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Aim of the talk

e Discuss the troubles of problems with small (or large)

parameters.
1. Understand the roots of the difficulties.

2. Suggest possible cures.

e Examples: Finite Element approximation of nearly

incompressible elasticity and plate problems.



THE LINEAR ELASTICITY PROBLEM

e Plane linear elasticity problem in the framework of the

infinitesimal theory, and plane strain case.

e Isotropic and Homogeneous material.




Solve the problem: Find u such that

[ _div (2ue(u) + \(div u)6> —f in Q
{ u=ug on I'p
| (2ue(u) + A(divu)d)n =t on 'y

1. u, f: Q — R? are the displacement field and the loading term:
2. &(-) is the symmetric gradient operator;

3. 0 is the second-order identity tensor.

1 and A are the Lamé coefficients

O<po < p<p <+oocand 0 < Ag <A< 400



Equivalent formulation

Find u which minimizes the elastic energy

E(v):M/Qe(v):e(v)+g/9|divv|2—/Qf.v—/FNt-v

over a suitable set of admissible functions V.

Remark. For homogeneous Dirichlet boundary conditions, as in the

sequel:



Variational formulation

Find u € V such that:

2u/e(u) :e(v)+)\/divudiVV:F(V) VveV
Q Q

where

F(v) ::/Qf-v—i—/FNt-v

e The bilinear form 2 [, e(u) : €(v) + A [, divudivv is
continuous, symmetric and coercive; F' is linear and continuous.

Consequence

The problem has a unique solution and there is stability (continuous
dependence on the data).



Standard Finite Elements

Choose V, finite element space. Find u;, € V, such that:

2,LL/ 8(uh) : e(uh) + /\/ divuy, divvy, = F(Vh) Vv, € Vy,
Q Q




e Test problem using the above mesh and data (given tractions on
Neumann boundary)

e Rubber material (nearly incompressible): A\/p >> 1

A “good” description of the deformation is expected!!

HOWEVER...



Discrete solution

analytical solution

e blue: the analytical solution.

e red: the discrete solution.

The method HEAVILY underestimates the solution



WHY??

e We need to recall the energy functional:

B(v) :,u/Qe(V) ;e(v)+%/9|divv|2 _ F(v)

which has to be minimized over V.

A/ >> 1 “corresponds” to

o~ 1 : A — +00

Therefore, for A/ >> 1, the minimiser u € V satisfies:

diva ~ 0



The limit problem

It can be shown that u — u® as A — +o00, where u' solves the the

limit problem

Find u® € K which minimizes

E%(v) = ,u/Qe(V) ce(v) — F(v) in K
K={veV:divv=0}

Remark: The above problem is well-posed and reasonable. It is the

elasticity problem for incompressible materials.



Finite Element & Minimization

e Standard Finite Elements corresponds to

Find u;, € V;, which minimizes

E(vy) = ,u/Qe(Vh) e(vy) + % /Q [divvy|? — F(vy) in Vy,

Remark: The SAME energy, but different admissible functions.



The Finite Element limit problem

It can be shown that up, — u% as A — 400, where u, solves the the

limit problem

Find u,°? € K}, which minimizes

E(vy) = ,u/ge(vh) :e(vy) — F(vp) in Kj,

Kh:{VhEVh : diVVh:O}:KﬂVh

Question: Is it a “good” limit problem?




vy € Ky, — {Vh is continuous, piecewise linear, and divv; = O}

~e =

Therefore, it holds: v, (P) =0



Repeating the argument: v, € K, = v, =0

24

Therefore, K;, = (0)



The Finite Element limit problem revisited

Find u? € K;, which minimizes
h

E°(vy,) = ,LL/Qe(Vh) :&(vy) — F(vp) in K,

K; = (0)

e The divergence-free constraint is too severe for

finite element functions: Volumetric Locking!



A possible cure

A
The enemy: the term 5/ | divvy|? for A — 400
Q

Idea

A
Take —/ |Ph(diVVh)‘2
2 Jo

Py, suitable “reduction operator” (typically a projection operator)



New Finite Element problem

Find u;, € V;, which minimizes

Ep(vh) = M/

Q

Limit Problem

Find u? € K} which minimizes
h

E)(vy) = ,LL/Q&:(V;L) :e(vy) — F(vp) in Ky,

K, = {Vh e Vy : Ph(diVVh) = O}

Remark: Pp(divvy) = 0 may be weaker than div v, = 0.

E(Vh) . E(Vh) + % /Q |Ph(diV Vh)|2 — F(Vh) in Vh



Example: pw. quadratic functions (not recommended)

Py, : Projection operator on piecewise constant functions

vy, € Kj, — diVVh(C) =0



Classical Approaches

e Galerkin Least—Squares Methods: Hughes—Franca (1985-1986)

e FEnhanced Strain Methods: Simo—Rifai (1990), Pantuso—Bathe
(1995)...

e MINT element: Arnold, Brezzi, Fortin (1984).
e Taylor-Hood Elements (1973).

e Non-conforming methods: Crouziex-Raviart Element (1973).

