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Part1: motivations and examples Why to simulate blood flow?

Why to simulate blood flow?

I A number of vascular diseases are linked to local haemodynamics. For
instance atherosclerosis and cerebral aneurisms → medical research

I Altered flow conditions following a surgical operation like a by-pass may have
negative effect and cause post-surgical failures → surgical planning

I The design of a prosthesis or other devices (like a stent) may ne aided by
haemodynamic simulations → prosthesis design

I A simulator of the cardiovascular system may well serve for training medical
doctor and anesthesiologists → training
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Part1: motivations and examples Altered flow conditions

Altered fluid-dynamics due to stenoses
Wall shear stress map

Wall shear stress (WSS) in a stenosed area may reach the value of 25−30 dyne/cm2

compared to the physiological values of around 4− 6 dyne/cm2

WSS = σ(u, p)n− (nTσ(u, p)n)n

σ(u, p) is the Cauchy stress tensor

σ(u, p) = µ(∇u +∇Tu)− pI
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Part1: motivations and examples Altered flow conditions

Blood recirculation regions

Computation by M. Prosi

Recirculation region in areas like the carotid sinus may cause oscillation of the wall
shear stresses → damage to the endothelium → inflammatory process →
arteriosclerosis
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Part1: motivations and examples Altered flow conditions

Vortex generation around a bypass

A by-pass is created to bring blood to a part of the myocardium that has been
partially or totally excluded because of a stenosis (narrowing of the lumen) in a
coronary artery

The flow around a bypass is altered and may initiate inflammatory processes which
may lead to a stenosis. We need to reduce the generation of vorticity.
F. Loth, S. Lee and F. Fisher
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Part1: motivations and examples Surgical planning

Optimization of the shape of a by-pass

On the right the result by an
automatic optimisation pro-
cedure which reduced the av-
erage vorticity by 45%. On
the left the Miller cuff, a sur-
gical procedure adopted for a
by-pass.
G. Rozza, V. Agoskov, A. Quar-

teroni

Problem: find the shape so that || curlu||L2(Ω) is minimized.
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Part1: motivations and examples Surgical planning

Optimization procedure results
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Part1: motivations and examples Prosthesis design

Design of an endograft for AAA

Abdominal aortic aneurysms (AAA) is a significant and important vascular
disease. They are characterised by an abnormal dilatation of a portion of the
aorta. This swollen region would enlarge with time and, without a surgical
treatment, it will eventually break with fatal consequences.
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Abdominal aortic aneurysms (AAA) is a significant and important vascular
disease. They are characterised by an abnormal dilatation of a portion of the
aorta. This swollen region would enlarge with time and, without a surgical
treatment, it will eventually break with fatal consequences.

Exclusion of abdominal aortic aneurysms
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Part1: motivations and examples Prosthesis design

Design of an endograft for AAA
Abdominal aortic aneurysms (AAA) is a significant and important vascular
disease. They are characterised by an abnormal dilatation of a portion of the
aorta. This swollen region would enlarge with time and, without a surgical
treatment, it will eventually break with fatal consequences.

An endograft
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Part1: motivations and examples Prosthesis design

Design of an endograft for AAA

Abdominal aortic aneurysms (AAA) is a significant and important vascular
disease. They are characterised by an abnormal dilatation of a portion of the
aorta. This swollen region would enlarge with time and, without a surgical
treatment, it will eventually break with fatal consequences.

Note: The change of mechanical charac-
teristics has been handled by a domain de-
composition approach and imposing con-
tinuity of fluxes and total pressure at the
interface (L.F. D.Lamponi A. Quarteroni).
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Part1: motivations and examples Prosthesis design

Numerical Simulation
ρ =1 gr/cm3, ν = 0.035 cm2/s, α = 1, h0 =0.05 cm; Eendograft = 60 106

dyne/cm2 for the endografted part (Ωi , i = 2, 3, 5) and Evessel = 10 106

dyne/cm2 for the remaining subdomains. The vessel reference radii are
R0,1 = R0,2 = 0.6 cm, R0,3 = R0,4 = 0.4 cm and R0,5 = R0,6 = 0.5 cm.
At inlet we have imposed a half sine pressure wave of period 0.1 s and amplitude
20000 dyne/cm2.
The spatial grid was of 546 nodes and ∆t = 1× 10−4s.

