RATIONAL EXTENDED THERMODYNAMICS

 

Ingo Müller

Thermodynamik - Technische Universität Berlin.

&

Tommaso Ruggeri

Dipartimento di Matematica e CIRAM - Università di Bologna.

 

 

Preface

 

 

Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high-frequency-waves, and the shape of shock waves, and the regression of small-scale-fluctuation are governed by extended thermodynamics.

 

The field equations of ordinary thermodynamics are parabolic while extended

thermodynamics is governed by hyperbolic systems. The main ingredients of

extended thermodynamics are

 

·        field equations of balance type,

·        constitutive quantities depending on the present local state and

·        entropy as a concave function of the state variables

 

This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and finite speeds of propagation.

 

Several tenets of irreversible thermodynamics had to be changed in subtle ways to make extended thermodynamics work. Thus, the entropy is allowed to depend on non-equilibrium variables, the entropy flux is a general constitutive quantity, and the equations for stress and heat flux contain inertial terms. New insight is therefore provided into the principle of material frame indifference.

 

With these modifications an elegant formal structure can be set up in which, just as in classical thermostatic, all restrictive conditions – derived from the entropy principle -- take the form of integrability conditions.

 

Also the modifications made by extended thermodynamics render the theory fully consistent with the kinetic theory of gases, in particular Grad's 13-moment version of the kinetic theory of gases. In fact, extended thermodynamics is most restrictive for gases or, more generally, for bodies whose constituent particles have large mean free path. Most of this book, therefore, deals with gases: classical ideal gases, degenerate gases, relativistic gases, and mixtures of gases. It puts into perspective the various phenomena called second sound, viz. heat propagation, propagation of shear stress, and the second sound in superfluid helium.

 

Phonons and photons may have large mean free paths as well, and therefore they are amenable to a treatment by extended thermodynamics. Two chapters describe the present status of the systematic theory in this field, which is still progressing.

 

A certain disappointment with extended thermodynamics of 13 or 14 fields is created by the observation that it describes resonance experiments and light scattering data only slightly better than the conventional theory. These data require further extensions to many moments. Also the shock wave structure calculated in extended thermodynamics of 13 fields is worse than the shock wave structure in ordinary thermodynamics; and again: many moments are needed to put things right. All this will be demonstrated in the second half of this book.

 

When enough moments are used to describe the state, extended thermodynamics leads to perfect agreement of theory and experiment. Actually -- even without reference to experiments -- extended thermodynamics carries its own evaluation of the range of validity: As soon as more moments do not change the predictions, the extant number of moments provides a proper description of the state.

 

 The present book is a new edition; at least half of the material is new and the rest is revised and streamlined to a considerable degree. Also the title is changed: Rational Extended Thermodynamics. The literature is full of papers referring to extended thermodynamics which, however, are devoid of rational methodology and mathematical cohesion. The epithet rational in the present title is chosen so as  to emphasize the systematic procedure which the book espouses, -- a procedure typical for a deductive science.

 

Three chapters, Chapters 12 through 14, carry the names of Drs. Struchtrup and Weiss, because the material presented there is the work of these authors. However, the chapters are entirely embedded - in contents, format, and style -- into the scope of this book. We are grateful to Drs. Struchtrup and Weiss for their contribution.

 

We wish to thank Mrs. Marlies Hentschel who spent long hours on the word processor with unfailing enthusiasm for this work.

 

 

Contents

 

·          1  Tour d'Horizon   1 

·          2  Early Version of Extended Thermodynamics   9 

o         1  Paradoxa of Heat Conduction and Shear Diffusion   10 

§           1.1  Heuristic Derivation of the Laws of Fourier and Navier-Stokes   10 

§           1.2  Parabolic Laws of Heat Conduction and Shear Diffusion   11 

o         2  Paradox Removed   12 

§           2.1  The Cattaneo Equation   12 

§           2.2  Extended TIP   14 

§           2.3  Finite Pulse Speeds in Extended TIP   16 

§           2.4  Conclusion and Criticism   18 

o         3  Kinetic Theory of Mon-atomic Gases   19 

§           3.1  Boltzmann-Equation and Moments   19 

§           3.2  Equations of Balance for Moments   20 

§           3.3  Balance of Entropy and Possible Equilibria   22 

§           3.4  The Grad Distribution   23 

§           3.5  Entropy and Entropy Flux in Grad's 13-Moment Theory.   24 

§           3.6  Phenomenological Equations derived from the Kinetic Theory   24 

§           3.7  Pulse Speeds   26 

§           3.8  Conclusions   26 

·          3  Formal Structure of Extended Thermodynamics   27 

o         1  Field Equations   28 

§           1.1  Thermodynamic Processes and Principles of the Constitutive Theory   28 

