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Abstract
We tie the notion of rearrangement with that of image of a measure; for not necessary
bounded measures, we give necessary and sufficient conditions for the existence
of increasing and decreasing rearrangements, of spherical rearrangements and of
rearrangements according to a real function f .
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Riassunto
Si lega la nozione di riordinamento con quella di immagine di una misura; per
misure non necessariamente limitate, si danno condizioni necessarie e sufficienti
per l’esistenza di riordinamenti crescenti e decrescenti, di riordinamenti sferici e di
riordinamenti secondo una funzione reale f .

Introduction

Starting from the works of many authors, as A. Alvino, C. Bandle, K. M. Chong,
P. W. Day, P. L. Lions, S. Matarasso, J. Mossino, N. M. Rice, G. Talenti, G. Trom-
betti (mentioning only someone) the notion of rearrangement of a function and related
applications have been developed very much and in many directions.

In spite of the large amount of works, it seems that the elementary tie between rear-
rangements and the image of a measure has not been sufficiently displayed. From this
it follows in particular that the notion of distribution function is significant not for all
measurable functions, but only for someone, which we have called distributional functions.
Really this aspect of existence of the distribution function (or equivalently, as we shall
see, of an increasing or decreasing rearrangement) has been investigated by P. W. Day [5]
and by K. M. Chang-N. M. Rice [3] from a different point of view; in particular P. W. Day
[5] has found the condition for the existence of the distribution function.

In this work we purpose
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• to show that the notion of image of a measure is the basis of the notion of rear-
rangement,

• to supply the tools of the development of the theory,

• to study the problem of existence of increasing and decreasing rearrangements and
of increasing and decreasing spherical rearrangements,

• to state precisely the notion of rearrangement according to a real function f ,

• to study the problem of existence of increasing and decreasing rearrangements ac-
cording to a real function f .

Using the notion of image of a measure, we consider the following general definition
of rearrangement (definitions 2.1, 2.2).

Let (X, S, µ), (Y, T, ν) measure spaces; let I a closed interval of R; let u : X −→ I
and v : Y −→ I measurable functions; we say that u is a rearrangements of v if

u(µ) = v(µ) .

If Y is an interval of R and if v is increasing (resp. decreasing), we obtain the definition
of increasing (resp. decreasing) rearrangement. If Y is a ball of Rn with centre 0 or Rn

and if v satisfies |x| ≤ |y| ⇒ v(x) ≤ v(y) (resp. |x| ≤ |y| ⇒ v(x) ≥ v(y)) we obtain the
definition of increasing (resp. decreasing) spherical rearrangement.

With this process many theorems of the classical expositions of the theory of the
rearrangements get a more true meaning (see [6] chapter 1, theorem 1.1, for instance):
this may be a check of the exactness of the process.

Among the tools of the theory we recall:

• The notion of monotone inverse function (definition 1.2).

Let f : [a, b] −→ [c, d] increasing; let g : [c, d] −→ [a, b] increasing; we say that g is
monotone inverse of f if for all x ∈ [a, b] and for all y ∈ [c, d] we have

(f(x) < y ⇒ x ≤ g(y)) and (y < f(x) ⇒ g(y) ≤ x) .

• The notion of distributional derivative of a monotone function (definition 3.1).

Let f : [a, b] −→ [c, d] increasing; the distributional derivative Dmeasf of f is the only
positive measure on the σ-algebra of the borelian, B[a,b], such that for all x, x′ ∈ [a, b],
x ≤ x′,

(Dmeasf)([x, x′]) = f(x′+)− f(x−) .

It is interesting the tie between the distributional derivative and the image of a mea-
sure (theorem 3.2): the distributional derivative of f is the image of the Lebesgue
measure on [c, d] by a monotone inverse of f , g, i. e.

Dmeasf = g(λ) .
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• The notion of exact measure (definition 4.1).

We consider a positive measures ν : B[a,b] −→ R; we say that ν is an exact measure
if there exists a closed interval of R, J , and f : [a, b] −→ J increasing such that

Dmeasf = ν .

• The notion of distributional function (definition 5.1).

Let (X,S, µ) a measure space; let a, b ∈ R; let a ≤ b; let u : X −→ [a, b] measurable;
we say that u is a distributional function if the image measure u(µ) is an exact
measure.

• The notion of increasing distribution function (definition 5.2).

For a distributional function u : X −→ [a, b] the increasing distribution function of
u is a function m : [a, b] −→ [c, d] increasing, such that

Dmeasm = u(µ) .

• The notion of left convergent distributional function (definitions 4.3, 5.3).

We say that u : X −→ [a, b] is left convergent distributional if there exists an
increasing distribution function of u, m : [a, b] −→ [c, d], with c ∈ R.

As regards the problem of the existence of rearrangements, if we suppose that the
measure µ is bounded, than there always exists (in obvious hypotheses) the viewed rear-
rangements; on the contrary, we do not consider only bounded measures µ; so problems
of existence of the rearrangements arise.

• Let us consider the increasing and decreasing rearrangements: we have the follow-
ing result on the tie among increasing rearrangement, distribution function and
monotone inverse (theorem 6.1).

Let (X, S, µ) a measure space; let u : X −→ [a, b] measurable; let m : [a, b] −→ [c, d]
increasing; let r : [c, d] −→ [a, b] a monotone inverse of m; then r is an increasing
rearrangement of u if and only if m is an increasing distribution function of u.

So there exists an increasing rearrangement of u if and only if u is distributional.

So we find again the condition of P. W. Day [5](theorems 6.2, 5.1):

Let a1 = ess.inf(u) and b1 = ess.sup(u); then there exists an increasing rearrange-
ment of u if and only if u satisfies the three conditions

1. (∀x, x′ ∈]a1, b1[ , x ≤ x′) µ(u−1([x, x′])) < +∞;

2. µ(u−1({b1})) = 0 or (∀x ∈]a1, b1[) µ(u−1([x, b1[)) < +∞;

3. µ(u−1({a1})) = 0 or (∀x ∈]a1, b1[) µ(u−1(]a1, x])) < +∞.
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• Let us consider the increasing spherical rearrangements. We find that there ex-
ists an increasing spherical rearrangement of u if and only if u is left convergent
distributional (theorem 7.3) .

If b1 = ess.sup(u) this means that u satisfies the two conditions (theorem 5.4 ):

1. (∀x ∈ [a, b1[) µ(u−1([a, x])) < +∞;

2. µ(u−1({b1})) = 0 or µ(u−1([a, b1[)) < +∞.

Following G. Talenti (see [9]), we consider also the rearrangements according to a
real function f . Roughly speaking, this means that as for the spherical rearrangements
the rearranged function increases (or decreases) with the hypersurfaces |x| = t, so for the
rearrangements according to f the rearranged function increases (or decreases) with the
hypersurfaces f(x) = t.

• Evidently for the consideration of such rearrangements we need some condition on
f ; we call these functions f , rearranging functions (definition 8.1).

Let (Y, T, ν) a measure space; let f : Y −→ [α, β] measurable; we say that f is a
rearranging function if f is distributional and if

(∀t ∈ [α, β]) ν(f−1({t})) = 0 .

• We give the definition of rearrangement according to a rearranging function f (def-
inition 8.2):

Let (X,S, µ), (Y, T, ν) measure spaces; let u : X −→ [a, b] µ-measurable; let v :
Y −→ [a, b] ν-measurable; let f : Y −→ [α, β] ν-measurable; let f a rearranging
function; we say that v is an increasing rearrangement of u according to f if

(∀y, y′ ∈ Y ) (f(y) ≤ f(y′) ⇒ v(y) ≤ v(y′))

and if v is a rearrangement of u.

Following G. Talenti [9] a rearrangement v according to f may be obtained as

v = r ◦ τK ◦m ◦ f ;

where m : [α, β] −→ [γ, δ] is an increasing distribution function of f , r : [a, b] −→
[c, d] is an increasing rearrangement of u, and τK : [γ, δ] −→ [c, d], x −→ x + K is
bijective (theorem 8.1).

