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Abstract

Nowadays, 3D echocardiography is a well assessed instrument in medical diagno-
sis, in particular low-cost echocardiographic acquizition devices scan 2D slices rotated
along prescribed direction. Then the discrete 3D image information is given on cylin-
drical grid. Usually, this original discrete image intensity function is interpolated to
uniform rectangular grid and then numerical schemes for 3D image processing op-
erations (e.g. nonlinear smoothing) in the uniform rectangular geometry are used.
However, due to large amount of noise present in echocardiographic images, the inter-
polation step can yield undesirable results. In this paper, we avoid such step and sug-
gest 3D finite volume method for image selective smoothing directly in the cylindrical
image geometry. Namely, we study semi-implicit 3D cylindrical finite volume scheme
for solving Perona-Malik-type nonlinear diffusion equation and apply the scheme to
3D cylindrical echocardiographic images. The L.,-stability and convergence of the
scheme to the weak solution of regularized Perona-Malik equation is proved.

Keywords: partial differential equations, nonlinear diffusion, finite volume method,
semi-implicit scheme, image processing, cylindrical geometry, echocardiography

1 Introduction

Since the end of the 80s, the nonlinear diffusion equations have been used for processing
of 2D and 3D images. After the pioneering work of Perona and Malik [15] who modified
the linear heat equation ([19, 10]) to nonlinear diffusion preserving edge positions, there
has been a great deal of interest in the application and analysis of such equations ([1]).
One of the most important and highly growing applications is medical image processing.

For example, due to non-invasive character and ability to view anatomical structures
3D medical ultrasound (e.g. echocardiography) has become an important modality in
diagnosis, assessment and management of a large number of diseases. Nevertheless, ul-
trasound imaging suffers from limitations that prevent its full potentiality. High amount
of noise combined with low image resolution make fast denoising computational tech-
niques necessary likewise due to the fact that the low-cost echocardiographic acquizition
devices are now common instruments of real time clinical use ([6], [4]). Using a nonlinear
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Figure 1: The echocardiographic acquizition device.

Figure 2: A schematic picture of acquizition; original rotational data information given
in discrete cuttings of cone is in every rotating plane just supplemented by black color to
have rotating rectangular 2D slices which give together discrete 3D cylindrical geometry.



Perona-Malik-type diffusion equations [15] is a challenging method. In our computational
approach we use structure of 2D slices acquired along nonaligned rotating planes by the
echocardiographic acquizition device (see Figures 1 and 2). We avoid the interpolation
step on very noisy data to obtain a regular cartesian lattice ([2]) and provide image se-
lective smoothing in the given discrete 3D cylindrical structure. Let us note that also
a more general 4D (3D+time) echocardiographic image anisotropic filtering ([17]) and
3D /4D segmentation models ([13]) can be realized in cylindrical geometry using ideas of
this paper, allowing computational time gain and more detailed surface rendering and 3D
volume analysis/display which will be an objective of future research work.

In this paper we consider following Perona-Malik-type nonlinear PDE [3] suggested by
Catté, Lions, Morel and Coll for image selective smoothing

u — V.(g(|[VGg * ul)Vu) = 0. (1)

Here, u(t,z) is an unknown function defined in Qr = [0,7] x Q, where I = [0,T] is so-
called scaling interval and € is a cylindrical domain, i.e. domain any horizontal cut of
which is indicated in Figure 3. Due to natural image processing constrain to conserve
a mass of the image intensity ([18]) the equation (1) is accompanied by zero Neumann
boundary condition

ou

% =0 on IXx BQ, (2)

where v is the unit normal vector to the boundary of 2. The initial condition
u(0,z) = u’(z) in Q (3)

is given by the processed image u°. We assume that

g: IRy — IR is a nonincreasing function, g(+/s) is smooth, (4)
g(0) =1, and we admit g(s) — 0 for s — oo,
Gy € C®(IR%) is a smoothing kernel , e.g. the Gauss function, (5)
Gy(z) = 6y for 0 — 0, 9§, is the Dirac measure at the point z,
u’ € Loo(Q)a (6)
and
VGoxu= [ Y6yl e)a(e)dz, (7
Rd

where 4 is an extension of u by 0 from Q to IR3.
The equation (1) represents a modification of the original Perona-Malik model [15, 9]

wy = V.(g(|Vul) Vu) =0, (8)

called also anisotropic diffusion in the computer vision community. Perona and Malik
introduced equation (8) in the context of image smoothing and edge enhancement. The
equation selectively diffuses the image in the regions where the signal has small variance



