
loc(R

n);
suppose (grad u)(x) 6= 0 for almost every x ∈ Ω; let ess.sup(u) = sup(u) and ess.inf(u) =
inf(u); let a = inf(u) and b = sup(u); let us consider u : Ω −→ [a, b]; let u distributional;
let c, d ∈ R, with c ≤ d; let m : [a, b] −→ [c, d] an increasing (resp. decreasing) distribution
function of u; then we have

1. u is a rearranging function;

2. m is continuous and surjective;

3. m|]a, b[ is locally absolutely continuous;

4. m′(t) =
∫
Ω

1
|grad u|d|grad ϕ{x∈Ω;u(x)<t}| for almost every t ∈]a, b[;

5. Dmeasm = m′ · λ;

6. m is a homeomorphism;

7. if M is the set of t ∈]a, b[, such that m derivable at t and m′(t) = 0, then
λ(u−1(M)) = 0.

Proof. Let t ∈ [a, b]; since u ∈ W1,1
loc(Ω), we have grad u(x) = 0 for almost every x ∈ Ω

such that u(x) = t; then λ({x ∈ Ω; u(x) = t}) = 0; then u in an arranging function.
Let t ∈ [a, b]; we have

m(t+)−m(t−) = λ({x ∈ Ω; u(x) = t}) = 0 .

then m in continuous and surjective.
Let t0, t ∈]a, b[; suppose t0 ≤ t; we have

m(t)−m(t0) = m(t+)−m(t0−) =
∫

{x∈Ω;t0≤u(x)≤t}
dλ =

∫

{x∈Ω;t0≤u(x)≤t}
1

|grad u| |grad u| dλ =
∫ t

t0

(∫

Ω

1

|grad u| | d|grad ϕ{x∈Ω; u(x)<s}|
)

dλ(s) ;

analogously we prove that if t < t0 we have still

m(t)−m(t0) =
∫ t

t0

(∫

Ω

1

|grad u| | d|grad ϕ{x∈Ω; u(x)<s}|
)

dλ(s) .
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From this it follows that m|]a, b[ is locally absolutely continuous and

m′(t) =
∫

Ω

1

|grad u| d|grad ϕ{x∈Ω; u(x)<t}|

for almost every t ∈]a, b[.
It follows also that Dmeasm = m′ · λ on ]a, b[. Since (Dmeasm)({a}) = (Dmeasm)({b}) = 0,
we have also Dmeasm = m′ · λ on [a, b].
By theorem (3.1) m is strictly increasing; since m is continuous and strictly increasing,
m is a homeomorphism.
We have

λ(u−1(M)) = (u(λ))(M) = (Dmis(m))(M) =
∫

M
m′(t) dt = 0 .

4 Some inequalities for the Dirichlet integrals

The results of theorems (4.1) and (4.2) are classical; we expose them in the particulars
owing to some differences in the hypotheses and in order to show that the statement of
[9] permits straight proofs, essentially based on easy calculations.

Let Vn = π
n
2

Γ(n
2
+1)

the measure of the unit ball of Rn. We recall that if E ⊂ Rn, E

measurable, λ(E) < +∞ and ϕE ∈ BVloc(R
n) then

∫

Rn
d|grad ϕE| ≥ nV

1
n

n (λ(E))
n−1

n

(De Giorgi isoperimetric inequality).
Let u : Rn −→ R; let u ∈ W1,1

loc(R
n); let sup(u) = ess.sup(u) = b and inf(u) =

ess.inf(u) = a; let us consider u : Rn −→ [a, b]; let u distributional; let c, d ∈ R, with
c ≤ d; let m : [a, b] −→ [c, d] an increasing (resp. decreasing) distribution function of u;
let r : [c, d] −→ [a, b] an increasing (resp. decreasing) rearrangement of u; then we have
r(y) ∈ R for every y ∈]c, d[; so we can consider the derivative of r at y, which exists for
almost every y ∈]c, d[.