§           1.2  Universal Principles of the Constitutive Theory   28 

o         2  Entropy Inequality, Symmetric Hyperbolicity   29 

§           2.1  Exploitation of the Entropy Inequality   29 

§           2.2  Symmetric Hyperbolic Field Equations   31 

§           2.3  Discussion   31 

§           2.4  Characteristic Speeds   32 

o         3  Main Subsystems   33 

§           3.1  Constraints on the Main Field   33 

§           3.2  A Main Subsystem implies an Entropy Inequality   33 

§           3.3  A Main Subsystem is Symmetric Hyperbolic   34 

§           3.4  Characteristic Speeds of the Subsystems   34 

§           3.5  Other Subsystems   35 

o         4  Galilean Invariance   35 

§           4.1  Tensors, Galilean Tensors and Euclidean Tensors   35 

§           4.2  Principle of Relativity   36 

§           4.3  Exploitation of the Principle of Relativity for the Entropy Balance   37 

§           4.4  Exploitation of the Principle of Relativity for the Field Equations   37 

§           4.5  Field Equations for Internal Quantities   38 

§           4.6  Galilei Invariance for Subsystems   39 

§           4.7  Galilean Invariance and Entropy Principle   40 

§           4.8  Explicit Velocity Dependence of Constitutive Quantities. The Determination of Ar.   41 

o         5  Thermodynamics of an Euler Fluid   43 

§           5.1  The Euler Fluid   43 

§           5.2  Lagrange Multipliers   44 

§           5.3  Internal Lagrange Multipliers   45 

§           5.4  Absolute Temperature   46 

§           5.5  Vector Potential   46 

§           5.6  Convexity   47 

§           5.7  Characteristic Speed   47 

§           5.8  Subsystems   48 

§           5.9  Discussion   49 

·          4  Extended Thermodynamics of Mon-Atomic Gases   51 

o         1  The Equations of Extended Thermodynamics of Mon-Atomic Gases   52 

§           1.1  Thermodynamic Processes   52 

§           1.2  Discussion   53 

§           1.3  Galilean Invariance. Convective and Non-convective Fluxes.   53 

§           1.4  Euclidean Invariance. Inertial Effects.   55 

o         2  Constitutive Theory.   56 

§           2.1  Restrictive Principles.   56 

§           2.2  Exploitation of the Principle of Material Frame Indifference   58 

§           2.3  Exploitation of the Entropy Principle   59 

1.       Six Steps   59 

2.       Lagrange Multipliers (Step i.)   59 

3.      Removal of Velocity-Dependent Terms (Step ii)   60 

4.      Lagrange Multipliers as Variables. The Scalar Potential and the Vector Potential. (Step iii)   61 

5.      Equilibrium. (Step iv)   62 

6.      The Potentials near Equilibrium (Step v.)   63 

7.      Residual Inequality (Step vi)   65 

8.      Summary of Results of the Entropy Principle (Step vii)   65 

§           2.4  Exploitation of the Requirement of Convexity and Causality   67 

o         3  Field Equations and the Thermodynamic Limit   67 

§           3.1  Field Equations.   67 

§           3.2  The Thermodynamic Limit.   69 

§           3.3  The Frame-Dependence of the Heat Flux.   71 

§           3.4  Material Frame-Indifference in Ordinary and Extended Thermodynamics   73 