Supposing µ(X) = ν(Y ), the existence of an increasing rearrangement of u
according to f is tied to the existence of the bijective translation τK ; if µ(X) < +∞
there exists τK and consequently an increasing rearrangement of u according to f (theorem
8.5); if µ(X) = µ(Y ) = +∞, [γ, δ] and [c, d] must be [−∞, +∞] or of the type [M, +∞],
with M ∈ R, of the type [−∞, N ], with N ∈ R; we prove that there exists an increasing
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rearrangement of u according to f if and only if we can choose [γ, δ] and [c, d] of the same
type (theorems 8.2, 8.3, 8.4).

Although in the applications mainly decreasing rearrangements are used, for sake
of logical simplicity we have privileged in the exposition the increasing rearrangements;
however all the results are translated for decreasing rearrangements.

1 Monotone inverse of a monotone function

Let us consider monotone functions f : I −→ J , with I,J closed intervals of R. The
essential hypothesis is that the intervals are closed; this permits to consider the least
upper bound and the greatest lower bound of every subset A of I or J , even if A = ∅.

Let a, b, c, d ∈ R; let a ≤ b and c ≤ d; let f : [a, b] −→ [c, d]; let f increasing; if
x ∈ [a, b], we put

f(x+) = inf({f(t); t ∈ [a, b], t > x}) and f(x−) = sup({f(t); t ∈ [a, b], t < x}) ,

where the least upper bound and the greatest lower bound are done respect the ordered
set [c, d]. We observe explicitly that if x = b, we have f(b+) = inf(∅) = d and if x = a,
we have f(a−) = sup(∅) = c; if x < b we have f(x+) = limt→x,t>x f(t), while if x > a we
have f(x−) = limt→x,t<x f(t).

It follows at once that f is continuous and surjective if and only if (∀x ∈ [a, b])
f(x+) = f(x−).

Analogically, if f is decreasing, we put

f(x+) = sup({f(t); t ∈ [a, b], t > x}) and f(x−) = inf({f(t); t ∈ [a, b], t < x}) .

Definition 1.1 Let a, b, c, d ∈ R; let a ≤ b and c ≤ d; let f, g : [a, b] −→ [c, d]; let f , g
increasing (resp. decreasing); we say that f is monotonically equivalent to g if

(∀x ∈ [a, b]) f(x+) = g(x+) and f(x−) = g(x−) .

We note by f ∼m g the equivalence relation on the set of the increasing (resp. de-
creasing) functions from [a, b] to [c, d] so defined; we note by [f ]m the equivalent class of
a function f .

If f is continuous and surjective, then [f ]m has an only element f ; we identify [f ]m
with f .

We introduce1 the notion of function that is monotone inverse of another. The hy-
pothesis of closed intervals permits to obtain results of existence and uniqueness, as easy
relations between a function and its monotone inverse.

1In spite of the simplicity, the author is not acquainted in mathematical texts with the use of the
following topic, at least in the exposed terms.
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Definition 1.2 Let a, b, c, d ∈ R; let a ≤ b and c ≤ d; let f : [a, b] −→ [c, d] increasing
(resp. decreasing); let g : [c, d] −→ [a, b] increasing (resp. decreasing); we say that g is
monotone inverse of f if for all x ∈ [a, b] and for all y ∈ [c, d] we have

(f(x) < y ⇒ x ≤ g(y)) and (y < f(x) ⇒ g(y) ≤ x)

(resp. (f(x) < y ⇒ x ≥ g(y)) and (y < f(x) ⇒ g(y) ≥ x)) .

This means that for all y ∈ [c, d]

sup({x ∈ [a, b]; f(x) < y}) ≤ g(y) ≤ inf({x ∈ [a, b]; f(x) > y})

(resp. sup({x ∈ [a, b]; f(x) > y}) ≤ g(y) ≤ inf({x ∈ [a, b]; f(x) < y})) ,

where the least upper bound and the greatest lower bound are made respect the ordered
set [a, b].

It is easy to see that g is monotone inverse of f if and only if f is monotone inverse of
g.

From elementary proprieties of monotone functions and from from the axiom of choice
it follows at once the theorem on the existence of the monotone inverse.

Theorem 1.1 Let a, b, c, d ∈ R; let a ≤ b and c ≤ d; let f : [a, b] −→ [c, d] increasing
(resp. decreasing); then there exists g : [c, d] −→ [a, b] increasing (resp. decreasing)
monotone inverse of f .

We observe that for this theorem is necessary the hypothesis of closed intervals: for
instance the function f : [0, 1[−→ [0, 2], x −→ 1 has no inverse monotone (extending
definition (1.2) to consider not necessary closed intervals).

The relation “g is monotone inverse of f” is compatible with the equivalence relations
of monotone equivalent functions on [a, b] and on [c, d]; so we may consider the relation
between classes “[g]m is monotone inverse of [f ]m”; moreover, given a class [f ]m, there
exists one and only one class [g]m such that g is monotone inverse of f . We put

[f ]−1
m = [g]m .

In view of the applications there is an important not symmetric case: if g is monotone
inverse of f , then f is strictly monotone if and only if g is continuous and surjective; in
this case g is the only monotone inverse of f and g ◦ f is the identity. Indeed this is the
case in which the notion of monotone inverse is more close to that of inverse of a function.

Theorem 1.2 Let a, b, c, d ∈ R; let a ≤ b and c ≤ d; let f : [a, b] −→ [c, d] increasing
(resp. decreasing); let g : [c, d] −→ [a, b] increasing (resp. decreasing); let g a monotone
inverse of f ; then f is strictly increasing (resp. strictly decreasing) if and only if g is
continuous and surjective.
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Proof. Suppose f strictly increasing; let us prove that g is continuous and surjective; this
is equivalent to prove that (∀y ∈ [c, d]) g(y−) = g(y+); let y ∈ [c, d]; we have

g(y−) = sup({x ∈ [a, b]; f(x) < y}) and g(y+) = inf({x ∈ [a, b]; f(x) > y}) ;

assume by contradiction that g(y−) < g(y+); let x ∈ [a, b] such that g(y−) < x < g(y+);
as g(y−) < x, from (1.2) it follows y ≤ f(x); as x < g(y+), we have f(x) ≤ y; so we have
f(x) = y; then f è constant on ]g(y−), g(y+)[; this is a contradiction.
Suppose g continuous and surjective; let us prove that f is strictly increasing; let x, x′ ∈
[a, b] with x < x′; let us prove that f(x) < f(x′); let us assume by contradiction that
f(x) = f(x′); let y = f(x) = f(x′); we have

g(y−) = sup({t ∈ [a, b]; f(t) < y}) ≤ x and g(y+) = inf({t ∈ [a, b]; f(t) > y}) ≥ x′}) ;

then we have g(y−) < g(y+); then g is not continuous and surjective; this is a contradic-
tion.

If f is strictly increasing (resp. strictly decreasing), then there exists only a monotone
inverse of f ; if g is this function, following the above notations, we have [f ]−1

m = [g]m = g;
we also note this function g by f−1,m.

Let f : [a, b] −→ [c, d] strictly increasing (resp. strictly decreasing); from (1.2) it
follows at once g(f(x)−) ≤ x ≤ g(f(x)+) for a monotone inverse, g, of f ; so from
theorem 1.2, it follows f−1,m ◦ f = 1[a,b].

2 Rearrangements and image of a measure

When we say (X, S) measurable space, we mean that X is a set and S is a σ-algebra
of subsets of X; when we say (X, S, µ) measure space, we mean that X is a set, S is a
σ-algebra of subsets of X, and µ : S −→ R a positive measure on X.

The notion of image of a positive measure is a well-known subject that belongs to the
basic topic of the measure theory.

In order to conform the language, we briefly recall the definitions and some proprieties.
Let (X,S, µ) a measure space; let (Y, T ) a measurable space; let u : X −→ Y ; suppose

that for all A ∈ T , u−1(A) ∈ S; then the image u(µ) is the positive measure on T such
that for all A ∈ T (u(µ))(A) = µ(u−1(A)).