Let us suppose u left convergent distributional and the distribution function m :
[a, b] −→ [0, +∞]; then m is monotonically equivalent to

[a, b] −→ [0, +∞], y −→ λ({x ∈ Rn; u(x) < y}) ;

then by the isoperimetric inequality for almost every y ∈]a, b[ we have

∫

Rn
d|grad ϕ{x∈Rn; u(x)<y}| ≥ nV

1
n

n (m(y))
n−1

n . (8)

In the following lemma we give an extension of (8) in the hypothesis u ∈ W1,1
loc(R

n).
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Theorem 4.1 Let u : Rn −→ R; let u ∈ W1,1
loc(R

n); let sup(u) = ess.sup(u) and inf(u) =
ess.inf(u); let a = inf(u) and b = sup(u); let us consider u : Rn −→ [a, b]; let us suppose u
left (resp. right) convergent distributional; let m : [a, b] −→ [0, +∞] an increasing (resp.
decreasing) distribution function; let p ∈ [1, +∞[; then for almost every y ∈]a, b[ we have

∫

Rn
|grad u|p−1d|grad ϕ{x∈Rn; u(x)<y}| ≥ nV

1
n

n (m(y))p n−1
n (m′(y))1−p . (9)

(resp.
∫

Rn
|grad u|p−1d|grad ϕ{x∈Rn; u(x)<y}| ≥ nV

1
n

n (m(y))p n−1
n (−m′(y))1−p) .

Proof. Let y ∈]a, b[; let r > 0 such that a < y − r, y + r < b.
By Hölder inequality we have

∫

u−1([y−r,y+r])
|grad u|p dλ ≥

(∫

u−1([y−r,y+r])
|grad u| dλ

)p (∫

u−1([y−r,y+r])
dλ

)p−1

.

By the coarea formula (5) and by (8) we have
∫

u−1([y−r,y+r])
|grad u| dλ =

∫ y+r

y−r

(∫

Rn
d|grad ϕ{x∈Rn; u(x)<t}|

)
dλ(t) ≥

nV
1
n

n

∫ y+r

y−r
(m(t))

n−1
n dλ(t) .

By definition of distributional function we have
∫

u−1([y−r,y+r])
dλ = Dmeasm([y − r, y + r]) = m((y + r)+)−m((y − r)−) .

By the coarea formula (5)we have
∫

u−1([y−r,y+r])
|grad u|p dλ =

∫ y+r

y−r

(∫

Rn
|grad u|p−1 d|grad ϕ{x∈Rn; u(x)<t}|

)
dλ(t) .

Then we have
∫ y+r

y−r

(∫

Rn
|grad u|p−1 d|grad ϕ{x∈Rn; u(x)<t}|

)
dλ(t) ≥

npV
p
n

n

(∫ y+r

y−r
(m(t))

n−1
n dλ(t)

)p

(m((y + r)+)−m((y − r)−))1−p ;

then ∫ y+r
y−r

(∫
Rn |grad u|p−1 d|grad ϕ{x∈Rn; u(x)<t}|

)
dλ(t)

2r
≥

npV
p
n

n




∫ y+r
y−r (m(t))

n−1
n dλ(t)

2r




p (
m((y + r)+)−m((y − r)−)

2r

)1−p

.

For r → 0, we find (9).

The following theorem is an easy consequence of theorems (2.2) and (4.1).
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Theorem 4.2 Let u : Rn −→ R; let u ∈ W1,1
loc(R

n); let sup(u) = ess.sup(u) and inf(u) =
ess.inf(u); let a = inf(u) and b = sup(u); let us consider u : Rn −→ [a, b]; let us suppose
u left (resp. right) convergent distributional; let r : [0, +∞] −→ [a, b] an increasing (resp.
decreasing) rearrangement of u; let p ∈ [1, +∞[; then we have

∫

Rn
|grad u|p dλ ≥ npV

p
n

n

∫ +∞

0
tp

n−1
n (r′(t))p dλ(t)

(resp.
∫

Rn
|grad u|p dλ ≥ npV

p
n

n

∫ +∞

0
tp

n−1
n (−r′(t))p dλ(t) ) .

Proof. Let m : [a, b] −→ [0, +∞] a monotone inverse of r; m is an increasing distributional
function of u. By theorem 4.1 we have

∫

Rn
|grad u|p−1d|grad ϕ{x∈Rn; u(x)<y}| ≥ nV

1
n

n (m(y))p n−1
n (m′(y))1−p .

By the coarea formula (5) we have
∫

Rn
|grad u|p dλ ≥ npV

p
n

n

∫ b

a
(m(y))p n−1

n (m′(y))1−p dλ(y) .