o         4  Thermal Equations of State and Ideal Gases.   73 

§           4.1  The Classical Ideal Gas   73 

§           4.2  Comparison with the Kinetic Theory.   74 

§           4.3  Comparison with Extended TIP.   75 

§           4.4  Degenerate Ideal Gases.   75 

·          5   Thermodynamics of Mixtures of Euler Fluids   79 

o         1  Ordinary Thermodynamics of Mixtures (TIP)   80 

§           1.1  Constitutive Equations   80 

§           1.2  Paradox of Diffusion   83 

o         2  Extended Thermodynamics of Mixtures of Euler Fluids   83 

§           2.1  Balance Equations   83 

§           2.2  Thermodynamic Processes   85 

§           2.3  Constitutive Theory   86 

§           2.4  Summary of Results   90 

§           2.5  Wave Propagation in a Non-Reacting Binary Mixture   92 

§           2.6  Landau Equations. First and Second Sound in He II.   96 

o         3  Ordinary and Extended Thermodynamics of Mixtures.   99 

§           3.1  The Laws of Fick and Fourier in Extended Thermodynamics.   99 

§           3.2  Onsager Relations   101 

§           3.3  Inertial Contribution to the Laws of Diffusion.   102 

·          6   Relativistic Thermodynamics   105 

o         1  Balance Equations and Constitutive Restrictions.   106 

§           1.1  Thermodynamic Processes   106 

§           1.2  Principles of the Constitutive Theory.   107 

o         2  Constitutive Theory.   108 

§           2.1  Scope and Structure.   108 

§           2.2  Lagrange Multipliers and the Vector Potential. Step i.   108 

§           2.3  Principle of Relativity and Linear Representations. Step ii.   110 

§           2.4  Stress Deviator, Heat Flux and Dynamic Pressure. Step iii.   112 

§           2.5  Fugacity and Absolute Temperature. Step iv.   113 

§           2.6  Linear Relations between Lagrange Multipliers and  n, UA, tAB  , π, qA, e 114 

§           2.7  The Linear Flux Tensor. Step vi.   116 

§           2.8  The Entropy Flux Vector. Step vii.   117 

§           2.9  Residual Inequality. Step viii.   118 

§           2.10  Causality and Convexity. Step ix.   118 

§           2.11  Summary of Results. Step x.   120 

o         3  Identification of Viscosities and Heat-Conductivity   123 

§           3.1  Extended Thermodynamics and Ordinary Thermodynamics.   123 

§           3.2  Transition from Extended to Ordinary Thermodynamics   124 

o         4  Specific Results for Relativistic and Degenerate Gases.   126 

§           4.1  Equilibrium Distribution Function.   126 

§           4.2  The Degenerate Relativistic Gas.   127 

§           4.3  Non-Degenerate Relativistic Gas.   131 

§           4.4  Degenerate Non-relativistic Gas.   133 

§           4.5  Non-degenerate Non-relativistic Gas.   135 

§           4.6  Strongly Degenerate Relativistic Fermi Gas   136 

§           4.7  A Remark on the Strongly Degenerate Relativistic Bose Gas.   139 

§           4.8  Equilibrium Properties of an Ultrarelativistic Gas.   139 

o         5  An Application: The Mass-limit of a White Dwarf.   140 

o         6  The Relativistic Kinetic Theory for Non-Degenerate Gases.   145 

§           6.1  Boltzmann-Chernikov Equation   145 

§           6.2  Equations of Transfer.   145 

§           6.3  Equations of Balance for Particle Number, Energy-Momentum, Fluxes and Entropy   146 

