Locking phenomena in Computational Mechanics: nearly incompressible materials and plate problems

C. Lovadina
Dipartimento di Matematica
Univ. di Pavia

IMATI-CNR, Pavia

Bologna, September, the 18th 2006

Aim of the talk

- Discuss the troubles of problems with small (or large) parameters.
 - 1. Understand the roots of the difficulties.
 - 2. Suggest possible cures.
- Examples: Finite Element approximation of nearly incompressible elasticity and plate problems.

THE LINEAR ELASTICITY PROBLEM

- Plane linear elasticity problem in the framework of the infinitesimal theory, and plane strain case.
- Isotropic and Homogeneous material.

Solve the problem: Find **u** such that

$$\begin{cases}
-\operatorname{div}\left(2\mu\boldsymbol{\varepsilon}(\mathbf{u}) + \boldsymbol{\lambda}(\operatorname{div}\mathbf{u})\boldsymbol{\delta}\right) = \mathbf{f} & \text{in } \Omega \\
\mathbf{u} = \mathbf{u}_0 & \text{on } \Gamma_D \\
\left(2\mu\boldsymbol{\varepsilon}(\mathbf{u}) + \boldsymbol{\lambda}(\operatorname{div}\mathbf{u})\boldsymbol{\delta}\right)\mathbf{n} = \mathbf{t} & \text{on } \Gamma_N
\end{cases}$$

- 1. \mathbf{u} , $\mathbf{f}:\Omega\to\mathbf{R}^2$ are the displacement field and the loading term;
- 2. $\boldsymbol{\varepsilon}(\cdot)$ is the symmetric gradient operator;
- 3. $\boldsymbol{\delta}$ is the second-order identity tensor.

 μ and λ are the Lamé coefficients

$$0 < \mu_0 \le \mu \le \mu_1 < +\infty \text{ and } 0 < \lambda_0 \le \lambda \le +\infty$$

Equivalent formulation

Find **u** which minimizes the elastic energy

$$E(\mathbf{v}) = \mu \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}) : \boldsymbol{\varepsilon}(\mathbf{v}) + \frac{\lambda}{2} \int_{\Omega} |\operatorname{div} \mathbf{v}|^2 - \int_{\Omega} \mathbf{f} \cdot \mathbf{v} - \int_{\Gamma_N} \mathbf{t} \cdot \mathbf{v}$$

over a suitable set of admissible functions V.

Remark. For homogeneous Dirichlet boundary conditions, as in the sequel:

$$\mathbf{V} = \left\{ \mathbf{v} \in \mathbf{H}^1(\Omega) : \mathbf{v}|_{\Gamma_D} = \mathbf{0} \right\}$$

Variational formulation

Find $\mathbf{u} \in \mathbf{V}$ such that:

$$2\mu \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{u}) : \boldsymbol{\varepsilon}(\mathbf{v}) + \lambda \int_{\Omega} \operatorname{div} \mathbf{u} \operatorname{div} \mathbf{v} = F(\mathbf{v}) \qquad \forall \mathbf{v} \in \mathbf{V}$$

where

$$F(\mathbf{v}) := \int_{\Omega} \mathbf{f} \cdot \mathbf{v} + \int_{\Gamma_N} \mathbf{t} \cdot \mathbf{v}$$

• The bilinear form $2\mu \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{u}) : \boldsymbol{\varepsilon}(\mathbf{v}) + \lambda \int_{\Omega} \operatorname{div} \mathbf{u} \operatorname{div} \mathbf{v}$ is continuous, symmetric and coercive; F is linear and continuous.

Consequence

The problem has a unique solution and there is stability (continuous dependence on the data).

Standard Finite Elements

Choose V_h finite element space. Find $\mathbf{u}_h \in V_h$ such that:

$$2\mu \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{u}_h) : \boldsymbol{\varepsilon}(\mathbf{u}_h) + \lambda \int_{\Omega} \operatorname{div} \mathbf{u}_h \operatorname{div} \mathbf{v}_h = F(\mathbf{v}_h) \qquad \forall \mathbf{v}_h \in \mathbf{V}_h$$

- Test problem using the above mesh and data (given tractions on Neumann boundary)
- Rubber material (nearly incompressible): $\lambda/\mu >> 1$

A "good" description of the deformation is expected!!