By theorem 2.2 for almost every y ∈]a, b[ we have m′(y) = 1
r′(m(y))

; then we have

∫ b

a
(m(y))p n−1

n (m′(y))1−p dλ(y) =
∫ b

a
(m(y))p n−1

n (r′(m(y)))p−1 dλ(y) .

By definition of image of a measure and since m(λ) = Dmeasr, we have
∫ b

a
(m(y))

pn−p
n (r′(m(y)))p−1 dλ(y) =

∫ +∞

0
t

pn−p
n (r′(t))p−1 d(m(λ))(t) =

∫ +∞

0
tp

n−1
n (r′(t))p−1 d(Dmeasr)(t) .

As Dmeasr ≥ r′ · λ, we have
∫ +∞

0
tp

n−1
n (r′(t))p−1 d(Dmeasr)(t) ≥

∫ +∞

0
tp

n−1
n (r′(t))p dλ(t) .

From this it follows at once the thesis.

Analogously:

Theorem 4.3 Let u : Rn −→ R; let u ∈ W1,1
loc(R

n); let sup(u) = ess.sup(u) and inf(u) =
ess.inf(u); let a = inf(u) and b = sup(u); let us consider u : Rn −→ [a, b]; let us suppose
u right (resp. left) convergent distributional; let r : [−∞, 0] −→ [a, b] an increasing (resp.
decreasing) rearrangement of u; let p ∈ [1, +∞[; then we have

∫

Rn
|grad u|p dλ ≥ npV

p
n

n

∫ 0

−∞
tp

n−1
n (r′(t))p dλ(t)

(resp.
∫

Rn
|grad u|p dλ ≥ npV

p
n

n

∫ 0

−∞
tp

n−1
n (−r′(t))p dλ(t) ) .
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In the following theorem we prove that if f is a rearranging function with “approxi-
mately spherical” level hypersurfaces and with “approximately straight” lines of steepest
variation, introducing a suitable constat, we can reverse the inequality of theorem (4.2).
We need some lemmas.

If A ⊂ Rn, we denote the topological frontier of A by Fr(A).

Lemma 4.1 Let Ω an open set of Rn; let f : Ω −→ R; let f continuous; let f ∈
BVloc(R

n); let α = inf(f) and β = sup(f); let t ∈ [α, β]; let ϕ{x∈Ω; f(x)<t} ∈ BVloc(Ω);
then

1. Supp(|grad ϕ{x∈Ω; f(x)<t}|) ⊂ {x ∈ Ω; f(x) = t};
2. f(x) = t for |grad ϕ{x∈Ω; f(x)<t}|-almost every x ∈ Rn.

Proof. We have

Supp(|grad ϕ{x∈Ω; f(x)<t}|) ⊂ Fr({x ∈ Ω; f(x) < t}) .

From the continuity of f we have

Fr({x ∈ Ω; f(x) < t}) ⊂ {x ∈ Ω; f(x) = t})) = {x ∈ Ω; f(x) = t} .

The second affirmation follows from the first.

Lemma 4.2 Let Ω an open set of Rn; let f : Ω −→ R; let f ∈ W1,1
loc(R

n); let ess.sup(f) =
sup(f) and ess.inf(f) = inf(f); let α = inf(f) and β = sup(f); let A ⊂ Rn; let λ(A) = 0;
then for almost every t ∈ [α, β] we have

|grad ϕ{x∈Rn; f(x)<t}|(A) = 0 .

Proof. We have (|grad f | · λ)(A) = 0; then the thesis follows from (5).

Let f : Rn −→ [α, β] a rearranging function; let m : [α, β] −→ [0, +∞] an increasing
distribution function of f ; let u : Rn −→ [a, b] a left convergent distributional function;
let r : [0, +∞] −→ [a, b] an increasing rearrangement of u; then (see [13] and [9]) r ◦m ◦ f
is an increasing rearrangement of u according to f .