ANIMATIONS
Stiffer Softer
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Part1: motivations and examples Prosthesis design

Numerical Simulation

ANIMATIONS
Stiffer Softer
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Part1: motivations and examples Prosthesis design

Design of stents

Stents are expandable metallic wires used to cure stenosis caused by lipid plaques.
They are expanded by means of a balloon and implanted in the vessel wall
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Part1: motivations and examples Prosthesis design

Drug eluting stents

A new generation of stents is covered by a layer of
a polymeric substance filled with anti-inflammatory
drug. The aim is to reduce the risk of inflammation
of the vessel tissue after implant

∂cw

∂t
+
γw

kw
(uw · ∇)cw − Dw∆cw = 0

uw = −Kp

µp
∇p, ∇ · uw = 0

Special interface conditions to simulate the drug dissolution in the polymeric
matrix.
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Part1: motivations and examples Prosthesis design

Simulation of the elution process

P. Zunino, M. Prosi, F. Gervaso, S. Minisini
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Part2: coupling 3D and 1D models of the cardiovascular system

Part2: coupling 3D and 1D models of the
cardiovascular system
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Part2: coupling 3D and 1D models of the cardiovascular system

The complexity of the haemodynamic problem

I In the arterial tree:

pulsatile flow ⇒ unsteady problem

very complex and heteroge-
neous geometry

⇒ fully 3D simulations restricted to
specific regions of interest

global circulation influences
local flow dynamics

⇒ need to account for the remaining
parts

pulse propagation ⇒
need for fluid-structure interac-
tion algorithms and appropriate
absorbing boundary conditions
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Part2: coupling 3D and 1D models of the cardiovascular system

Motivation: the need of different models

I Simulations of large parts of the
arterial tree require using
different models, with different
spatial dimensions and level of
accuracy, and to couple them
together

I The mutual influence between
the local problem and the global
circulation requires to account
for the local/global interplay
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Part2: coupling 3D and 1D models of the cardiovascular system

Motivation: the need of different models
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Part2: coupling 3D and 1D models of the cardiovascular system

The model reduction procedure

Γ (t)
f

in

Γ (t)
s

in

zR
0

Ω
f(t)

Ω
0

s

Γ (t)
w

d

Fluid-structure interaction problem in a cylindrical-type geometry representing an
artery
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Part2: coupling 3D and 1D models of the cardiovascular system

The model reduction procedure

Γ (t)
f

in

Γ (t)
s

in Ω
f(t)

Γ (t)
w

zR
0

Γa

Decompose the geometry into two parts: one will be represented by a reduced
one-dimensional model
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Part2: coupling 3D and 1D models of the cardiovascular system

The model reduction procedure

Γ (t)
s

in Ω
f(t)

Γ (t)
w

Γ (t)
f

in

z

Γa

1DΩ

Devise an appropriate reduced model
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Part2: coupling 3D and 1D models of the cardiovascular system

The model reduction procedure

1DΩ

Ω 3D ?

Find appropriate coupling condition and numerical strategies
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Part2: coupling 3D and 1D models of the cardiovascular system The 3D FSI model

The 3D model: fluid equations

Navier-Stokes, curl formulation, ALE frame

Ω 0
f

Γ (t)
f

in

Γ (t)
f

a

Γ (t)
w

z

Ω
f(t)η

Γ
0,w

At : Ωf
0 → Ωf (t)

w = ∂At

∂t
P = p + ρ

2 |u|
2

D(u) = 1
2 (∇u +∇Tu)

∆At = 0, inΩf
0

At = 0 on ∂Ωf
0 \ Γ0,w

Ωf (f ) = At(Ω
f
0)

ρ
∂u

∂t
|A + ρ curlu× u− ρ(w∇)u +∇P − div(2µD(u)) = 0 in Ωf (t)

div u = 0 in Ωf (t)
u = uin on Γf

in(t)
P − (2µD(u) · nf ) · nf = q, u× nf = 0 on Γf

a(t)

for all t ∈ (0,T ) and with appropriate initial conditions.

Note: no conditions on FS interface have been provided yet.
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Part2: coupling 3D and 1D models of the cardiovascular system The 3D FSI model

The 3D model: structure equations

Elastic material in large displacement, Lagrangian formulation

Γ
s

0,in

0,w

0,e
Γ

Ω
0

s

d

Γ

z

Γ
s

0,a σs(d) = (I +∇d)S(d)
S(d) = λ tr(E)I + 2µsE
E = 1

2

(
∇d +∇Td +∇Td∇d

)

ρs
∂2d

∂t2
− div σs(d) = 0 in Ωs

0

σs(d) · ns = pens on Γ0,e

d = g on Γs
0,in

(σs(d) · ns)× ns = 0, d · ns = 0 on Γs
a,e

for all t ∈ (0,T ) and with appropriate initial conditions for d and ∂td.