HOWEVER...

• blue: the analytical solution.

• red: the discrete solution.

The method HEAVILY underestimates the solution

WHY??

• We need to recall the energy functional:

$$E(\mathbf{v}) = \mu \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}) : \boldsymbol{\varepsilon}(\mathbf{v}) + \frac{\lambda}{2} \int_{\Omega} |\operatorname{div} \mathbf{v}|^{2} - F(\mathbf{v})$$

which has to be minimized over V.

 $\lambda/\mu >> 1$ "corresponds" to

$$\mu \sim 1$$
 , $\lambda \to +\infty$

Therefore, for $\lambda/\mu >> 1$, the minimiser $\mathbf{u} \in \mathbf{V}$ satisfies:

 $\operatorname{div} \mathbf{u} \sim 0$

The limit problem

It can be shown that $\mathbf{u} \to \mathbf{u}^0$ as $\lambda \to +\infty$, where \mathbf{u}^0 solves the the limit problem

Find $\mathbf{u}^0 \in \mathbf{K}$ which minimizes

$$E^{0}(\mathbf{v}) = \mu \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}) : \boldsymbol{\varepsilon}(\mathbf{v}) - F(\mathbf{v}) \quad \text{in } \mathbf{K}$$

$$\mathbf{K} = \{ \mathbf{v} \in \mathbf{V} : \operatorname{div} \mathbf{v} = 0 \}$$

<u>Remark</u>: The above problem is <u>well-posed</u> and <u>reasonable</u>. It is the elasticity problem for incompressible materials.

Finite Element & Minimization

• Standard Finite Elements corresponds to Find $\mathbf{u}_h \in \mathbf{V}_h$ which minimizes

$$E(\mathbf{v}_h) = \mu \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}_h) : \boldsymbol{\varepsilon}(\mathbf{v}_h) + \frac{\lambda}{2} \int_{\Omega} |\operatorname{div} \mathbf{v}_h|^2 - F(\mathbf{v}_h) \quad \text{in } \mathbf{V}_h$$

Remark: The SAME energy, but different admissible functions.

The Finite Element limit problem

It can be shown that $\mathbf{u}_h \to \mathbf{u}_h^0$ as $\lambda \to +\infty$, where \mathbf{u}_h^0 solves the the limit problem

Find $\mathbf{u}_h^0 \in \mathbf{K}_h$ which minimizes

$$E(\mathbf{v}_h) = \mu \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}_h) : \boldsymbol{\varepsilon}(\mathbf{v}_h) - F(\mathbf{v}_h) \quad \text{in } \mathbf{K}_h$$

$$\mathbf{K}_h = \{ \mathbf{v}_h \in \mathbf{V}_h : \operatorname{div} \mathbf{v}_h = 0 \} = \mathbf{K} \cap \mathbf{V}_h$$

Question: Is it a "good" limit problem?

 $\mathbf{v}_h \in \mathbf{K}_h \Longrightarrow \left\{ \mathbf{v}_h \text{ is continuous, piecewise linear, and } \operatorname{div} \mathbf{v}_h = 0 \right\}$

Therefore, it holds: $\mathbf{v}_h(P) = \mathbf{0}$

Repeating the argument: $\mathbf{v}_h \in \mathbf{K}_h \Longrightarrow \mathbf{v}_h \equiv \mathbf{0}$

Therefore, $\mathbf{K}_h = (\mathbf{0})$

The Finite Element limit problem revisited

Find $\mathbf{u}_h^0 \in \mathbf{K}_h$ which minimizes

$$E^{0}(\mathbf{v}_{h}) = \mu \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}_{h}) : \boldsymbol{\varepsilon}(\mathbf{v}_{h}) - F(\mathbf{v}_{h}) \quad \text{in } \mathbf{K}_{h}$$

$$\mathbf{K}_h = (\mathbf{0})$$

• The divergence-free constraint is too severe for finite element functions: Volumetric Locking!