Theorem 4.4 Let f : Rn −→ R; let f locally lipschitzian; suppose (grad f)(x) 6= 0 for
almost every x ∈ Rn; let α = inf(f) and β = sup(f); let us consider f : Rn −→ [α, β];
let f left convergent distributional; let m : [α, β] −→ [0, +∞] an increasing distribu-
tion function of f ; let u : Rn −→ R; let u ∈ W1,1

loc(R
n); let ess.sup(u) = sup(u) and

ess.inf(u) = inf(u); let a = inf(u) and b = sup(u); let us consider u : Rn −→ [a, b]; let u
left (resp. right) convergent distributional; let r : [0, +∞] −→ [a, b] an increasing (resp.
decreasing) rearrangement of u; let v = r ◦m ◦ f the related increasing (resp. decreasing)
rearrangement of u according to f ; let p ∈ [1, +∞[; let k1, k2 ∈ R, 0 < k1 ≤ k2; suppose

12



there exists a continuous positive function q : [α, β] −→ R such that for almost every
x ∈ Rn

k1q(f(x)) ≤ |grad f(x)| ≤ k2q(f(x)) ;

let M ∈ [1, +∞[; suppose that for almost every t ∈ [α, β]

∫

Rn
d|grad ϕ{y∈Rn; f(y)<t}| ≤ MnV

1
n

n (λ({y ∈ Rn; f(y) < t}))n−1
n ;

then
∫

Rn
|grad v|p dλ ≤ MpnpV

p
n

n kp
2

kp
1

∫ +∞

0
tp

n−1
n (r′(t))p dλ(t)

(resp.
∫

Rn
|grad v|p dλ ≤ MpnpV

p
n

n kp
2

kp
1

∫ +∞

0
tp

n−1
n (−r′(t))p dλ(t) ) .

Proof. Let A1 the complement respect to [α, β] of the set of t ∈]α, β[ such that
ϕ{y∈Ω,f(y)<t} ∈ BVloc(Ω), m(t) = λ({y ∈ Ω; f(y) < t}), m is derivable at t, m′(t) =∫
Rn

1
|grad f | d|grad ϕ{y∈Rn; f(y)<t}| and r ◦m is derivable at t.

We have λ(A1) = 0; let B1 = f−1(A1); by theorem (3.2) (5) we have

λ(B1) =
∫

A1

d(f(λ)) =
∫

A1

Dmeasm =
∫

A1

m′(p) dλ(p) = 0 .

Let A2 the set of t ∈]α, β[ such that m in derivable at t and m′(t) = 0; let B2 = f−1(A2);
by theorem (3.2) (7) we have λ(B2) = 0.
Let B3 the set of x ∈ Rn such that f in not differentiable at x; we have λ(B3) = 0.
Let B4 the set of x ∈ Rn such that f differentiable at x and |grad f(x)| > k2q(f(x)); we
have λ(B4) = 0.
Let B = B1 ∪ B2 ∪ B3 ∪ B4; we have λ(B) = 0; for every x ∈ Rn –B we have
ϕ{y∈Ω,f(y)<f(x)} ∈ BVloc(Ω), m(f(x)) = λ({y ∈ Ω; f(y) < f(x)}), m and r ◦ m deriv-
able at f(x), m′(t) =

∫
Rn

1
|grad f | d|grad ϕ{y∈Rn; f(y)<f(x)}|, m′(t) 6= 0, r ◦ m derivable at

f(x), f differentiable at x and |grad f(x)| ≤ k2q(f(x)).
Let x ∈ Rn –B; let us prove that r is derivable at m(f(x)); let z ∈]α, β[, z 6= m(f(x));

since m is a homeomorphism, there exists limz→m(f(x))
r(z)−r(m(f(x))

z−m(f(x))
if and only if there

exists limt→f(x)
r(m(t))−r(m(f(x))

m(t)−m(f(x))
; since

r(m(t))− r(m(f(x))

m(t)−m(f(x))
=

r(m(t))− r(m(f(x))

t− f(x)

t− f(x)

m(t)−m(f(x))
,

the limit exists; then r is derivable at m(f(x)).
From this it follows that for all x ∈ Rn –B there exists (grad v)(x) and

grad v(x) = r′(m(f(x)))m′(f(x))grad f(x) .