in intensity in contrast with those regions where the signal changes its tendency. Such a
diffusion process is governed by the shape of the diffusion coefficient given by the function
g in (4) and by its dependence on Vu, which is understood as an edge indicator [15]. Since
g — 0 for large gradients, the diffusion is strongly slowed down on edges, while outside
them it provides averaging of pixel intensities as in the linear case. From a mathematical
point of view, for practical choices of g (e.g. g(s) = 1/(1 + s2), g(s) = e %), the origi-
nal Perona-Malik equation can behave locally like the backward heat equation. It is, in
general, an ill-posed problem which suffers from non-uniqueness and whose solvability is
a difficult problem [9]. One way to overcome this mathematical disadvantage has been
proposed by Catté, Lions, Morel and Coll in [3]. They introduced the convolution with
the Gaussian kernel GG, into the decision process for the value of the diffusion coefficient.
Since convolution with the Gaussian is equivalent to linear diffusion, their model com-
bines ideas of linear and nonlinear scale space equations. Such a slight modification made
it possible to prove the existence and uniqueness of solutions for the modified equation,
and to keep the practical advantages of the original formulation. Moreover, usage of the
Gaussian gradient VG, * u combines the theoretical and implementation aspects of the
model. The convolution (with prescribed o) gives a unique way to compute gradients of
a piecewise constant image. It also bounds (depending on o) the gradient of the solution
as input of the function g in the continuous model—which corresponds to the situation in
numerical implementations where gradients evaluated on a discrete grid are finite. Also,
using the convolution, the local edge enhancement is more understandable in the presence
of noise.

In Section 2 we introduce semi-implicit finite volume scheme for solving regularized
Perona-Malik equation (1) in 3D cylindrical geometry and prove its convergence to the
weak solution of the problem. In Section 3 we present numerical experiments computed
by the scheme especially in the case of 3D echocardiography.

2 The numerical scheme

Let us have [ rotating 2D slices with m X n discrete points where m is horizontal and n
vertical dimension, respectively. Usually m is even, i.e. the slices do not have common
intersecting discrete point. We embed this discrete structure into the finite volume mesh
in such a way that every discrete point is a representative inner ”central” point of 3D finite
volume. A horizontal cut of such mesh is depicted in Figure 3 for [ = 4 and m = 10. In
the Figure, the circular points represents the acquisition nodes while dashed lines give the
structure of our finite volumes around these points. In Figure 3 one can see also a dual
grid given by solid lines which connect the representative points of the finite volumes.
From notational point of view, let 7} be such a finite volume mesh of Q. For every
pair (p,q) € 7,2 with p # ¢, we denote their common interface by e,q, i.e. €y =PN7G
which is supposed to be included in a hypersurface of IR® not intersecting either p or
g- In our case, a horizontal cut of ey, is either straight line or arc. Let m (ep,) denote
the measure of epy, and n,q(z) the unit vector normal to e,, at point z € e,, oriented
from p to q. We denote by £ the set of pairs of adjacent control volumes, defined by
&= {(p,q) €T p#4q, m(ep) # 0}. We also use the notation N(p) = {q,(p,q) € £ }.
We denote by x,, p € T, the representative point of the finite volume p, by o, the co-edge



Figure 3: The horizontal cut of finite volume cylindrical grid.

of the interface ey, i.e. the part of the dual grid connecting z, and z, (this is again either
straight line or arc) and by z,, the point of intersection of ey and opy. Let 0 (p) denote
the diameter of the control volume p, m (p) the measure in IR® of the control volume p,
Op its boundary and let h = max d(p).

pETH

In order to derive discrete finite volume numerical scheme in cylindrical geometry we
start by the semi-discretization in scale of the problem given by (1). Choosing N € IN
we obtain the length of the uniform discrete scale step & = T'/N. We replace the scale
derivative in (1) by backward difference. The nonlinear term of the equation is treated
from the previous scale step while the linear terms are considered at the current scale
level—this means semi-implicitness of the method ([8, 7, 18]). In such a way we get for
every n =1,..., N the equation

n—1

—V.(g(|VGy * u™ ) Vu™) =0 (9)

n

u"—u

k
for an unknown function 4™, an approximation of the image intensity at the n-th discrete
scale step t, = nk.

