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Non-Negative Least-Squares (NNLS) problems

min
x≥0

q(x) =
1

2
‖Ax− b‖2

2,

where A ∈ IRm×n, b ∈ IRm are given and m ≥ n.

Assume n is large, A is sparse

• NNLS problems model:

data fitting with variables in meaningful intervals; nonnegative image restoration

problems; contact problems for mechanical systems; control problems.

• A has full column rank ⇒ there is an unique solution x∗. Allow x∗ to be degenerate:

g(x) = ∇q(x), x∗
i = 0, gi(x

∗) = 0 for some i, 1 ≤ i ≤ n
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Interior Point methods for NNLS problems

• IP methods for large bound-constrained quadratic programming and bound constrained

least-squares problems:

– First order optimality conditions are reformulated as a nonlinear system.

– A sequence of strictly feasible iterates is generated by a Newton like method. Global

convergence is guaranteed.

[Coleman, Hulbert, 1993],

[Coleman, Li, SIOPT 1996]

[Coleman, Li, COAP 2000],

[Portugal, Judice and Vicente, Math. Comput. 1994].

• Procedures tailored for ill-posed problems arising in image reconstruction

e.g. [Calvetti, Landi, Reichel, Sgallari, Inv. Problems, 2004] [Rojas, Steihaugh, Inv.

Problems, 2002].
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To our knowledge all Interior Point methods for quadratic programming and NNLS problems

do not ensure fast convergence in presence of degeneracy.

⇓

We propose new Interior Point methods:

• Fast convergence in presence of degeneracy.

• The structure of the NNLS problems is exploited:

in the linear algebra phase;

in the globalization strategy.

• The method is tailored for general NNLS problems. It is not be suited for handling

ill-posed problems.
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Basic transformation of NNLS problems

Let g(x) = ∇q(x) = AT(Ax− b). The first order optimality conditions are:

x∗ ≥ 0, g(x∗) ≥ 0, g(x∗)Tx∗ = 0,

⇓

• x∗ solves the system of nonlinear equations:

D(x)g(x) = 0,

where D(x) = diag(d1(x), . . . , dn(x)), di(x) =

{
xi if gi(x) ≥ 0,

1 otherwise .

• D(x)g(x) is continuous for x ≥ 0.

• D(x) is invertible for x > 0.
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[Coleman and Li, SIOPT 1996]

Interior Point methods for minl≤x≤u f(x).

• Given xk > 0, the Newton-like system for D(x)g(x) = D(x)(AT (Ax− b)) = 0 is

(Dk A
TA+ Ek)p = −Dkgk,

gk = g(xk), Dk = D(xk), Ek = E(xk) and

E(x) = diag(e1(x), . . . , en(x)), ei(x) =

{
gi(x) if gi(x) > 0

0 otherwise

• To remain strictly feasible, the step p is possibly truncated.
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• The method is locally fast convergent if x∗ is nondegenerate.

• Approaching a degenerate solution x∗, the coefficient matrix Dk A
TA + Ek tends to

become singular.

If lim
k→∞

xk = x
∗
, and x

∗
i = 0, gi(x

∗
) = 0 for some i, 1 ≤ i ≤ n

⇓
lim
k→∞

di(xk) = lim
k→∞

ei(xk) = 0 i.e. lim
k→∞

‖(Dk A
TA + Ek)

−1‖ = ∞.

• [M. Heinkenschloss, M. Ulbrich, S.Ulbrich, Math. Program. 1999]

New Interior Points methods for minl≤x≤u f(x).
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1) W (x) = diag(w1(x), . . . , wn(x)), wi(x) =
1

di(x) + ei(x)
, x > 0

Wk(Dk A
TA+ Ek)p = −WkDkgk,

The matrix W (x)(D(x)ATA + E(x))−1 exists and is uniformly bounded for x ≥ 0.