Note: no conditions on FS interface have been provided yet.
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Part2: coupling 3D and 1D models of the cardiovascular system The 3D FSI model

The 3D model: fluid-structure interface conditions

Γ (t)
w

n
f

n
f

z

Γ
0,w

(t)

η

On Γ0,w we set η = d and

At = η

u ◦ At =
∂η

∂t
(σf (u, p) · nf (t)) ◦ At + σs(d) · ns = 0

where σf (u, p) = −pI + 2µD(u).
These conditions express continuity of velocity and stresses at the interface.
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Part2: coupling 3D and 1D models of the cardiovascular system The 3D FSI model

The 3D model: known result

• Energy estimate

E3D =
ρ

2
||u||2L2(Ωf (t)) +

ρs

2
||∂td||2L2(Ωs

0)
+ µs ||E||2L2(Ωs

0)
+
λ

2
|| tr(E)||2L2(Ωs

0)

d

dt
E3D(t)+C1||u(t)||2H1(Ωf (t)) ≤ C2

[
|q(t)|2 + ||uin(t)||2H1/2(Γf

in(t))
+ ||g(t)||2H1/2(Γs

0,in)

]

• Well posedness (only partial results, even in the 2D case, often a viscoelastic
term is added to regularize η): Y. Maday, C. Grandmont, B. Desjardins, M. J.
Esteban, C. Conca, H. Beirao da Veiga....

• Development and analysis of numerical methods: P. Le Tallec, F. Nobile, M.A.
Fernández, M. Moubachir, J-F. Gerbeau, S. Deparis, H.G. Matthies, W.A. Wall, ...

Other “shell-type” structural models have been used for this problem. The
considerations here made extend to many of them

L. Formaggia Modelling the cardiovascular system NADay 2006 21 / 34



Part2: coupling 3D and 1D models of the cardiovascular system The 3D FSI model

The 3D model: known result

• Energy estimate

E3D =
ρ

2
||u||2L2(Ωf (t)) +

ρs

2
||∂td||2L2(Ωs

0)
+ µs ||E||2L2(Ωs

0)
+
λ

2
|| tr(E)||2L2(Ωs

0)

d

dt
E3D(t)+C1||u(t)||2H1(Ωf (t)) ≤ C2

[
|q(t)|2 + ||uin(t)||2H1/2(Γf

in(t))
+ ||g(t)||2H1/2(Γs

0,in)

]

• Well posedness (only partial results, even in the 2D case, often a viscoelastic
term is added to regularize η): Y. Maday, C. Grandmont, B. Desjardins, M. J.
Esteban, C. Conca, H. Beirao da Veiga....

• Development and analysis of numerical methods: P. Le Tallec, F. Nobile, M.A.
Fernández, M. Moubachir, J-F. Gerbeau, S. Deparis, H.G. Matthies, W.A. Wall, ...
Other “shell-type” structural models have been used for this problem. The
considerations here made extend to many of them

L. Formaggia Modelling the cardiovascular system NADay 2006 21 / 34



Part2: coupling 3D and 1D models of the cardiovascular system The 1D FSI model

The 1D model: derivation
Derived from the 3D-FSI model by

I Making some simplifying assumptions:
I Cylindrical geometry
I Simplified structural models (“shell type” model, linear elastic behaviour)
I Neglect wall inertia

I Integrating over the cross section

A(z , t) =
∫
Ωf (t)∩Σ(z)

dγ

Q(z , t) =
∫
Ωf (t)∩Σ(z)

uz(x, t)dγ

p(z , t) =
∫
Ωf (t)∩Σ(z)

p(x, t)dγ

z

a
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Part2: coupling 3D and 1D models of the cardiovascular system The 1D FSI model

The 1D model: the equations

z
ba

Ω
1D

It is described by an hyperbolic system of equations, endowed with a pressure-area
algebraic relation:

∂A

∂t
+
∂Q

∂z
= 0, z ∈ (a, b), t > 0

∂Q

∂t
+

∂

∂z

(
Q2

A

)
+

A

ρ

∂p

∂z
= −Kr

Q

A
, z ∈ (a, b), t > 0

p(A;A0, β) = β

√
A−

√
A0

A0
with β =

√
πh0E

1− ν2

References: T. Pedley, A. Quarteroni and L.F, L.F. and A. Veneziani, S. Canic...
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Part2: coupling 3D and 1D models of the cardiovascular system The 1D FSI model

The 1D model: known results

I It is a full hyperbolic system with characteristic speeds λ1,2 = u ∓ c , with

u = Q/A and c2 = A
ρ

∂p
∂A

I It admits the characteristic variables W1,2 = u ±
∫ A

A0

c(s)
s ds

I Under conditions on the regularity and size of the boundary and initial data it
admits global smooth solutions, as well as periodic smooth solution (S. Canic
and D. Mirkovic, L.F. D. Amandori S. Ferrari (submitted))

Note: In haemodynamic applications c << u (c of the order of 1− 10 m/s, u of
the order of 10−3 − 10−2 m/s).
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Part2: coupling 3D and 1D models of the cardiovascular system The 1D FSI model

The 1D Model: boundary conditions

In this work we consider the following boundary conditions for the 1D problem

p(t) + ρ
2u2(t) = P1D(t), at z = a

W2(t) = g2(t) at z = b( non reflecting condition).