§           6.4  Maxwell-Jüttner Distribution, Equilibrium Properties   147 

§           6.5  Possible Thermodynamic Fields in Equilibrium.   148 

o         7  The Non-Relativistic Limit of Relativistic Thermodynamics   149 

§           7.1  The Problem   149 

§           7.2  Variables and Constitutive Quantities   149 

§           7.3  The Dynamic Pressure   151 

§           7.4  Order of Magnitude of the Dynamic Pressure   152 

·          7  Extended Thermodynamics of Reacting Mixtures   155 

o         1  Motivation, Results and Discussion   156 

§           1.1  Motivation   156 

§           1.2  Results   157 

§           1.3  Discussion   158 

o         2  Fields   159 

§           2.1  A Conventional Choice   159 

§           2.2  Absolute Temperature, Fugacities and Chemical Affinity   159 

§           2.3  Summary of Fields   162 

o         3  Field Equation   162 

§           3.1  Balance Laws   162 

§           3.2  Constitutive Theory   162 

§           3.3  Principle of Relativity   163 

o         4  Entropy Inequality   164 

§           4.1  Lagrange Multipliers   164 

§           4.2  Exploitation   164 

o         5  Non-Relativistic Limit   164 

§           5.1  Discussion   164 

§           5.2  Dynamic Pressure and Bulk Viscosity   166 

§           5.3  Thermal Conductivity and Viscosity   167 

·          8  Waves in Extended Thermodynamics   169 

o         1  Hyperbolicity and Symmetric Hyperbolic Systems.   170 

§           1.1  Hyperbolicity in the t-direction.   170 

§           1.2  Symmetric Hyperbolic Systems   170 

o         2  Linear Waves   171 

§           2.1  Plane Harmonic Waves, the Dispersion Relation.   171 

§           2.2  The High Frequency Limit   172 

§           2.3  Higher Order Terms.   173 

§           2.4  Linear Waves in Extended Thermodynamics   173 

o         3  Hyperbolicity and Non-linear Waves.   175 

§           3.1  The Characteristic Polynomial.   175 

§           3.2   Region of Hyperbolicity.   176 

o         4  Acceleration Waves.   178 

§           4.1  Amplitude of Discontinuity Waves.   178 

§           4.2  Growth and Decay.   180 

§           4.3  Evolution of Amplitude in Extended Thermodynamics.   180 

§           4.4  Acceleration Waves in Relativistic Extended Thermodynamics   183 

o         5  Weak Solutions and Shock Waves.   184 

§           5.1  Weak Solutions.   184 

§           5.2  Rankine-Hugoniot Equations   184 

§           5.3  Shocks in Extended Thermodynamics.   186 

§           5.4  Selection Rules for Physical Shocks, the Entropy Growth Condition.   190 

§           5.5  Selection Rules for Physical Shocks. The Lax Conditions.   190 

§           5.6  Lax Condition in Extended Thermodynamics.   191 

·          9  Extended Thermodynamics of Moments   193 

o         1  Field Equations for Moments   194 

§           1.1  Densities, Fluxes and Productions as Moments of the Phase Density    194 

§           1.2  Extended Thermodynamics of Moments   195 

§           1.3  Specific Phase Densities   196 

§           1.4  Field Equations for Λα and Equations for uα near Equilibrium   197 

§           1.5  The Case N=3: An Illustration   198 

§           1.6   Field Equations for n=13,14,20,21,26,35   200 

o         2  Characteristic Speeds   203 

§           2.1  Field Equations near Equilibrium   203 

§           2.2  Pulse Speed   204 

§           2.3  Discussion   206 

§           2.4  The Relativistic Case; Speeds Smaller than c.   206 

o         3  Mean Eigenfunctions   207 

§           3.1  Eigenfunctions and Eigenvalues   207 

§           3.2  Mean Eigenfunctions as the Main Field   210 

§           3.3  Linear Field Equations for the Mean-Eigenfunctions   211 

o         4  Maximization of Entropy   213 

§           4.1  Maximizing Entropy   213 

§           4.2  Maximizing Entropy is Equivalent to Extended Thermodynamics of Moments   214 

·          10   Extended Thermodynamics and Light Scattering   215 

o         1  Basic Electrodynamics   216 

§           1.1  Distant Field Approximation   216 

§           1.2  Incident Plane Harmonic Wave   217 

o         2  A Modicum of Fluctuation Theory   219 

§           2.1  Expectation Values   219 

1.      Fluctuation Theory   219 

2.      Expectation Values   221 

3.      Length Scales   223 

§           2.2  Temporal Evolution of a Fluctuation   224 

1.      Mean regression and auto-correlation   224 

§           2.3   Auto-correlation of  Es (R ,t)   225 

1.      Auto-correlation   225 

2.      Spectral Density and Dynamic Form Factor   226 

3.      Onsager Hypothesis   227 

o         3  Measuring the Spectral Density   227 

§           3.1  Signal and Spectral Density   227 

§           3.2  Measured Data and their Dependence on Pressure   230 

o         4  Navier-Stokes-Fourier Fluid   231 

§           4.1  Dynamic Form Factor   231 

§           4.2  An Alternative Form of the Dynamic Form Factor. Also: An Approximate Form for Forward Scattering.   233 

§           4.3  Graphical Representation of the Dynamic Form Factor for a Monatomic Ideal Gas   234 

§           4.4  Comparison with Experimental Data   236 

§           4.5  Auto-Correlation   237 

§           4.6  Heat and Sound Modes   237 

o         5  Extended Thermodynamics   239 

§           5.1  Introducing Extended Thermodynamics. The Case of 13 Moments.   239 