We have (u(µ))(Y ) = µ(X). So, u(µ) is a bounded measure if and only if µ is a
bounded measure.

We have u(µ) = 0 if and only if µ = 0.
Let c ∈ Y and k ∈ R; then we have u(µ) = kδc if and only if for almost every x ∈ X

we have u(x) = c and k = µ(X).
In particular u is the constant function c, then u(µ) = µ(X)δc.
Let f : Y −→ R positive and measurable respect the measurable space (Y, T ); then

we have in R ∫

Y
f(y) d(u(µ))(y) =

∫

X
f(u(x)) dµ(x) . (1)
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Definition 2.1 Let (X, S, µ), (X1, S1, µ1) measure spaces; let (Y, T ) a measurable space;
let u : X −→ Y ; suppose that for all A ∈ T , u−1(A) ∈ S; let u1 : X1 −→ Y ; suppose that
for all A ∈ T , u−1

1 (A) ∈ S1; we say that u is equimeasurable with u1 if u(µ) = u1(µ1).

Clearly if u is equimeasurable with u1 then µ(X) = µ1(X1).
If I is an closed interval of R, we consider on I the σ-algebra BI of the Borel sets

of I. If (X, S, µ) is a measure space and if u : X −→ I the condition “for all A ∈ BI ,
u−1

1 (A) ∈ S” becomes “u µ-measurable”.

Definition 2.2 Let (X, S, µ), (X1, S1, µ1) measure spaces; let I a closed interval of R;
let u : X −→ I µ-measurable; let u1 : X1 −→ I µ1-measurable; we say that u is a
rearrangements of u1 if u is equimeasurable with u1.

The following theorem is immediate consequence of the definitions and of (1).

Theorem 2.1 Let (X, S, µ), (X1, S1, µ1) measure spaces; let I a closed interval of R; let
u : X −→ I measurable; let u1 : X1 −→ I measurable; let u a rearrangements of u1; let
f : I −→ R borelian and positive; then we have in R

∫

X
f(u(x)) dµ(x) =

∫

X1

f(u1(x)) dµ1(x) .

3 Distributional derivative of a monotone function

In R, besides the usual conventions for operations, we put (+∞) + (−∞) = 0.
Let (R, LR, λ) the measure space of Lebesgue on R; let i : R −→ R, x −→ x; the

Lebesgue measure space (R, L
R

, λ
R

) on R is the image by i of (R, LR, λ); we have

A ∈ L
R

if and only if i−1(A) ∈ LR and, in this case, we have λ
R

(A) = λ(i−1(A)).

Let J a closed interval of R; we consider on J the measure space induced on J by
(R, L

R
, λ

R
). We note still by λJ (or simply by λ) the related measure, that we call the

Lebesgue measure on J .
Let f : [a, b] −→ [c, d] increasing; then there exists one and only one positive measure

ν on B[a,b] that for all x, x′ ∈ [a, b], x ≤ x′, ν([x, x′]) = f(x′+)− f(x−); in fact, although
we work with intervals of R, and with not necessary σ-finite measures, the classical topics
can still be used.

Definition 3.1 Let a, b, c, d ∈ R; let a ≤ b and c ≤ d; let f : [a, b] −→ [c, d] increasing;
the distributional derivative Dmeasf of f is the only positive measure on B[a,b] such that
for all x, x′ ∈ [a, b], x ≤ x′,

(Dmeasf)([x, x′]) = f(x′+)− f(x−) .
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If f, g : [a, b] −→ [c, d] are increasing monotonically equivalent functions, we have
Dmeasf = Dmeasg; so we may put Dmeas[f ]m = Dmeasf .

We observe that Dmeasf depends not only on the graphic Gf of f , but also by [c, d];
in other word in this context we do not identify the function f = (Gf , [a, b], [c, d]) with
its graphic Gf .

So the only functions functions f : [a, b] −→ [c, d] increasing such that Dmeasf = 0 are
those for which c = d.

As (Dmeasf)([a, b]) = d − c, Dmeasf is bounded if and only if d − c ∈ R; this means
c, d ∈ R or c = d = +∞ or c = d = −∞.

If f is decreasing, we put Dmeasf = −Dmeas(−f), where

−f : [a, b] −→ [−d,−c], x −→ −f(x) .

Definition 3.2 Let a, b, c, d ∈ R; let a ≤ b; let c ≤ d; let f : [a, b] −→ [c, d]; let k ∈ R;
we put

f + k : [a, b] −→ [c + k, d + k], x −→ f(x) + k .

We have Dmeasf = Dmeas(f + k).
Let a, b ∈ R, with a ≤ b; let ν : B([a, b]) −→ R a positive measure; the convex support

of ν is the least closed interval I ⊂ [a, b] such that ν([a, b] – I) = 0.
Let c < d; let a1 = sup(f−1({c})); let b1 = inf(f−1({d})); then the convex support of

Dmeasf is [a1, b1].
Now we see that with some exceptions, if two increasing functions have the same

distributional derivative, one is monotonically equivalence to a left translated of the other.

Theorem 3.1 Let a, b, c, d, c′, d′ ∈ R; let a ≤ b, c ≤ b, c′ ≤ d′; let ν : B[a,b] −→ R a
positive measure; let ν 6= 0; let (∀x ∈ [a, b]) ν 6= +∞δx; let f : [a, b] −→ [c, d] increasing
(resp. decreasing); let g : [a, b] −→ [c′, d′] increasing (resp. decreasing); suppose Dmeasf =
Dmeasg = ν; then there exists k ∈ R such that f is monotonically equivalent a g + k.

Proof. Let us prove at first that there exists x0 ∈ [a, b] such that f(x0−), g(x0−) ∈ R.
Let a1, b1 ∈ [a, b], with a1 ≤ b1, such that [a1, b1] is the convex support of ν.
Suppose a1 < b1. Let x0 ∈ [a, b] such that a1 < x0 < b1; we have a1 = sup(f−1({c})
and b1 = inf(f−1({d})); from this it follows that c < f(x0−) < d; then f(x0−) ∈ R;
analogously we see that g(x0−) ∈ R.
Suppose a1 = b1; let x0 = a1; as ν 6= +∞δx0 , there exists k ∈]0, +∞[ such that Dmeasf =
kδx0 ; we have k = (Dmeasf)([x0, x0]) = f(x0+)− f(x0−); if f(x0−) = ±∞, as k ∈ R, we
have f(x0+) = f(x0−) = ±∞; then k = 0; this is a contradiction; so we have f(x0−) ∈ R;
analogously we see that g(x0−) ∈ R.
Let x ∈ [a, b]. If x ≥ x0 we have (Dmeasf)([x0, x]) = (Dmeasg)([x0, x]); then we have
f(x+)−f(x0−) = g(x+)−g(x0−); if x < x0 we have (Dmeasf)(]x, x0[) = (Dmeasg)(]x, x0[);
then we have still f(x+)− f(x0−) = g(x+)− g(x0−). Then we have

(f(x+)− f(x0−)) + f(x0−) = (g(x+)− g(x0−)) + f(x0−) ;
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since f(x0−), g(x0−) ∈ R, we have f(x+) = g(x+) + (−g(x0−) + f(x0−)).
Analogously we prove f(x−) = g(x−) + (−g(x0−) + f(x0−)).
From this, it follows the thesis.

It is easy to see that if ν = 0 or ν = +∞δp, with p ∈ [c, d] then the thesis of theorem
3.1 is not true.

The distributional derivative of a monotone function f is closely related to the notion
of monotone inverse and of image of a measure, as stated by the following theorem.

Theorem 3.2 Let a, b, c, d ∈ R; let a ≤ b and c ≤ d; let f : [a, b] −→ [c, d] increasing
(resp. decreasing); let g : [c, d] −→ [a, b] increasing (resp. decreasing); let g monotone
inverse of f ; then

Dmeasf = g(λ[c,d]) (resp. −Dmeasf = g(λ[c,d] ) .