2) E(x) = diag(e1(x), .., en(x)), ei(x) =

⎧⎪⎪⎨
⎪⎪⎩

gi(x) if 0 ≤ gi(x) < x2
i

or xi < gi(x)
2

0 otherwise

Around x∗, the modification introduced affects E(x) only in the presence of degeneracy

and allows to develop fast convergent methods.
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3) To remain strictly feasible, the step pk used is

pk = max{σ, 1 − ‖P (xk + p) − xk‖2 } (P (xk + p) − xk), σ < 1,

where P (x) = max{0, x} with max meant componentwise.

• The sequence {xk} generated by the Newton-like method converges locally and

quadratically toward x∗ in the presence of degeneracy too.

• However, the straightforward application of this method to NNLS problems may be

inappropriate:

− Linear algebra issues: a proper implementation of the method.

− Globalization strategy: convergence does not depend critically on the initial guess.
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Linear algebra issues

Wk(Dk A
TA + Ek)p = −WkDkgk,

∇2q(x) = ATA symmetric positive definite (s.d.p.);

Wk(Dk A
TA+ Ek) is nonsymmetric.

• Form ATA, apply direct methods for large nonsymmetric systems.

Prohibitively costly in terms of storage and operations if A is large and sparse and

ATA is almost dense.

• Apply iterative methods, the action of A and AT on vectors are needed.

– Short recurrences method (QMR, BI-CG, BI-CGSTAB) are not optimal in the sense

of error or residual minimization.

– GMRES minimizes the residual norm but requires full-term recurrence; a restarted

version may stagnate.
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Formulation of the Newton system as a s.d.p. system

Wk(Dk A
TA + Ek)p = −WkDkgk,

⇓

Wk(Dk A
TADk + EkDk)Wk︸ ︷︷ ︸

s.d.p. matrix

p̃ = −WkDkgk, p̃ = D−1
k W

−1
k p

• Approaching a solution x∗ where a component is active and nondegerate, the coefficient

matrix Wk(Dk A
TADk + EkDk)Wk tends to become singular:

lim
k→∞

‖(Wk(Dk A
TADk + EkDk)Wk )−1‖ = ∞.
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Wk(Dk A
T
A+Ek)p = −WkDkgk ⇔ W

1
2
k (D

1
2
k A

T
A+D

−1
2

k Ek) p = −W
1
2
k D

1
2
k gk

⇓

W
1
2
k (D

1
2
k A

TAD
1
2
k + Ek)W

1
2
k︸ ︷︷ ︸

s.d.p. matrix

p̃ = −W
1
2
k D

1
2
k gk, p̃ = D

−1
2

k W
−1

2
k p

Properties of Z(x) = W (x)
1
2(D(x)

1
2ATAD(x)

1
2 + E(x))W (x)

1
2 , ∀x > 0:

• Z(x) is s.d.p.;

• ‖Z(x)−1‖ ≤ C, for some C > 0;

• k2(Z(x)) ≤ k2(W (x)(D(x)ATA + E(x))).
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Potential benefits - Direct methods

• Symmetric approximate minimum degree permutation of Zk + Cholesky factorization

+ iterative refinement for

Zkp̃ = −W
1
2
k D

1
2
k gk

• Sparse methods + iterative refinement for the augmented system

⎛
⎝ WkEk W

1
2
k D

1
2
k A

T

A W
1
2
k D

1
2
k −Im

⎞
⎠

⎛
⎝ p̃

q

⎞
⎠ =

⎛
⎜⎝ −W

1
2
k D

1
2
k gk

0

⎞
⎟⎠

Routines from Harwell Subroutine Library [Duff, Erisman and Reid, 1986].
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Potential benefits - Iterative solvers

• Solve the Newton equation approximately ⇒ Inexact Newton method:

Wk(Dk A
T
A + Ek)p = −WkDkgk + rk, ‖rk‖2 ≤ ηk‖WkDkgk‖2, ηk ∈ [0, 1).