§           5.2  Dynamic Form Factors for n=20,35,84    241 

§           5.3  Heat and Sound Modes in Extended Thermodynamics   244 

§           5.4  Higher Moments by Method of Eigenfunctions   244 

§           5.5  Dynamic Form Factors for Many Moments   248 

§           5.6  Evaluation of Moment Theories   248 

§           5.7  Characteristic speeds   251 

§           5.8  More Experimental and Theoretical Evidence   252 

o         6  Extrapolation of  S    252 

§           6.1  The Problem   252 

§           6.2  The Boltzmann Equation in the Krook Approximation   255 

§           6.3  The Dynamic Form Factor S(q ,ω); General Formula   255 

§           6.4  Fluctuations in Phase Space   255 

§           6.5  The Dynamic Form Factor S(q ,ω); Specific Form   257 

§           6.6  Discussion   257 

·          11  Testing Extended Thermodynamics by Sound   259 

o         1  Basic Acoustics   260 

§           1.1  How the Acoustic Resonator measures Phase Speeds in Principle.   260 

§           1.2  Piezoelectric Transducer and the Mechanical Impedance   261 

§           1.3  External Mechanical Impedance and Wave-Length   263 

§           1.4  Difficulties with Many Modes and Damping   263 

o         2  Dispersion Relations   264 

§           2.1  Navier-Stokes-Fourier Theory   264 

§           2.2  Extended Thermodynamics of 13 Fields   265 

§           2.3  Extended Thermodynamics with Many Variables   267 

§           2.4  Conclusion and Estimate   267 

o         3  Maximum Speed   268 

§           3.1  Modes of Least Damping   268 

§           3.2  The Maximum Speed   269 

·          12  Structure of Shock-Waves   271 

o         1  Experimental Evidence   272 

o         2  Review of Previous Work   273 

§           2.1  Rankine-Hugoniot Relations   273 

§           2.2  Becker's Solutions   275 

§           2.3  Singular Perturbation Analysis   277 

§           2.4  Numerical Solution by Gilbarg and Paolucci   278 

§           2.5  The 13-Moment Theory by Grad   278 

§           2.6  The 13-Moment Theory by Anile & Majorana   279 

§           2.7  Criticism of Moment Methods for Shock Structure   279 

§           2.8  Alternative Methods for Shock Structure Calculations   280 

o         3  Preliminaries on Singular Points and Characteristic Speeds   280 

§           3.1  Field Equations and Boundary Values   280 

§           3.2  Singular Points and Stationary Points   281 

§           3.3  The Singularities D=0   282 

§           3.4  Regular and Irregular Singularities   283 

o         4  Numerical Calculation of the Shock Structure   284 

§           4.1  Initial and Boundary Value Problems   284 

§           4.2  Algorithm for the Initial Value Problem   285 

§           4.3  Algorithm for the Boundary Value Problem   288 

§           4.4  The 13-Moment Case   288 

§           4.5  The 14-Moment Case   291 

§           4.6  The 21-Moment Case   296 

o         5  Conclusion   299 

o         6  Addendum on Initial Value Problem for 13 Moments   299 

o         7  Quantitative Results and Conclusions   301 

·          13  Extended Thermodynamics of Radiation   303 

o         1  Structure of Extended Thermodynamics of Photons   304 

§           1.1  Energy and Momentum of Individual Photons   304 

§           1.2  Radiative Transfer Equation   304 

§           1.3  Moments and Moment Equations. The Closure Problem   305 

§           1.4  Entropy and Maximization of Entropy   305 

§           1.5  Closure   306 

o         2  Equilibrium   307 

§           2.1  The First Few Moments   307 

§           2.2  Equilibrium of Radiation with Matter   307 

1.      Matter in Motion 307 

2.      Matter at Rest   309 

3.      Momentum of Radiation in a Moving Body   309 

o         3  Near Equilibrium   310 

§           3.1  Phase Density in Near-Equilibrium   310 

§           3.2  Approximate Lagrange Multipliers   311 

o         4  Field Equations   311 

§           4.1  Closure for Moments   311 

§           4.2  Closure for Productions   312 

§           4.3  The Hierarchies of Field Equations   312 

§           4.4  Absorption and Emission of Bremsstrahlung. Thomson Scattering   313 