A possible cure

The enemy: the term
$$\frac{\lambda}{2} \int_{\Omega} |\operatorname{div} \mathbf{v}_h|^2$$
 for $\lambda \to +\infty$
$$\underline{\operatorname{Idea}}$$

Take
$$\frac{\lambda}{2} \int_{\Omega} |P_h(\operatorname{div} \mathbf{v}_h)|^2$$

 P_h suitable "reduction operator" (typically a projection operator)

New Finite Element problem

Find $\mathbf{u}_h \in \mathbf{V}_h$ which minimizes

$$E_h(\mathbf{v}_h) = \mu \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}_h) : \boldsymbol{\varepsilon}(\mathbf{v}_h) + \frac{\lambda}{2} \int_{\Omega} |P_h(\operatorname{div} \mathbf{v}_h)|^2 - F(\mathbf{v}_h) \quad \text{in } \mathbf{V}_h$$

Limit Problem

Find $\mathbf{u}_h^0 \in \mathbf{K}_h$ which minimizes

$$E_h^0(\mathbf{v}_h) = \mu \int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}_h) : \boldsymbol{\varepsilon}(\mathbf{v}_h) - F(\mathbf{v}_h) \quad \text{in } \mathbf{K}_h$$

$$\mathbf{K}_h := \{ \mathbf{v}_h \in \mathbf{V}_h : \underline{P}_h(\operatorname{div} \mathbf{v}_h) = 0 \}$$

<u>Remark</u>: $P_h(\operatorname{div} \mathbf{v}_h) = 0$ may be weaker than $\operatorname{div} \mathbf{v}_h = 0$.

Example: pw. quadratic functions (not recommended)

 P_h : Projection operator on piecewise constant functions

$$\mathbf{v}_h \in \mathbf{K}_h \Longrightarrow \operatorname{div} \mathbf{v}_h(C) = 0$$

Classical Approaches

- Galerkin Least–Squares Methods: Hughes–Franca (1985-1986)
- Enhanced Strain Methods: Simo-Rifai (1990), Pantuso-Bathe (1995)...
- MINI element: Arnold, Brezzi, Fortin (1984).
- Taylor–Hood Elements (1973).
- Non-conforming methods: Crouziex-Raviart Element (1973).

Remark: Most of them are Mixed Methods.

THE PLATE PROBLEM

We consider a plate subjected to a transversal load (with respect to its mid-plane)

The 2D Reissner-Mindlin model

- Undeformed plate: made up by fibers, which are rectilinear and perpendicular to the mid-plane Ω .
- Due to deformation, the fibers remain rectilinear, but they are not perpendicular to the mid-plane anymore.

Problem unknowns

- The vectorial field $\theta = \theta(x, y)$ (fiber rotations).
- The scalar field w = w(x, y) (vertical displacements).

The equations (clamped plate)

Find $(\boldsymbol{\theta}, w)$ s.t.

$$-\operatorname{div} \mathbf{C} \,\varepsilon(\boldsymbol{\theta}) - \lambda t^{-2} (\boldsymbol{\nabla} w - \boldsymbol{\theta}) = 0 \quad \text{in } \Omega,$$
$$-\operatorname{div} \left(\lambda t^{-2} (\boldsymbol{\nabla} w - \boldsymbol{\theta})\right) = g \quad \text{in } \Omega,$$
$$\boldsymbol{\theta} = 0, \ w = 0 \text{ on } \partial\Omega.$$

- C and λ : material parameters;
- t: plate thickness $(t \ll \operatorname{diam}(\Omega))$;
- g: transversal load.