Proof. Let x, x′ ∈ [a, b] with x ≤ x′; from (1.2) it follows at once

]f(x−), f(x′+)[⊂ g−1([x, x′]) ⊂ [f(x−), f(x+)] .

Then we have

(g(λ))([x, x′]) = λ(g−1([x, x′])) = f(x′+)− f(x−) = (Dmeasf)([x, x′]) .

4 Exact measures

Now let ν a positive measure on [a, b]; the problem that arises is the condition on ν for
the existence of an increasing function f such that Dmeasf = ν.

Definition 4.1 Let a, b ∈ R; let a ≤ b; let ν : B[a,b] −→ R a positive measure; we say
that ν is an exact measure if there exists a closed interval of R, J , and f : [a, b] −→ J
increasing such that Dmeasf = ν.

If ν is an exact measure and if Dmeasf = ν, then we call f a primitive of ν.
If ν = 0, then ν is an exact measure and, if c ∈ R, f : [a, b] −→ [c, c] is a primitive of

ν.
A Dirac measure kδp, with k ∈ R+, and p ∈ [a, b], is an exact measure. A primitive of

kδp is

f : [a, b] −→ [−k

2
,
k

2
], x −→

{
−k

2
if x ≤ p

k
2

if x > p
.

Let a, b ∈ R; let a ≤ b; let ν : B[a,b] −→ R a positive measure; let x1, x2 ∈ [a, b]; we
put

∫ x2

x1

dν =





1
2
ν({x1}) +

∫
]x1,x2[ dν + 1

2
ν({x2}) if x1 < x2

0 if x1 = x2

−1
2
ν({x2})−

∫
]x2,x1[ dν − 1

2
ν({x1}) if x1 > x2

.
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Definition 4.2 Let a, b ∈ R; let a ≤ b; let ν : B[a,b] −→ R a positive measure; let
x0 ∈ [a, b]; let c = −ν([a, x0[)− 1

2
ν({x0}); let d = ν(]x0, b]) + 1

2
ν({x0}); the function

Fx0 : [a, b] −→ [c, d], x −→
∫ x

x0

dν

is called integral function of ν of initial point x0.

Clearly Fx0 is an increasing function. In general DmeasFx0 = ν is not verified; however,
the problem of the existence of an increasing function f such that Dmeasf = ν is strongly
tied to the existence of a x0 ∈ [a, b] such that Fx0 is a primitive of ν.

We call a point x0 ∈ [a, b] such that Fx0 is a primitive of ν, an initial point for ν.
If ν = 0 or if ν is a Dirac measure kδp, with k ∈ R+ and p ∈ [a, b], then every x0 ∈ [a, b]

is an initial point for ν.
In the following theorem we give the characterization of the exact measures ν 6= 0.

Theorem 4.1 Let a, b ∈ R; let a ≤ b; let ν : B[a,b] −→ R a positive measure; let ν 6= 0;
let a1, b1 ∈ R, with a1 ≤ b1 such that the convex support of ν is [a1, b1]; then ν is an exact
measure if and only if

1. (∀x, x′ ∈]a1, b1[ , x ≤ x′) ν([x, x′]) < +∞;

2. ν({b1}) = 0 or (∀x ∈]a1, b1[) ν([x, b1[) < +∞;

3. ν({a1}) = 0 or (∀x ∈]a1, b1[) ν(]a1, x]) < +∞.

If ν is exact, then every x0 ∈]a1, b1[ is an initial point for ν.

Proof. If a1 = b1, we have ν = ν([a, b])δa1 ; so ν satisfies the three conditions and ν is
exact; the thesis of the theorem is then true; so we may suppose a1 < b1.
Suppose that ν satisfies the three conditions. Let x0 such that a1 < x0 < b1; let c =
−ν([a, x0[) − 1

2
ν({x0}), let d = ν(]x0, b]) + 1

2
ν({x0}); let F : [a, b] −→ [c, d] the integral

function of initial point x0.
By condition (1) we have ν({x0}) = ν([x0, x0]) ∈ R. Let us prove that for all x ≥ x0 we
have

F (x+) +
1

2
ν({x0}) = ν([x0, x]) . (2)

For all y > x we have

ν([x0, y[) ≤ ν([x0, y[) +
1

2
ν({y}) = F (y) +

1

2
ν({x0}) ≤ ν([x0, y]) . (3)

Then we have

lim
y→x,y>x

ν([x0, y[) ≤ lim
y→x,y>x

(
F (y) +

1

2
ν({x0})

)
≤ lim

y→x,y>x
ν([x0, y]) . (4)

11



If x < b1 by condition (1), we have ν([x0, y], ν([x0, y[) ∈ R for all y ∈]x, b1[; then

lim
y→x,y>x

ν([x0, y[) = lim
y→x,y>x

ν([x0, y]) = ν([x0, x]) ;

then

lim
y→x,y>x

(
F (y) +

1

2
ν({x0})

)
= ν([x0, x]) ;

then we have (2).
If x ≥ b1, then F is constant and equal to 1

2
ν({x0}) + ν(]x0, b1]) on ]b1, b]; then we have

F (x+) = 1
2
ν({x0}) + ν(]x0, b1]); then we have still (2).

In particular we have F (x0+) = 1
2
ν({x0}).

Let us prove that for all x ≥ x0 we have

F (x−) +
1

2
ν({x0}) = ν([x0, x[) . (5)

Suppose x > x0. For all y, x0 < y < x we have (3).
Then we have

lim
y→x,y<x

ν([x0, y[) ≤ lim
y→x,y<x

(
F (y) +

1

2
ν({x0})

)
≤ lim

y→x,y<x
ν([x0, y]) .

We have
lim

y→x,y<x
ν([x0, y[) = lim

y→x,y<x
ν([x0, y]) = ν([x0, x[) ;

then

lim
y→x,y<x

(
F (y) +

1

2
ν({x0})

)
= ν([x0, x]) ;

then we have (5).
If x = x0 for symmetry we have F (x0−) = −F (x0+) = −1

2
ν({x0}); then we have still (5).

Let x, x′ ∈ [a, b] with x0 ≤ x ≤ x′; we have [x0, x
′] = [x0, x[∪[x, x′]; then we have

ν([x0, x
′]) = ν([x0, x[) + ν([x, x′]). Let us prove that from this it follows in R

ν([x, x′]) = ν([x0, x
′])− ν([x0, x[) . (6)

If ν([x0, x
′]) ∈ R, then we have ν([x0, x[), ν([x, x′]) ∈ R and (6) is true.

Suppose ν([x0, x
′]) = +∞; if ν([x0, x[) ∈ R, we have ν([x, x′]) = +∞; so we have still (6).

Suppose ν([x0, x
′]) = +∞ and ν([x0, x[) = +∞; from condition (1), it follows that we

have b1 ≤ x; if b1 = x from condition (2), it follows that we have ν({b1}) = 0; then we
have ν([x, x′]) = ν([b1, x

′]) = ν({b1})+ ν(]b1, x
′]) = 0; if x > b1 we have still ν([x, x′]) = 0;

we have ν([x0, x
′])− ν([x0, x[) = +∞−∞ = 0 and so (6) is true.

From (6), (2), (5) it follows

ν([x, x′]) =
(
F (x′+) +

1

2
ν({x0})

)
−

(
F (x−) +

1

2
ν({x0})

)
. (7)

Let us prove that from (7) it follows

ν([x, x′]) = F (x′+)− F (x−) . (8)
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Being the addition commutative and associative in ]−∞, +∞], if F (x−) ∈ R, (8) follows
at once from (7)
Let us suppose F (x−) = +∞; then we have ν([x0, x[) = +∞; then x ≥ b1; if x = b1, being
ν([x0, b1[) = +∞ from condition (2) it follows ν({b1)}) = 0; then ν([x, x′]) = ν([b1, x

′]) =
0; if x > b1, we have still ν([x, x′]) = 0; so the left member of (8) is 0; we have also
F (x′+) = +∞; so also the right member of (8) is 0; so we have (8).
Analogously we prove that if x ≤ x′ ≤ x0, we have still ν([x, x′]) = F (x′+)− F (x−).
If x ≤ x0 ≤ x′, since the addition is commutative and associative in ]−∞, +∞], we have

ν([x, x′]) = ν([x, x0]) + ν([x0, x
′])− ν({x0}) =

F (x0+)− F (x−) + F (x′+)− F (x0−)− ν({x0}) = F (x′+)− F (x−) .