13



By lemmas (4.2), (4.1) and by the hypotheses, for every x ∈ Rn –B we have

m′(f(x)) =
∫

Rn

1

|grad f(z)| d|grad ϕ{y∈Rn; f(y)<f(x)}|(z) ≤
∫

Rn

1

k1q(f(z))
d|grad ϕ{y∈Rn; f(y)<f(x)}(z) =

∫

Rn

1

k1q(f(x))
d|grad ϕ{y∈Rn; f(y)<f(x)}|(z) =

1

k1q(f(x))

∫

Rn
d|grad ϕ{y∈Rn; f(y)<f(x)}| ≤

1

k1q(f(x))
MnV

1
n

n (λ({y ∈ Rn; f(y) < f(x)}))n−1
n =

1

k1q(f(x))
MnV

1
n

n (m(f(x)))
n−1

n ;

from this it follows

|grad v(x)| ≤ MnV
1
n

n k2

k1

r′(m(f(x)))(m(f(x)))
n−1

n .

Then by definition of image of a measure and by theorem (3.2), being m(m′ · λ[α,β]) =
λ[0,+∞], we have

∫

Rn
|grad v|p dλ ≤ MpnpV

p
n

n kp
2

kp
1

∫

Rn
(r′(m(f(x))))p(m(f(x)))p n−1

n dλ(x) =

MpnpV
p
n

n kp
2

kp
1

∫ β

α
(r′(m(y)))p(m(y))p n−1

n m′(y)dλ(t) =
MpnpV

p
n

n kp
2

kp
1

∫ +∞

0
(r′(u))pup n−1

n dλ(u) .

Analogously:

Theorem 4.5 Let f : Rn −→ R; let f locally lipschitzian; suppose (grad f)(x) 6= 0 for
almost every x ∈ Rn; let α = inf(f) and β = sup(f); let us consider f : Rn −→ [α, β];
let f right convergent distributional function; let m : [α, β] −→ [0, +∞] an increasing
distribution function of f ; let u : Rn −→ R; let u ∈ W1,1

loc(R
n); let ess.sup(u) = sup(u)

and ess.inf(u) = inf(u); let a = inf(u) and b = sup(u); let us consider u : Rn −→ [a, b];
let u right (resp. left) convergent distributional; let r : [−∞, 0] −→ [a, b] an increasing
rearrangement of u; let v = r◦m◦f the related increasing (resp. decreasing) rearrangement
of u according to f ; let p ∈ [1, +∞[; let k1, k2 ∈ R, 0 < k1 ≤ k2; suppose there exists a
positive continuous function q : [α, β] −→ R such that for almost every x ∈ Rn

(∀x ∈ Rn) k1q(f(x)) ≤ |grad f(x)| ≤ k2q(f(x)) ;

let M ∈ [1, +∞[; suppose that for almost every t ∈ [α, β]
∫

Rn
d|grad ϕ{y∈Rn; f(y)<t}| ≤ MnV

1
n

n (λ({y ∈ Rn; f(y) < t}))n−1
n ;

then
∫

Rn
|grad v|p dλ ≤ MpnpV

p
n

n kp
2

kp
1

∫ 0

−∞
tp

n−1
n (r′(t))p dλ(t) .

(resp.
∫

Rn
|grad v|p dλ ≤ MpnpV

p
n

n kp
2

kp
1

∫ 0

−∞
tp

n−1
n (−r′(t))p dλ(t) ) .
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5 Comparison theorem for the Dirichlet integrals

Theorem 5.1 Let f : Rn −→ R; let f locally lipschitzian; suppose (grad f)(x) 6= 0 for
almost every x ∈ Rn; let α = inf(f) and β = sup(f); let us consider f : Rn −→ [α, β];
let f left or right convergent distributional; let u : Rn −→ R; let u ∈ W1,1

loc(R
n); let

ess.sup(u) = sup(u) and ess.inf(u) = inf(u); let a = inf(u) and b = sup(u); let us consider
u : Rn −→ [a, b]; suppose there exists v : Rn −→ [a, b] increasing (resp. decreasing)
rearrangement of u according to f ; let p ∈ [1, +∞[; let k1, k2 ∈ R, 0 < k1 ≤ k2; suppose
there exists a positive continuous function q : [α, β] −→ R such that for almost every
x ∈ Rn

k1q(f(x)) ≤ |grad f(x)| ≤ k2q(f(x)) ;

let M ∈ [1, +∞[; suppose that for almost every t ∈ [α, β]

∫

Rn
d|grad ϕ{y∈Rn; f(y)<t}| ≤ MnV

1
n

n (λ({y ∈ Rn; f(y) < t}))n−1
n ;

then ∫

Rn
|grad v|p dλ ≤

(
Mk2

k1

)p ∫

Rn
|grad u|p dλ .