Energy minimization

Find $(\boldsymbol{\theta}, w)$ which minimizes

$$E(\boldsymbol{\eta}, v) = \frac{1}{2} \int_{\Omega} \mathbf{C} \, \varepsilon(\boldsymbol{\eta}) : \varepsilon(\boldsymbol{\eta}) + \frac{\lambda t^{-2}}{2} \int_{\Omega} |\nabla v - \boldsymbol{\eta}|^2 - \int_{\Omega} gv$$

over the admissible space $\Theta \times W$

$$\Theta = (H_0^1(\Omega))^2 , W = H_0^1(\Omega)$$

Variational formulation

Find $(\boldsymbol{\theta}, w) \in \boldsymbol{\Theta} \times W$ such that

$$\int_{\Omega} \mathbf{C} \, \varepsilon(\boldsymbol{\theta}) : \varepsilon(\boldsymbol{\eta}) + \lambda t^{-2} \int_{\Omega} (\boldsymbol{\nabla} w - \boldsymbol{\theta}) \cdot (\boldsymbol{\nabla} v - \boldsymbol{\eta}) - \int_{\Omega} g v$$

for every $(\boldsymbol{\eta}, v) \in \boldsymbol{\Theta} \times W$.

• The bilinear form $\int_{\Omega} \mathbf{C} \, \varepsilon(\boldsymbol{\theta}) : \varepsilon(\boldsymbol{\eta}) + \lambda t^{-2} \int_{\Omega} (\nabla w - \boldsymbol{\theta}) \cdot (\nabla v - \boldsymbol{\eta})$ is continuous, symmetric and coercive; $\int_{\Omega} gv$ is linear and continuous.

Consequence

The problem has a unique solution and there is stability (continuous dependence on the data).

Standard Finite Elements

Choose $\Theta_h \subset \Theta$ and $W_h \subset W$ finite element spaces.

Find $(\boldsymbol{\theta_h}, w_h) \in \boldsymbol{\Theta_h} \times W_h$ s.t.

$$\int_{\Omega} \mathbf{C} \, \varepsilon(\boldsymbol{\theta}_h) : \varepsilon(\boldsymbol{\eta}_h) + \lambda t^{-2} \int_{\Omega} (\boldsymbol{\nabla} w_h - \boldsymbol{\theta}_h) \cdot (\boldsymbol{\nabla} v_h - \boldsymbol{\eta}_h) - \int_{\Omega} g v_h$$

for every $(\boldsymbol{\eta_h}, v_h) \in \boldsymbol{\Theta_h} \times W_h$.

- Test problem using the above mesh and uniform constant load
- Thin plate: $diam(\Omega)/t >> 1$

A "good" description of the deformation is expected!!

HOWEVER...

- blue profile: the analytical solution.
- red profile: the discrete solution.

The method HEAVILY underestimates the solution

Energy minimization

The minimization problem $\Theta \times W$ for:

$$E(\boldsymbol{\eta}, v) = \frac{1}{2} \int_{\Omega} \mathbf{C} \, \varepsilon(\boldsymbol{\eta}) : \varepsilon(\boldsymbol{\eta}) + \frac{\lambda t^{-2}}{2} \int_{\Omega} |\nabla v - \boldsymbol{\eta}|^2 - \int_{\Omega} gv$$

converges to the limit problem:

Find $(\boldsymbol{\theta}^0, w^0) \in \mathbf{K}$ which minimizes

$$E^{0}(\boldsymbol{\eta}, v) = \frac{1}{2} \int_{\Omega} \mathbf{C} \, \varepsilon(\boldsymbol{\eta}) : \varepsilon(\boldsymbol{\eta}) - \int_{\Omega} gv \qquad (\boldsymbol{\eta}, v) \in \mathbf{K}$$

$$\mathbf{K} = \{ (\boldsymbol{\eta}, v) \in \boldsymbol{\Theta} \times W : \boldsymbol{\nabla} v = \boldsymbol{\eta} \}$$

Remark It is a coercive problem in **K**.

Finite Elements

The minimization problem in $\Theta_h \times W_h$ for:

$$E(\boldsymbol{\eta}_h, v_h) = \frac{1}{2} \int_{\Omega} \mathbf{C} \, \varepsilon(\boldsymbol{\eta}_h) : \varepsilon(\boldsymbol{\eta}_h) + \frac{\lambda t^{-2}}{2} \int_{\Omega} |\boldsymbol{\nabla} v_h - \boldsymbol{\eta}_h|^2 - \int_{\Omega} g v_h$$

converges to the limit problem:

Find $(\boldsymbol{\theta}_h^0, w_h^0) \in \mathbf{K}_h$ which minimizes

$$E^{0}(\boldsymbol{\eta}_{h}, v_{h}) = \frac{1}{2} \int_{\Omega} \mathbf{C} \, \varepsilon(\boldsymbol{\eta}_{h}) : \varepsilon(\boldsymbol{\eta}_{h}) - \int_{\Omega} g v_{h} \qquad (\boldsymbol{\eta}_{h}, v_{h}) \in \mathbf{K}_{h}$$

$$\mathbf{K}_h = \{ (\boldsymbol{\eta}_h, v_h) \in \boldsymbol{\Theta}_h \times W_h : \boldsymbol{\nabla} v_h = \boldsymbol{\eta}_h \}$$

Structure of \mathbf{K}_h

$$(\boldsymbol{\eta}_h, v_h) \in \mathbf{K}_h \Longrightarrow \boldsymbol{\nabla} v_h = \boldsymbol{\eta}_h \in C^0(\Omega) \Longrightarrow v_h \in C^1(\Omega)$$

But

 $\{v_h \in C^1(\Omega) \text{ and piecewise linear}\} \Longrightarrow v_h \text{ is globally linear}$ It follows

 $\{v_h \text{ is globally linear and } v_h = 0 \text{ on the boundary}\} \Longrightarrow v_h \equiv 0 \Longrightarrow \eta_h = 0$ Hence

$$\mathbf{K}_h = (\mathbf{0})$$
 Shear Locking!!

A possible cure

The enemy: the term $\frac{\lambda t^{-2}}{2} \int_{\Omega} |\nabla v_h - \eta_h|^2$ for $t \to 0$ $\underline{\text{Idea}}$

Take
$$\frac{\lambda t^{-2}}{2} \int_{\Omega} |\mathbf{R}_h(\nabla v_h - \boldsymbol{\eta}_h)|^2$$

 R_h suitable "reduction operator"

Example: pw. quadratic functions

 R_h : Projection operator on piecewise constant functions

Computed vertical displacements

Modified Finite Elements & Minimization

Minimization problem in $\Theta_h \times W_h$ for the new energy:

$$E_h(\boldsymbol{\eta}_h, v_h) = \frac{1}{2} \int_{\Omega} \mathbf{C} \, \varepsilon(\boldsymbol{\eta}_h) : \varepsilon(\boldsymbol{\eta}_h) + \frac{\lambda \, t^{-2}}{2} \int_{\Omega} |\boldsymbol{R}_h(\boldsymbol{\nabla} v_h - \boldsymbol{\eta}_h)|^2 - \int_{\Omega} g v_h$$

• If $R_h(\nabla v_h) \neq \nabla v_h$ we risk. It may happen:

$$\nabla v_h \neq \mathbf{0}$$
 but $R_h(\nabla v_h) = \mathbf{0}$

The energy on $(\mathbf{0}, \alpha v_h)$:

$$E_h(\mathbf{0}, \alpha v_h) = \frac{\lambda t^{-2}}{2} \int_{\Omega} |\alpha R_h(\nabla v_h)|^2 - \alpha \int_{\Omega} g v_h = -\alpha \int_{\Omega} g v_h$$

LINEAR functional along the direction v_h !!!

Finite Elements for plates

We need a reduction operator R_h

- If R_h reduces "too much": Spurious modes.
- If R_h do not reduce "enough": Shear Locking

Remarks

- Balancing R_h is not trivial.
- Other difficulties arise: boundary layer effects.

Possible Approaches

- Arnold–Falk Element (1989).
- MITC Elements: Brezzi, Bathe, Fortin, Stenberg ... ('80-'90).
- Linking Technique: Auricchio, Taylor, L. ... ('90).
- Stabilized Elements: Chapelle, Hughes, Stenberg ... ('90).
- Non-conforming and DG Elements: Arnold, Brezzi, L., Marini ('04-)

Remark: Most of them are Mixed Methods.

Conclusions

- In Computational Mechanics: often problems with "small" or "large" parameter.
- Finite element discretization of such problems requires care.
- Different situations may arise, with different peculiarities.
- Shell Problems fall into this structure, but MUCH MORE DIFFICULT.