This proves that F is a primitive of ν.
Vice versa suppose ν an exact measure measure; let f : [a, b] −→ [c, d] a primitive of ν.
Let x ∈]a1, b1[; f can not be equal to the constant +∞ on ]x, b], otherwise it would be
ν(]x, b]) = 0 and then b1 ≤ x; so we have f(x+) ∈ R; analogously we see that f(x−) ∈ R;
from this it follows propriety (1).
Suppose there exists x ∈]a1, b1[ such that ν([x, b1[) = +∞; we have ν([x, b1[) = f(b1−)−
f(x−); then we have f(b1−) = +∞; then we have f(b1+) = +∞ and ν({b1}) = f(b1+)−
f(b1−) = 0; this proves propriety (2); we prove propriety (3) analogously.

It follows at once from the theorem that the relation ν exact does not depend on the
interval [a, b] containing the convex support [a1, b1] of ν, but only on [a1, b1].

From theorem 4.1 it follows at once the following result.

Theorem 4.2 Let a, b ∈ R; let a ≤ b; let ν : B[a,b] −→ R a bounded positive measure;
then ν is exact.

If ν : B[a,b] is an exact measure and if f : [a, b] −→ [c, d] is a primitive of ν, the care
is on [c, d]; in fact we have the condition ν([a, b]) = d− c, while the interval [a, b] may be
equivalently replaced by another closed interval containing the convex support of ν.

If f : [a, b] −→ [c, d], the relation Dmeasf = ν does not depend only by the graphic
of f , but also by the set [c, d]; now the problem that arises is to find conditions on ν for
the existence of increasing functions f : [a, b] −→ [c, d] such that Dmeasf = ν, with [c, d]
satisfying special proprieties, i.e. c ∈ R or c = −∞, d ∈ R or d = +∞.

Definition 4.3 Let a, b ∈ R; let a ≤ b; let ν : B[a,b] −→ R a positive measure; let ν exact;
we say that ν is a left (resp. right) convergent exact measure if these exists c ∈ R (resp.
c ∈ R), there exists d ∈ R (resp. d ∈ R), with c ≤ d, there exists f : [a, b] −→ [c, d], such
that f is a primitive of ν.
We say that ν is a left (resp. right) divergent exact measure if these exists d ∈ R (resp.
c ∈ R), there exists f : [a, b] −→ [−∞, d] (resp. f : [a, b] −→ [c, +∞]) such that f is a
primitive of ν.
We say that ν is a left-right divergent distributional measure if these exists f : [a, b] −→
[−∞, +∞] such that f is a primitive of ν.
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If ν = 0, ν is left convergent, right convergent, left divergent, right divergent.
If p ∈ [a, b], +∞δp is left convergent, right convergent, left divergent, right divergent,

left-right divergent.
From theorem 3.1, if ν 6= 0 and if ν 6= +∞δp for any p ∈ [a, b], ν is left (resp right)

divergent if and only if ν is not left (resp. right) convergent.
If ν is bounded, then ν is a left convergent and a right convergente exact measure.
From theorem 4.1 it follows the characterization of the left (resp. right) convergent

exact measures ν 6= 0.

Theorem 4.3 Let a, b ∈ R; let a ≤ b; let ν : B[a,b] −→ R a positive measure; let ν 6= 0;
let a1, b1 ∈ R with a1 ≤ b1 such that [a1, b1] is the convex support of ν; then ν is a left
(resp. right) convergent exact measure if and only if

1. (∀x ∈ [a, b1[) ν([a, x]) < +∞ (resp. (∀x ∈]a1, b]) ν([x, b]) < +∞);

2. ν({b1}) = 0 or ν([a, b1[) < +∞ (resp. ν({a1}) = 0 or ν(]a1, b]) < +∞).

If ν is a left (resp. right) convergent measure, then every x0 ∈ [a, b1[ (resp. x0 ∈]a1, b]) is
an initial point for ν.

5 Distributional Functions

The distributional functions of the following definition will be the functions for which we
can (significantly) define the distribution function or equivalently the function for which
increasing and decreasing rearrangements exist.

Definition 5.1 Let (X, S, µ) a measure space; let a, b ∈ R; let a ≤ b; let u : X −→ [a, b]
measurable; we say that u is a distributional function (as regards to µ) if u(µ) is an exact
measure.

A point x0, initial point for u(µ), is called an initial point for the distributional function
u.

If µ = 0, then every measurable function is distributional.
If µ(X) < +∞, u(µ) is bounded; then u(µ) is exact; so every measurable function u

is distributional.
We have seen that a Dirac measure kδx is exact; from this it follows that an almost

every constant function is distributional.
In the following theorem we give the characterization of the distributional functions

with µ 6= 0.

Theorem 5.1 Let (X,S, µ) a measure space; let µ 6= 0; let a, b ∈ R with a ≤ b; let
u : X −→ [a, b] measurable; let a1 = ess.inf(u); let b1 = ess.sup(u); then u is distributional
if and only if

1. (∀x, x′ ∈]a1, b1[ , x ≤ x′) µ(u−1([x, x′])) < +∞;
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2. µ(u−1({b1})) = 0 or (∀x ∈]a1, b1[) µ(u−1([x, b1[)) < +∞;

3. µ(u−1({a1})) = 0 or (∀x ∈]a1, b1[) µ(u−1(]a1, x])) < +∞.

Proof. It follows from theorem 4.1.

From theorem 5.1 it follows that the propriety “u distributional” does not depend on
the closed interval [a, b] such that f(X) ⊂ [a, b].

Considering on R and [0, +∞[, the Lebesgue measure, from theorem 5.1 it follows
that the function R −→ [−∞, +∞], x −→ x2 is distributional, while R −→ [−∞, +∞],
x −→ sin x is not distributional; the function

f : [0, +∞[−→ [−∞, +∞], x −→
{

1/x if x ≥ 1
0 if 0 ≤ x < 1

is not distributional (see [3] pag.10 for a comparison).

Definition 5.2 Let (X, S, µ) a measure space; let a, b ∈ R, let a ≤ b; let u : X −→ [a, b]
measurable; let c, d ∈ R, let c ≤ d; let m : [a, b] −→ [c, d] increasing (resp. decreasing); we
say that m is an increasing (resp. decreasing) distribution function of u if Dmeasm = u(µ)
(resp Dmeasm = −u(µ)).

From definitions it follows that there exists an increasing (resp. decreasing) distribu-
tion function of u if and only is u is distributional.

Evidently, if m is an increasing distribution function, then −m is a decreasing distri-
bution function.

The following theorem explains what happens when we have two distribution functions
of the same distributional function u.

Theorem 5.2 Let (X, S, µ) a measure space; let µ 6= 0; let a, b ∈ R, let a ≤ b; let
u : X −→ [a, b] measurable; if µ(X) = +∞ let u not almost every constant; let u a
distributional function; let m : [a, b] −→ [c, d] increasing (resp. decreasing); let m1 :
[a, b] −→ [c1, d1] increasing (resp. decreasing); let m and m1 increasing (resp. decreasing)
distribution functions of u; then exists k ∈ R such that m1 is monotonically equivalente
to m + k.

Proof. It follows at once from theorem 3.1.

The thesis of the theorem is not true if µ = 0 or if u is constant, with µ(X) = +∞.