Let

E1D =
ρ

2

∫ b

a

Au2dz +

∫ b

a

ψ(A(z))dz

with ψ(A) =
∫ A

A0
p(s)ds.

If the initial data are regular enough and such that c < u everywere, g2 is
sufficiently regular and small, then there exists a positive bounded function
G2 : R → R+ such that, for all t > 0

d

dt
E1D(t) + Q(a, t)P1D(t) ≤ G (g2(t))

This results will allow us to get a stable coupling condition.
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Part2: coupling 3D and 1D models of the cardiovascular system Coupling 3D and 1D models

Coupling 3D and 1D models

Γ (t)
s

in Ω
f(t)

Γ (t)
w

Γ (t)
f

in

z

Γa

1DΩ

At the interface between the 1D and the 3D model we impose

I Continuity of the flux ∫
Γa

u · ndγ = Q(a)

I Continuity of total stress

1

|Γa|

∫
Γa

p +
ρ

2
‖u‖2 − 2µ(D(u · n) · ndγ = p(a) +

ρ

2
u(a)2
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Part2: coupling 3D and 1D models of the cardiovascular system Coupling 3D and 1D models

Coupling 3D and 1D models

Γ (t)
s

in Ω
f(t)

Γ (t)
w

Γ (t)
f

in

z

Γa

1DΩ

In fact the condition on the stresses is here imposed to the 3D problem in the form

p +
ρ

2
‖u‖2 − 2µ(D(u · n) · n = p(a) +

ρ

2
u(a)2, on Γa
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Part2: coupling 3D and 1D models of the cardiovascular system Coupling 3D and 1D models

Coupling 3D and 1D models

Γ (t)
s

in Ω
f(t)

Γ (t)
w

Γ (t)
f

in

z

Γa

1DΩ

With this choice of coupling conditions, it is possible to formally derive that for
any T > 0 the coupled system satisfies

[E3D +E1D ](T )+C1

∫ T

0

||u||H1(Ωf ) ≤ [E3D +E1D ](0)+

∫ T

0

F (uin(t), g(t), g2(t))dt

F being a positive and bounded function of its arguments.
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Part2: coupling 3D and 1D models of the cardiovascular system The discrete problem

The numerical scheme for each model

Discretisation of the 1D problem
I Taylor-Galerkin second-order finite element scheme (linear elements)

I The solver accounts also for non constant A0 and varible elastic parameters

Discretisation of the 3D problem
I Fluid-structure coupled problem solved implicitly through a Newton iterative

algorithm (M.A. Fernández and M. Moubachir, Computers & Structures, 2005)

I Conforming finite element space discretisation for the fluid and structure
problems

I Time discretisation of the structure by a Newmark scheme.
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Part2: coupling 3D and 1D models of the cardiovascular system The discrete problem

Solving the 3D-1D coupling

I The 3D and 1D - are considered separately and solved in a staggered fashion
(explicit interface conditions)

Note: Stability of the staggered scheme under investigation.
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Part2: coupling 3D and 1D models of the cardiovascular system Some numerical results

An early result
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Part2: coupling 3D and 1D models of the cardiovascular system Some numerical results

A single artery
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Part2: coupling 3D and 1D models of the cardiovascular system Some numerical results

A realistic bifurcation

1D models not shown
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Conclusions

I We have devised a stable coupling (at continuous level) between 1D and FSI
multidimensional models of blood flow

I Other coupling conditions are possible like passing the average total stress or
the average flux to the 3D model (L.F. A. Veneziani and C. Vergara, L.F, A.
Moura, F. Nobile, in preparation). They have not been presented here for the
sake of time.

I Work is ongoing to analyze the full discrete problem. The results of the
numerical tests are encouraging.

I The coupling is now being used for concrete applications such the simulation
of blood flow in cerebral aneurysms, using a network 1D description of the
main cerebral arteries.
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A final remark

The simulation of the circulatory system by means of numerical technique is a
very complex and many problems are still open.
Many important aspects have not been covered in this talk:

I Geometry reconstruction from medical images

I Simulation of the electrical and mechanical activity of the heart and its
interaction with the global circulation

I Tissue modelling and long term modification

I Metabolic regulation mechanisms

I The coagulation process and trombus formation

I Rheology of blood in small vessels and capillaries

I ...
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