• Solve the s.p.d. linear system:

Zkp̃ = −W
1
2
k D

1
2
k gk + r̃k, r̃k = D

−1
2

k W
−1

2
k rk

‖r̃k‖2 ≤ ηk‖WkDkgk‖2 ⇒ ‖rk‖2 ≤ ηk‖WkDkgk‖2

Apply Conjiugate Gradient (CG) methods: short recurrence, theoretical finite termina-

tion.
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CG-like methods

Zkp̃ = −W
1
2
k D

1
2
k gk ⇔ min

p̃ ∈IRn

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

AW
1
2
k D

1
2
k

W
1
2
k E

1
2
k

⎞
⎟⎟⎠ p̃ +

⎛
⎝ Axk − b

0

⎞
⎠

∥∥∥∥∥∥∥∥
2

• Apply CGLS, LSQR to the least-squares problem.

CGLS and LSQR are analytically equivalent to CG, [Paige, Saunders, ACM Trans. Math.

Softw. 1982].
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Formulation of the Newton-like method

0. Given x0 > 0, σ < 1.

1. For k = 0, 1, . . .

1.1 Choose ηk ∈ [0, 1).

1.2 Solve Zkp̃ = −W
1
2
k D

1
2
k gk + r̃k, ‖r̃k‖2 ≤ ηk‖WkDkgk‖2

1.3 Set p = W
1
2
k D

1
2
k p̃

1.4 Set pk = max{σ, 1 − ‖P (xk + p) − xk‖2 } (P (xk + p) − xk)

1.5 Set xk+1 = xk + pk

Theorem. Let x0 be sufficiently near to x∗.

If ηk = 0, ∀k, then xk → x∗ with quadratic convergence rate.

If ηk = O(‖WkDkgk‖), then xk → x∗ with quadratic convergence rate.
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A globalization strategy

Consider the well-angled scaled stepeest descent direction dk = −Dk gk
dk is biased towards the interior of Ω as Dk penalizes the step −gk preventing a step

directly toward a boundary point.
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• Consider the quadratic model:

ψk(p) =
1

2
p
T
(A

T
A+D

−1
k Ek)p + p

T
gk.

Note that the Newton step is the global minimizer of ψk(p).

• Define the generalized Cauchy step pCk :

– Let pd be the minimizer of ψk along dk ⇒ pCk = pd if xk + pd > 0

– Otherwise, let θ ∈ (0, 1) and λk be the stepsize along dk to the boundary.

⇒ pCk = θλkdk
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• The functions ψk(p) and q(x) are related so that

q(xk) − q(xk + p) = −ψk(p) +
1

2
pTD−1

k Ekp.

Since D−1
k Ek is positive semidefinite

q(xk) − q(xk + p) ≥ −ψk(p).

• Global convergence depends on taking a step p̄k satisfying

ψk(p̄k)

ψk(pCk )
≥ β, β ∈ (0, 1),

that implies

q(xk) − q(xk + p̄k) ≥ −βψk(pCk )

i.e. q(xk + p̄k) < q(xk).
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Forming the new iterate xk+1

Embed the Newton-like method into the globalization strategy. Let pk be the projected

(inexact) Newton step.

p̄k = pk, if
ψk(pk)

ψk(pCk )
≥ β

p̄k = (1 − t)pk + tpCk , t ∈ [0, 1) s.t.
ψk(p̄k)

ψk(pCk )
= β, otherwise

Set xk+1 = xk + p̄k

Theorem. Let x0 > 0 be an arbitrary initial point. Then

• limk→∞ xk = x∗;

• Eventually, the projected Newton step pk is taken ⇒ {xk} converges to x∗ quadratically.
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• Advantageous:

strategy easy and cheap to implement;

good theoretical results.

• Drawback:

The value ‖Dkgk‖2 = ‖DkA
T(Axk− b)‖2 may oscillate for ill-conditioned problems

and it can exhibit a large growth at some iterations (see [Nocedal, Sartenear, Zhu,

COAP 2002]).

The direction of pCk is Dkgk. We select a point on the segment connecting the

projected Newton step pk and the Cauchy step pCk .

⇓
The oscillating behaviour of ‖Dkgk‖2 may slower the iterative process so that several

iterations are needed to reach the vicinity of x∗.
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Numerical results

We implemented the method in a Matlab code, εm = 2. 10−16.