Theorem 5.3 Let (X,S, µ) a measure space; let a, b ∈ R; let a ≤ b; let u : X −→ [a, b]
measurable; let u distributional; let m : [a, b] −→ [c, d] an increasing (resp. decreasing)
distribution function of u; then m is continuous and surjective if and only if

(∀y ∈ [a, b]) µ(u−1({y})) = 0 .
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Proof. We have µ(u−1({y}) = (u(µ))({y}) = (Dmeasm)([y, y]) = m(y+) − m(y−); then
we have µ(u−1({y})) = 0 if and only if m(y+) = m(y−).

Definition 5.3 Let (X, S, µ) a measure space; let a, b ∈ R, with a ≤ b; let u : X −→ [a, b]
measurable; we say that u is a left (resp. right) convergent distributional function if u(µ)
is a left (resp. right) convergent exact measure.
We say that u is a left (resp. right, resp. left-right) divergent distributional function if
u(µ) is a left (resp. right, resp. left-right) divergent exact measure.

If µ = 0, then every measurable function u is left convergent, right convergent, left
divergent, right divergent.

If µ(X) = +∞ and if u is almost every constant, then u is left convergent, right
convergent, left divergent, right divergent, left-right divergent.

If µ 6= 0 and if, for µ(X) = +∞, u is not almost every equal to a constant, u is left
(resp right) divergent if and only if u is not left (resp. right) convergent and vice versa.

If µ is bounded then every measurable function u is left ad right convergent distribu-
tional.

From theorem 4.3, we have the following characterization of left (resp. right) distri-
butional convergent measures.

Theorem 5.4 Let (X, S, µ) a measure space; let a, b ∈ R, with a ≤ b; let u : X −→ [a, b]
measurable; let b1 = ess.sup(u) (resp. a1 = ess.sup(u)); then u is a left (resp. right)
convergent exact measure if and only if

1. (∀x ∈ [a, b1[) µ(u−1([a, x])) < +∞ (resp. (∀x ∈]a1, b]) µ(u−1([x, b])) < +∞);

2. µ(u−1({b1})) = 0 or µ(u−1([a, b1[)) < +∞ (resp. µ(u−1({a1})) = 0 or
µ(u−1(]a1, b])) < +∞).

For left (resp. right) convergent distributional functions, we can consider the increas-
ing distribution function of u as the equivalent class [m]m, where m is an increasing
distribution function m : [a, b] −→ [0, µ(X)] (resp. m : [a, b] −→ [−µ(X), 0]).

We can choose as m a function m : [a, b] −→ [0, µ(X)] (resp. m : [a, b] −→ [−µ(X), 0])
such that m(x) = µ(u−1([a, x])) or m(x) = µ(u−1([a, x[)) (resp. m(x) = −µ(u−1([x, b]))
or m(x) = −µ(u−1(]x, b]))) which are monotonically equivalent.

For left (resp. right) convergent distributional functions, we can consider the de-
creasing distribution function of u as the equivalent class [m]m, where m is a decreasing
distribution function m : [a, b] −→ [−µ(X), 0] (resp. m : [a, b] −→ [0, µ(X)]).

We can choose as m the function m : [a, b] −→ [−µ(X), 0] (resp. m : [a, b] −→
[0, µ(X)]) such that m(x) = −µ(u−1([a, x])) or m(x) = −µ(u−1([a, x[)) (resp. m(x) =
µ(u−1([x, b])) or m(x) = µ(u−1(]x, b]))), which are monotonically equivalent.

If X is a Lebesgue measurable set of Rn, p ∈ [1, +∞[ and u ∈ Lp(X;R), then with
respect to the Lebesgue measure space (X, LX , λ), |u| : X −→ [0, +∞] is distributional if
and only if λ({x ∈ X; |u(x)| > 0}) < +∞ or λ({x ∈ X; u(x) = 0}) = 0; in this case |u|
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is right convergent distributional and as decreasing distributional function of |u| we can
consider the monotone class of

m : [0, +∞] −→ [0, µ(X)], t −→ λ(|u|−1([t, +∞]))

(see [8]).
If µ(X) < +∞, than every measurable function is both left and right convergent

distributional. As u is left convergent we can define the increasing distribution function
as a monotone class [m]m, where m : [a, b] −→ [0, µ(X)]. As u is right convergent we
can define the decreasing distribution function as a monotone class [m]m, where still
m : [a, b] −→ [0, µ(X)].

6 Existence of increasing rearrangements

Once defined the general notion of rearrangement (definition 2.2), it follows the problem
of the existence of rearrangements with specific proprieties. We begin with the increasing
and decreasing rearrangements.

Definition 6.1 Let (X, S, µ) a measure space; let a, b ∈ R, with a ≤ b; let u : X −→ [a, b]
measurable; let c, d ∈ R; let c ≤ d; let r : [c, d] −→ [a, b] measurable; we say that r is an
increasing (resp. decreasing) rearrangement of u if r is increasing (resp. decreasing) and
if r is a rearrangement of u.

Evidently if r is an increasing (resp. decreasing) rearrangement of u, then we have
d− c = µ(X).

If r : [c, d] −→ [a, b] is an increasing (resp. decreasing) rearrangement of u and if
k ∈ R, then the right translated

[c− k, d− k] −→ [a, b], x −→ r(x + k)

is an increasing (resp. decreasing) rearrangement of u.

Theorem 6.1 Let (X, S, µ) a measure space; let a, b ∈ R with a ≤ b; let u : X −→
[a, b] measurable; let c, d ∈ R, with c ≤ d; let m : [a, b] −→ [c, d] increasing (risp.
decreasing); let r : [c, d] −→ [a, b] a monotone inverse of m; then r is an increasing
(resp. decreasing) rearrangement of u if and only if m is an increasing (resp. decreasing)
distribution function of u.

Proof. It follows from 3.2

So we find as simple corollary the result of P. W. Day [5].

Theorem 6.2 Let (X, S, µ) a measure space; let a, b ∈ R with a ≤ b; let u : X −→ [a, b]
measurable; then there exists c, d ∈ R with c ≤ d and r : [c, d] −→ [a, b], increasing (risp.
decreasing) rearrangement of u if and only if u distributional.
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Proof. It follows from theorems 6.1.

Let (X, S, µ) a measure space; let a, b ∈ R with a ≤ b; let u : X −→ [a, b] measurable;
let c, d ∈ R, with c < d; let r : [c, d] −→ [a, b] increasing (resp. decreasing); since r is
a rearrangement of u if and only if the restrictions r|]a, b], r|[a, b[, r|]a, b[ are increasing
(resp. decreasing) rearrangement of u, theorem 6.2 gives also a necessary and sufficient
condition for the existence of an increasing rearrangement on a not closed interval of R.

Theorem 6.3 Let (X,S, µ) a measure space; let µ 6= 0; let a, b ∈ R with a ≤ b; let
u : X −→ [a, b] measurable; if µ(X) = +∞ let u not almost every constant; let u
distributional; let c, d, c′, d′ ∈ R with c ≤ d and c′ ≤ d′; let r : [c, d] −→ [a, b] and
s : [c′, d′] −→ [a, b] increasing (resp. decreasing) rearrangements of u; then there exists
k ∈ R such that c′ = c− k, d′ = d− k and s is monotonically equivalent to

[c− k, d− k] −→ [a, b], x −→ r(x + k) .

Proof. It follows at once from 3.1.

Definition 6.2 Let (X, S, µ) a measure space; let a, b ∈ R; let a ≤ b; let u : X −→ [a, b]
measurable; let c, d ∈ R with c ≤ d; let r : [c, d] −→ [a, b] an increasing (resp. decreasing)
rearrangement of u; we say that r is left finite if c ∈ R; we say that r is right finite if
d ∈ R.