Remark: Most of them are Mixed Methods.




THE PLATE PROBLEM

We consider a plate subjected to a transversal load (with respect to

its mid-plane)

The 2D Reissner-Mindlin model

e Undeformed plate: made up by fibers, which are rectilinear and
perpendicular to the mid-plane .

e Due to deformation, the fibers remain rectilinear, but they are

not perpendicular to the mid-plane anymore.



Problem unknowns

e The vectorial field 0 = 0(x,y) (fiber rotations).

e The scalar field w = w(x,y) (vertical displacements).



The equations (clamped plate)

Find (0, w) s.t.

—divCe(0) — M *(Vw—0)=0 in (),
—div( M *(Vw—6)) =g in,
6 =0, w=0 on 9.
e C and A\: material parameters;
e t: plate thickness (¢ << diam());

e ¢: transversal load.



Energy minimization

Find (6, w) which minimizes

B = | Celn) s em) + 2 [1vo—ai= [ g

over the admissible space @ x W

© = (H}()”, W = H(Q)



Variational formulation

Find (0, w) € © x W such that

/QCE-:(H):s(n)—I—)\tQ/Q(Vw—H)-(Vv—n)—/gv

Q

for every (n,v) € @ x W.

e The bilinear form [, Ce(0):e(n)+ Xt~ [,(Vw —0) - (Vv —n)
is continuous, symmetric and coercive; fQ gv is linear and

continuous.

Consequence

The problem has a unique solution and there is stability (continuous

dependence on the data).



Standard Finite Elements

Choose ®; C ©® and W;, C W finite element spaces.
Find (Hh,wh) c @, x W, s.t.

[ €O :<tm)+ 32 [ (Fwn=0) - (Ton =) = [ gun

Q

for every (n,,vn) € O x W,




e

e

e Test problem using the above mesh and uniform constant load

e Thin plate: diam(Q2)/t >> 1

A “good” description of the deformation is expected!!

HOWEVER...



— - I

Discrete solution

analytical solution

e Dblue profile: the analytical solution.

e red profile: the discrete solution.

The method HEAVILY underestimates the solution



Energy minimization

The minimization problem @ x W for:

B =5 [ ztmiem+ 25 [1vo-n?= [ g

converges to the limit problem:

Find (0°,w°) € K which minimizes

Bno) =5 [ Cemyictm— [ o0 (o)X

Q

K={(nv)e®xW : Vuv=n}

Remark It is a coercive problem in K.



Finite Elements

The minimization problem in @; x W}, for:

1 At
Blmon) = 5 [ Cetm) =)+ == [ 190 =mif = [ g

converges to the limit problem:

Find (6}, w?) € K}, which minimizes

1

() = / Celny) : e(my) — / gon (o) € Ki

Ky, ={(ny,vn) € Op x Wy, : Vu, =n;,}



Structure of K,

(nh,?}h) e K;, — Vo, = M, € CO(Q) —> Vp, € Cl(ﬂ)
But

{Uh c C1(Q) and piecewise linear} —> vy, 1s globally linear
It follows

{v}, is globally linear and v, = 0 on the boundary} = v, =0=mn, =0

Hence

K, = (0) Shear Locking!!



A possible cure

The enemy: the term

A\t 2
/]Vvh—nh|2 for ¢ — 0
2 Jo

Idea

At—2
AL RN
Q

Take

R;, suitable “reduction operator”



Example: pw. quadratic functions

R;, : Projection operator on piecewise constant functions



Computed vertical displacements

w - Kk =|C|]107° _
e x 10

-4

x 10




Modified Finite Elements & Minimization

Minimization problem in @; x W)}, for the new energy:

1 At 2
En(myv0) = / Cemy) : () +2 / Ro (Vo —m,) | — / gun

o If R, (V) # Vuy, we risk. It may happen:
Vu, #0 but R,(Vu,) =0

The energy on (0, avp):

At~
Er(0,avp) = 5 / o Ry, (Vp,) |2 —a/ gup = —oz/ gun
Q Q Q

LINEAR functional along the direction vy !!!



Finite Elements for plates

We need a reduction operator Ry,

If Rj, reduces “too much”: Spurious modes.

If R;, do not reduce “enough”: Shear Locking

Remarks

Balancing Ry, is not trivial.

Other difficulties arise: boundary layer effects.



Possible Approaches

e Arnold-Falk Element (1989).

e MITC Elements: Brezzi, Bathe, Fortin, Stenberg ... (’°80-"90).
e Linking Technique: Auricchio, Taylor, L. ... (’90).

e Stabilized Elements: Chapelle, Hughes, Stenberg ... (’90).

e Non-conforming and DG Elements: Arnold, Brezzi, L., Marini
('04-)

Remark: Most of them are Mixed Methods.




Conclusions

In Computational Mechanics: often problems with “small” or
“large” parameter.

Finite element discretization of such problems requires care.

Different situations may arise,with different peculiarities.

Shell Problems fall into this structure, but MUCH MORE
DIFFICULT.