• Initial guess x0 = (1, . . . , 1)T .

• Stopping criteria:

⎧⎪⎨
⎪⎩

qk−1 − qk < τ (1 + qk−1),

‖xk − xk−1‖2 ≤ √
τ ( 1 + ‖xk‖2 )

‖P (xk + gk) − xk‖2 < τ
1
3 ( 1 + ‖gk‖2 )

or ‖Dk gk‖2 ≤ τ

with τ = 10−9.

• A failure is declared after 300 iterations.
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Numerical solution of the Newton equation:

• direct method:

Symmetric approximate minimum degree permutation (function symamd) + Cholesky

decomposition + one step of iterative refinement.

• iterative method:

CGLS method + preconditioner (diagonal/IC with minimum degree preordering).

We iterate CGLS until

‖r̃k‖2 ≤
{

min{10−1, ‖WkDkgk‖2} ‖WkDkgk‖2 if ‖WkDkgk‖2
2 > 500εm

500εm otherwise

Eventually, ηk = ‖WkDkgk‖2 i.e. quadratic convergence.
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Harwell Boeing Collection tests

Well-conditioned or moderately ill-conditioned A ∈ IRm×n, solution may be degenerate.

Performance of the Newton-like method.

Test name m n k2(A) ‖x0 − x∗‖2 it

add20.rua 2395 2395 4.9 101 1.7 104 13

illc1033 1033 320 1.9 104 5.8 103 35

illc1850 1850 712 1.4 104 6.1 103 16

well1033 1033 320 1.7 102 5.8 103 14

well1850 1850 712 1.1 102 5.2 103 16
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Effects of conditioning of A and degeneracy of x∗

• Test generator by [Portugal, Judice and Vicente, Math. Comput. 1994]:

constructs NNLS problems where x∗, g∗, k2(A) are prescribed.

• We fixed

A ∈ IR5000×2000

dens(A) =
nnz(A)

mn
= 5 10

−3

x∗ = (

inactive︷ ︸︸ ︷
1, 2, 3, 4, 5, . . . ,

nondegenerate︷ ︸︸ ︷
0, 0, . . . 0 ,

degenerate︷ ︸︸ ︷
0, 0, . . . 0 )T
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components of x∗

Set of tests # inactive # nondegenerate # degenerate ‖x0 − x∗‖2

HiD - Higly degenerate 1000 900 100 1.8 104

MiD - Mildly degenerate 500 1490 10 6.4 103

NoD - Non degenerate 1500 500 0 3.3 104

Each Set contains 30 tests:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

10 tests where k2(A) = 0(10),

10 tests where k2(A) = 0(103),

10 tests where k2(A) = 0(105),
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Average of nonlinear iterations
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Number of nonlinear iterations - HiD Set
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Few runs are very expensive.
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Average number of linear iterations (Inexact method)

Set k2(A) = O(101) k2(A) = O(103) k2(A) = O(105)

HiD 23 32 36

MiD 22 24 55

NoD 25 38 55
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Randomly generated tests

A ∈ IR5000×5000

10 tests for k2(A) = 0(10γ), γ = 1, 3, 5 ⇒ total of 30 tests

Performance of the Inexact Newton-like method

k2(A) Ani Mni Ali

0(10) 12 14 25

0(103) 21 28 23

0(105) 30 46 32

Ani : average number of nonlinear iteration performed over 10 tests.

Mni : maximum number of nonlinear iteration performed over 10 tests.

Ali : average number of linear iterations performed over 10 tests.
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Features of the methods

• All runs reveal fast local convergence.

• The performance of the Inexact Newton-like method is comparable to that of the

Newton-like method.

• The number of nonlinear iterations is insensitive to:

problem’s dimension;

number of active constraints at the solution x∗;

degeneracy of x∗;

• The number of nonlinear iterations increases when the conditioning deteriorate due to

the globalization strategy.
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Future work

• Barzilai-Borwein methods for NNLS problems.

• Scaling tecniques for the augmented system & direct solvers.
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