Theorem 6.4 Let (X,S, µ) a measure space; let a, b ∈ R; let a ≤ b; let u : X −→ [a, b]
measurable; then

1. there exists c, d ∈ R with c ≤ d and r : [c, d] −→ [a, b] left finite increasing (resp.
decreasing) rearrangement of u if and only if u is left (resp. right) convergent dis-
tributional

2. there exists c, d ∈ R with c ≤ d and r : [c, d] −→ [a, b] right finite increasing
(resp. decreasing) rearrangement of u if and only if u is right (resp. left) convergent
distributional

Proof. If follows at once from theorem 3.2.

If u is left (resp. right) convergent distributional, we can consider the increasing
distribution function as a monotone class M = [m]m of function m : [a, b] −→ [0, µ(X)]
(resp. m : [a, b] −→ [−µ(X), 0]); let M−1 the inverse monotone class of M ; then the
increasing rearrangement of u defined on [0, µ(X)] are the elements of M−1. In this case
we can define the increasing rearrangement of u as the monotone class M−1. If M−1 has
only one element (for instance if m is strictly increasing), we can call it the increasing
rearrangement of u and denote it by u∗; otherwise we can denote (by abuse) by u∗ a
generic element of M−1 or an element chosen with some criterion for instance to be the
least of the class M−1; in the second case, then it arises the problem of which proprieties
of u∗ depend on this choice or on the class M−1.

We have analogous considerations if u is left (resp. right) convergent distributional
and we consider the decreasing distribution function as a monotone class M = [m]m of
function m : [a, b] −→ [−µ(X), 0] (resp. m : [a, b] −→ [0, µ(X)]).
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7 Existence of spherical rearrangements

We put Sn = Rn ∪ {∞} and |∞| = +∞.
Let (Rn, LRn , λ) the Lebesgue measure space; let i : Rn −→ Sn, x −→ x; the Lebesgue

measure space (Sn, LSn , λSn) on Sn is the image by i of (Rn, LRn , λ).

Definition 7.1 Let n ∈ N; let R ∈ [0, +∞]; then we put

Bn
R = {x ∈ Sn; |x| ≤ R} .

We also note Bn
R with BR.

Definition 7.2 Let (X, S, µ) a measure space; let a, b ∈ R; let a ≤ b; let u : X −→ [a, b]
measurable; let n ∈ N; let R ∈ [0, +∞]; let v : Bn

R −→ [a, b]; we say that v is a spherical
increasing (resp. decreasing) rearrangement of u if

(∀x, y ∈ Bn
R) (|x| ≤ |y| ⇒ v(x) ≤ v(y))

(resp. (∀x, y ∈ BR) (|x| ≤ |y| ⇒ v(x) ≥ v(y)))

and if v is a rearrangement of u.

A spherical increasing (resp. decreasing) rearrangement of u is a radial function, i.e.
we have ((∀x, y ∈ BR) (|x| = |y|) ⇒ v(x) = v(y).

Let Vn = π
n
2

Γ(n
2
+1)

the measure of the unit ball of Rn.

The following statements follows at once from the definitions.

Theorem 7.1 Let (X,S, µ) a measure space; let a, b ∈ R; let a ≤ b; let u : X −→ [a, b]
measurable; let d ∈ [0, +∞]; let r : [0, d] −→ [a, b] an increasing (resp. decreasing)

rearrangement of u ; if d = +∞, let R = +∞; if d ∈ R, let R = V
− 1

n
n d

1
n ; let

v : BR −→ [a, b], x −→ r(Vn|x|n) ;

then v is a spherical increasing (resp. decreasing) rearrangement of u.

Theorem 7.2 Let (X,S, µ) a measure space; let a, b ∈ R; let a ≤ b; let u : X −→ [a, b]
measurable; let R ∈ [0, +∞]; let v : BR −→ [a, b] a spherical increasing (resp. decreasing)
rearrangement of u; if R = +∞, let d = +∞; if R ∈ R, let d = VnR

n; let

r : [0, d] −→ [a, b],−→ v(( n

√
t

Vn

, 0, . . . , 0))

then r is an increasing (resp. decreasing) rearrangement of u.

From theorems 7.1, 7.2, 6.4 it follows at once the condition for the existence of spherical
rearrangements.
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Theorem 7.3 Let (X,S, µ) a measure space; let a, b ∈ R; let a ≤ b; let u : X −→ [a, b]
measurable; there exists R ∈ [0, +∞] and v : BR −→ [a, b] increasing (resp. decreasing)
spherical rearrangement of u if and only if u left (risp. right) convergent distributional.

Let (X, S, µ) a measure space; let a, b ∈ R; let a ≤ b; let u : X −→ [a, b] measurable;
let R ∈ [0, +∞] and v : BR −→ [a, b]; since v is a rearrangement of u if and only if the
restriction v|(BR – {x ∈ BR; |x| = R}) is a rearrangement of u, theorem 7.1 gives also
a necessary and sufficient condition for the existence of “increasing (resp. decreasing)
rearrangements on {x ∈ BR; |x| < R}”.

8 Rearrangement according to a real function f

Definition 8.1 Let (Y, T, ν) a measure space; let α, β ∈ R; let α ≤ β; let f : Y −→ [α, β]
measurable; we say that f is a rearranging function if f is distributional and if

(∀t ∈ [α, β]) ν(f−1({t})) = 0 .

The function f : Rn −→ [0, +∞], x −→ |x| is rearranging function respect the
Lebesgue measure space.

Let m : [α, β] −→ [c, d] an increasing distribution function of a rearranging function
f ; by theorem 5.3 it follows that m is continuous and surjective.

Definition 8.2 Let (X, S, µ), (Y, T, ν) measure spaces; let a, b ∈ R; let a ≤ b; let u :
X −→ [a, b] µ-measurable; let v : Y −→ [a, b] ν-measurable; let α, β ∈ R; let α ≤ β; let
f : Y −→ [α, β] ν-measurable; let f a rearranging function; we say that v is an increasing
(resp. decreasing) rearrangement of u according to f if

(∀y, y′ ∈ Y ) (f(y) ≤ f(y′) ⇒ v(y) ≤ v(y′))

(resp. (∀y, y′ ∈ Y ) (f(y) ≤ f(y′) ⇒ v(y) ≥ v(y′)))

and if v is a rearrangement of u.

If f : Rn −→ [0, +∞], x −→ |x| or f : Rn −→ [0, +∞], x −→ |x|2 is the rearranging
function (respect the Lebesgue measure space), then the rearrangements of u according
to f are the spherical rearrangements of u on Rn.

We can also define the elliptic rearrangements.

Let a ∈ Rn; let ai > 0 for all i = 1, 2, . . . , n; let f : Rn −→ [0, +∞], x −→ ∑n
i=1

x2
i

a2
i
;

let us refer to the Lebesgue measure space (Rn, LRn , λ); then the rearrangements of u
according to f are called the elliptic rearrangements of u of coefficient a.

In the following theorem we construct an increasing rearrangement according to a
function f ; we follow G. Talenti [9].
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Theorem 8.1 Let (X, S, µ), (Y, T, ν) measure spaces; let a, b ∈ R; let a ≤ b; let u :
X −→ [a, b] µ-measurable; let α, β ∈ R; let α ≤ β; let f : Y −→ [α, β] ν-measurable; let
f a rearranging function; let γ, δ ∈ R; let γ ≤ δ; let m : [α, β] −→ [γ, δ] an increasing
distribution function of f ; let c, d ∈ R; let c ≤ d; let r : [c, d] −→ [a, b] an increasing
(resp. decreasing) rearrangement of u; suppose there exists K ∈ R such that the function

τK : [γ, δ] −→ [c, d], x −→ x + K

is bijective; let
v = r ◦ τK ◦m ◦ f ;

then v is an increasing (resp. decreasing) rearrangement of u according to f .