o         5  Local Radiative Equilibrium   313 

§           5.1  The Rosseland Mean Value of the Absorption Coefficient   313 

§           5.2  Maxwell Iteration   314 

§           5.3  Conclusion   315 

o         6  Compression of Radiation   315 

§           6.1  A Thought Experiment   315 

§           6.2  Solution of the Radiative Transfer Equation   317 

§           6.3  Solution of Moment Equations   318 

§           6.4  Conclusion   318 

o         7  Penetration of a Beam of Radiation into Matter   318 

§           7.1  Field Equations   318 

§           7.2  Characteristic Speeds and Amplitudes of the Propagating Beam   319 

§           7.3  Plane Harmonic Waves and Dispersion Relation (General)   320 

§           7.4  Intense Absorption. The Damped Wave Limit   322 

§           7.5  Intense Scattering. The Diffusion Limit.   323 

§           7.6  General Case and a Simple Example   324 

o         8  Radiative Entropy in Gray Bodies   325 

§           8.1  Photon Gas and an Eulerian Fluid   325 

§           8.2  Equilibrium of Radiation with Matter at Rest   326 

§           8.3  Entropy Production due to Matter-Photon Interaction   326 

§           8.4  Thermodynamic Fields of Radiation in the Neighbourhood of a Spherical Source   327 

§           8.5  Absorption of Radiation from a Spherical Source in an Eulerian Fluid at Temperature T   329 

§           8.6  Entropic Production for Incident Rays   331 

§           8.7  Pseudo-Temperature   332 

§           8.8  Entropy Flux and Entropy   334 

·          14  Extended Thermodynamics of Phonons   337 

o         1  Phonon Transfer Equation   338 

§           1.1  Energy and Momentum of Phonons   338 

§           1.2  Phonon Transfer Equation, Energy and Momentum   338 

§           1.3  The Phase Density of Production   338 

o         2  Moments and Moment Equations   340 

§           2.1  Moments and their Equilibrium Values   340 

§           2.2  Moment Equations and Conservation Laws   340 

§           2.3  Closure Problem   341 

o         3  The Heat Pulse Experiment   342 

§           3.1  Experimental Results and One-dimensional Equations.   342 

§           3.2  Ballistic Phonons   343 

§           3.3  Second Sound in its Purest Form   344 

§           3.4  Damped Second Sound and Pure Diffusion   345 

§           3.5  The 9-Field Theory of Extended Thermodynamics   345 

§           3.6  Heat Pulses. Numerical Solutions   347 

·          15  Thermodynamics of Metal Electrons   351 

o         1  Equations of Balance   352 

§           1.1  Kinetic Theory of Metal-Electrons   352 

§           1.2  Equations of Balance of Mass, Momentum, Energy and Energy Flux   353 

§           1.3  Entropy Principle and Phase Density Close to Equilibrium   354 

o         2  Extended Thermodynamics and Kinetic Theory   355 

§           2.1  Toward Extended Thermodynamics of Electrons in Metals   355 

§           2.2  A Convenient Shortcut via the Kinetic Theory of Electrons   356 

§           2.3  Characteristic Speeds   357 

§           2.4  The Laws of Ohm and Fourier   357 

§           2.5  Hall and Coriolis Effects   358 

§           2.6  Discussion   359 

·          16  Viscoelastic Fluids   361 

o         1  Viscoelastic Fluids of Second Grade   362 

§           1.1  The Stress of a Second Grade Fluid   362 

§           1.2  Ordinary Thermodynamics of Second Grade Fluids   362 

§           1.3  Discussion   364 

o         2  Rate Type versus Differential Type Constitutive Equations   365 

§           2.1  Cattaneo and Stability   365 

§           2.2  Viscoelasticity and Stability   365 

§           2.3  Conclusion   366 

o         3  Toward Extended Thermodynamics of Viscoelasticity   366 

§           3.1  Fields and Field Equations   366 

§           3.2  Incompressible Adiabatic Fluid   367 

§           3.3  Entropy Inequality   368 

§           3.4  Partial Exploitation of the Entropy Inequality   369 

§           3.5  Evaluation   370 

§           3.6  Criticism and Outlook   371 

·            Bibliography   373