Proof. Let us suppose f left convergent distributional; then u is left convergent distribu-
tional; there exists m : [α, β] −→ [0, +∞[ increasing distribution function of f and there
exists h : [a, b] −→ [0, +∞[ increasing distribution function of u.
By theorem (3.1) h is strictly increasing; let r = h−1,m. Let us prove that we have
v = r ◦m ◦ f .
Let x ∈ Rn. We have

{y ∈ Rn; f(y) ≤ f(x)} ⊂ {y ∈ Rn; v(y) ≤ v(x)} ;

then we have m(f(x)+) ≤ h(v(x)+).
We have

{y ∈ Rn; v(y) < v(x)} ⊂ {y ∈ Rn; f(y) < f(x)} ;

then we have h(v(x)−) ≤ m(f(x)−).
Being m continuous, we have

h(v(x)−) ≤ m(f(x)) ≤ h(v(x)+) .

If h1 = min([h]m) and h2 = max([h]m) we have

h1(v(x)) ≤ m(f(x)) ≤ h2(v(x)) .

By (1) we have
r(m(f(x))) ≤ v(x) ≤ r(m(f(x))) .

So r(m(f(x))) = v(x).
Since v = r ◦m ◦ f the thesis follows from theorems (4.2) and (4.4).
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In particular, for f(x) = |x|2, v is a spherical rearrangement of u; in this case we may
choose M = k1 = k2 = 1 and we find for u ∈ W1,1

loc(R
n), u left or right distributional, the

classical inequality ∫

Rn
|grad v|p dλ ≤

∫

Rn
|grad u|p dλ .

6 Application to elliptic rearrangements

Let Hn−1 the n− 1-Hausdorff measure on Rn.
We find a result for the elliptic rearrangements.

Theorem 6.1 Let c ∈ Rn; let ci > 0 for all i = 1, 2, . . . , n; let

K2 = max({ci; i = 1, 2, . . . , n}) and K1 = min({ci; i = 1, 2, . . . , n}) ;

let

f : Rn −→ R, x −→
n∑

i=1

x2
i

c2
i

;

let u : Rn −→ R; let u ∈ W1,1
loc(R

n); let ess.sup(u) = sup(u) and ess.inf(u) = inf(u);
let a = inf(u) and b = sup(u); let us consider u : Rn −→ [a, b]; let u left convergent
distributional; let v : Rn −→ R an increasing (resp. decreasing) rearrangement of u
according to f ; let p ∈ [1, +∞[; then

∫

Rn
|grad v|p dλ ≤

(
K2

(c1c2 . . . cn)
1
n

)pn−p

npV
p
n

n
Kp

2

Kp
1

∫

Rn
|grad u|p dλ .

Proof. For all x ∈ Rn we have

|grad f(x)| =
√√√√

n∑

i=1

4x2
i

c4
i

≤
√√√√

n∑

i=1

4x2
i

c2
i K

2
1

=
2

K1

√
f(x)

and analogously |grad f(x)| ≥ 2
K2

√
f(x).

For all t > 0 we have
∫

Rn
d|grad ϕx∈Rn;f(x)<t}| = Hn−1

({
x ∈ Rn;

n∑

i=1

x2
i

tc2
1

= 1

})
≤

Hn−1

({
x ∈ Rn;

n∑

i=1

x2
i

tK2
2

= 1

})
= (

√
tK2)

n−1nVn =

Kn−1
2 nVn(

√
tc1

√
tc2 . . .

√
tcn)

n−1
n

1

(c1c2 . . . cn)
n−1

n

=

(
K2

(c1c2 . . . cn)
1
n

)n−1

nV
1
n

n λ

({
x ∈ Rn;

n∑

i=1

x2
i

tc2
i

< 1

})n−1
n

=

(
K2

(c1c2 . . . cn)
1
n

)n−1

nV
1
n

n λ ({x ∈ Rn; f(x) < t})n−1
n .

From this it follows the thesis.
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