Proof. If y, y′ ∈ Y and if f(y) ≤ f(y′) we have v(y) ≤ v(y′).
Let us prove that v is a rearrangement of u.
Let s : [γ, δ] −→ [α, β] a monotone inverse of m; as m is continuous and surjective, s is a
strictly increasing rearrangement of f ; so we have m ◦ s = 1[c,d].
Let A a Borel set of [a, b]; we have

ν(v−1(A)) = ν((r ◦ τK ◦m ◦ f)−1(A)) = ν(f−1(m−1(τ−1
K (r−1(A))))) =

λ(s−1(m−1(τ−1
K (r−1(A))))) = λ((m ◦ s)−1(τ−1

K (r−1(A)))) =

λ(τ−1
K (r−1(A))) = λ(r−1(A)) = µ(u−1(A)) ;

then we have u(µ) = v(ν).

From theorem 8.1 it follows that the existence of a rearrangement of u according to f
is tied to the existence of an increasing rearrangement of u defined on a translated of [γ, δ];
we observe that the condition ν(Y ) = µ(X) is a necessary condition for the existence of
such a rearrangement; the example of spherical rearrangements shows that this condition
is not sufficient.

For the question of the existence of rearrangements according to a function f we make
four cases.

Theorem 8.2 Let (X, S, µ), (Y, T, ν) measure spaces; let a, b ∈ R; let a ≤ b; let u :
X −→ [a, b] µ-measurable; let ν(Y ) = µ(X); let α, β ∈ R; let α < β; let f : Y −→ [α, β]
ν-measurable; let f a rearranging function; let f left-right divergent distributional; then
there exists v : Y −→ [a, b] ν-measurable, v increasing (resp. decreasing) rearrangement
of u according to f if and only if u is left-right divergent distributional.

Proof. Since f is left-right divergent distributional, we have ν(Y ) = µ(X) = +∞. In
particular we have ν 6= 0. Suppose there exists v : Y −→ [a, b] ν-measurable, v increasing
rearrangement of u according to f . Let a1, b1 ∈ R with a1 ≤ b1 such that [a1, b1] is
the convex support of v(ν). If a1 = b1 then v(ν) = +∞δa1 ; then u is left-right divergent
distributional. Suppose a1 < b1; let a1 < y < b1 and let us prove that µ(v−1([a, y])) = +∞.
We have a1 = ess.inf(v); then we have ν(v−1([a, y])) 6= 0; let α1, β1 ∈ R with α1 ≤ β1 such
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that [α1, β1] is the convex support of f(ν); as ν(f−1({α1})) = 0, we have ν(f−1([α, α1])) =
0; we have also ν(v−1([a, y]) – f−1([α, α1])) 6= 0; then there exists x0 ∈ v−1([a, y]) such that
f(x0) > α1; since v(x0) ≤ y, we have v−1([a, v(x0)]) ⊂ v−1([a, y]); from the definition of
rearrangement according to f , it follows f−1([α, f(x0)]) ⊂ v−1([a, v(x0)]); then we have
f−1([α, f(x0)]) ⊂ v−1([a, y]); then we have ν(f−1([α, f(x0)])) ≤ ν(v−1([a, y])); as f(x0) >
α1, we have ν(f−1([α, f(x0)])) = +∞; then we have µ(u−1([a, y])) = ν(v−1([a, y])) = +∞.
Analogously we prove that µ(u−1([y, b])) = +∞. This proves that u is left-right divergent
distributional.
Suppose u left-right divergent distributional; there exists m : [α, β] −→ [−∞, +∞] in-
creasing distribution function of f ; there exists s : [a, b] −→ [−∞, +∞] increasing dis-
tribution function of u; let r : [−∞, +∞] −→ [a, b] an monotone inverse of s; then the
existence of a rearrangement v of u according to f follows from theorem 8.1.

Theorem 8.3 Let (X, S, µ), (Y, T, ν) measure spaces; let a, b ∈ R; let a ≤ b; let u :
X −→ [a, b] µ-measurable; let ν(Y ) = µ(X); let α, β ∈ R; let α ≤ β; let f : Y −→ [α, β]
ν-measurable; let f a rearranging function; let f left convergent distributional; then there
exists v : Y −→ [a, b] ν-measurable, v increasing (resp. decreasing) rearrangement of u
according to f if and only if u is left (resp. right) convergent distributional.

Proof. Suppose there exists v : Y −→ [a, b] ν-measurable, v increasing rearrangement
of u according to f . If ν = 0, then u is u is left convergent distributional. Suppose
ν 6= 0. Let a1, b1 ∈ R with a1 ≤ b1 such that [a1, b1] is the convex support of v(ν).
If a1 = b1 then u(µ) = v(ν) = µ(X)δa1 ; then u is left convergent distributional. Sup-
pose a1 < b1; let y < b1; we have b1 = ess.sup(v); then we have ν(v−1(]y, b])) 6= 0;
let α1, β1 ∈ R with α1 ≤ β1 such that [α1, β1] is the convex support of f(ν); since
ν(f−1({β1})) = 0, we have ν(f−1([β1, β])) = 0; then we have ν(v−1(]y, b]) – f−1([β1, β])) 6=
0; then there exists x0 ∈ v−1(]y, b]) such that f(x0) < β1; since y < v(x0), we have
v−1([a, y]) ⊂ v−1([a, v(x0)[); from the definition of rearrangement according to f , it follows
v−1([a, v(x0)[) ⊂ f−1([α, f(x0)[); then we have v−1([a, y]) ⊂ f−1([α, f(x0)]); then we have
ν(v−1([a, y])) ≤ ν(f−1([α, f(x0)])); since f(x0) < β1, we have ν(f−1([α, f(x0)])) < +∞;
then we have µ(u−1([a, y])) = ν(v−1([a, y])) < +∞. This proves that u is left convergent
distributional.
Suppose u left convergent distributional; there exist γ ∈ R and δ ∈ R with γ ≤ δ and there
exists m : [α, β] −→ [γ, δ] increasing distribution function of f ; we have δ − γ = ν(Y );
there exists c ∈ R and d ∈ R with c ≤ d and exists s : [a, b] −→ [c, d] increasing
distribution function of u; we have d− c = µ(X); so we have d− c = δ− γ; let k = c− γ;
we have c = γ + k and d = δ + k; so the function

τk : [γ, δ] −→ [c, d], x −→ x + k

is bijective; let r : [c, d] −→ [a, b] an inverse monotone of s; as r is an increasing rearrange-
ment of u, the existence or a rearrangement v of u according to f follows from theorem
8.1.

Analogously:
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Theorem 8.4 Let (X, S, µ), (Y, T, ν) measure spaces; let a, b ∈ R; let a ≤ b; let u :
X −→ [a, b] µ-measurable; let ν(Y ) = µ(X); let α, β ∈ R; let α ≤ β; let f : Y −→ [α, β]
ν-measurable; let f a rearranging function; let f right convergent distributional; then there
exists v : Y −→ [a, b] ν-measurable, v increasing (resp. decreasing) rearrangement of u
according to f if and only if u is right (resp. left) convergent distributional.

Theorem 8.5 Let X a set; let S a σ-algebra on X; let µ a positive measure on X; let
µ(X) < +∞; let a, b ∈ R; let a ≤ b; let u : X −→ [a, b] µ-measurable; let Y a set;
let T a σ-algebra on Y ; let ν a positive measure on Y ; let ν(Y ) = µ(X); let α, β ∈ R;
let α ≤ β; let f : Y −→ [α, β] ν-measurable; let f a rearranging function; then there
exists v : Y −→ [a, b] ν-measurable, v increasing (resp. decreasing) rearrangement of u
according to f .

Proof. There exist γ, δ ∈ R with γ ≤ δ and there exists m : [α, β] −→ [γ, δ] increasing
distribution function of f ; we have δ − γ = ν(Y ); there exist c, d ∈ R with c ≤ d and
exists s : [a, b] −→ [c, d] increasing distribution function of u; we have d − c = µ(X); so
we have d− c = δ − γ; let k = c− γ; we have c = γ + k and d = δ + k; so the function

τk : [γ, δ] −→ [c, d], x −→ x + k

is bijective; let r : [c, d] −→ [a, b] an inverse monotone of s; as r is an increasing rearrange-
ment of u, the existence of a rearrangement v of u according to f follows from theorem
8.1.
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