Let us denote by u,, the representative value of u™ for the 3D finite volume p. In order
to derive spatial discretization, we integrate (9) over a finite volume p

u® — unfl
/T di — /v. (9(IV Gy + u" 1) Vu") da. (10)
p

p

Using the divergence theorem on the right-hand side we get

ou™

/V. (9(IVGy + u™ ) Vu™) dz = / g(|VGy xu™ ) = ds =
op ov
P



> / (IVGy % u™™ 1|)

g€EN(p)

Then, by means of %, we approximate normal derivative along the boundary of p, namely
‘2,;‘—: = :;‘?(;Zg) along epq. The value of diffusion coefficient along e, is approximated by
its value at the point xp,. Since the dual grid and the boundary of finite volumes contain
curvilinear parts, there is a difference between standard ”polygonal” finite volume method
([5], [12]) described in mathematical literature and the method presented in this paper.
However, our approach follows the lines given in the standard engineering sources (see e.g.

[14] - Section 4.6.2).

Linear semi-implicit fully discrete finite volume scheme: Forn =1,..., N we
look for g, p =€ Ty, satisfying the equation

m(p m(epq) ,_p m(p)_,
—k nt Y gt oy T = ! (11)
Opq
g€N(p)
starting with a given discrete image
W= [ s, peT (12)
m(p) Jp

which is undestood as piecewise constant approzimation of continuous image intensity u®.

In (11),

ggqn t= g(|VGO' * 'ah,k(mpq; tn—l)') (13)

where 4y, i, is an extension by 0 outside of (2 of the piecewise constant function %y, ; defined
as follows

Uk (T, 1) Z Z Up X{zep} X{tn—1<t<tn} (14)
n=0peT,

1 if A is true

0 elsewhere.
Now, we restrict our attention to specific situation depicted in Figure 3 and write
particular coefficients of the scheme in 3D cylindrical case. For that goal we define indexes

with the boolean function x4} =

1=1,...,m,7=1,...,n90, Kk =1,...,n3 in radial, angular and vertical directions of the
cylindrical coordinate system. In our case n; = 3, no = 2I, n3 = n and we define
hy = n—ll, hy = 721—7;, hs = n—13 The measure of the finite volume p corresponding to triple

(¢,7,k) is given by m(p) = myr = 2Z'_1h2h2h3 and we will denote, for the moment,

u;, corresponding value by u} ik We can define Wijx, Eijk, Sijk, Nijk, Bijk, Tiji giving

1
transmisivity coeflicients g”" m(epq)

m(opq)

1,...,n1,]—1,...,n2,k—l,...,ng by

at the sides of the finite volume p = (3,4,k), i =

Wzgk = ggqn 1(1 - 1)h2h3, q= (7' -1, k)



Eiji = go7" tihohg, En,ji =0

Szglc = ggqn 121'_7 q= (’L,] - 1ak)

Nz]k = ggqn ! 2i_1h2, q= (Za] + 1,]{1)

2i —1h2 hg
Bz]k - ggqn ! 2 h3 ?

_12i — 1h%hy .
Crijlc:gg(}n ' 2 }ll?, ) q:(z,],k—i—l)

q= (Z,Jak - 1)

as well as diagonal coefficients C;;;; and right hand sides Fjjj

™miik
Cijk - IZIJ + Wzgk + Ezgk + Szgk + Nzyk + Bzgk: + szk
Mijk _pn—1
Ejk = ]{: uzk .

Finally, with these definitions we can write one row of the linear system (11) in the form
—n —nNn —=nNn —nNn
Cijkuijk - Wijkuifljk - Eijkui+1jk - Sijkuijflk
—n i a7 — F..
_Nijlcuz'j+1k - Bijkuijlc—l - Tz’jk“z’jk—i—l = Fij.

It is easy to see that important from image processing point of view ([18]) Loo-stability
property

min 70 < min7? < maxa? <maxu2 1<n<N, (15)
peTh peTh peTh peTh

can be achieved. For that goal let us write the scheme (11) in the form

€pa) (o _ony _ o
) 2 gzq“ ) = (16)
qEN

Let max,c7, Uy be achieved in the node p. Then the second term on the left hand side of
(16) is nonnegative and thus Uy < ﬂ;j_l < max,e7;, !, which gives the result for max.
The relation for min is derived in a similar way. The structure of (11) gives that matrix of
the system is symmetric, diagonally dominant M-matrix, so there exists unique solution
and preconditioned iterative linear solvers ([16]) or additive operator splitting schemes
([18]) can be used efficiently.

:l: 2
Remark. Using the Gauss function G, = G,(z) = We’% as the smoothing kernel,

one can replace the term G, * 4" ! by solving the linear heat equation for time o with
the initial condition given by »™~!. This linear equation can be solved numerically at the
same 3D cylindrical grid by one implicit step with length o (the only difference is that
9y ' =1 in all above coefficients). Using that result we evaluate approximately gpg !

in points z,, and use these values in (11).



2.1 Definition A weak solution of the regularized Perona-Malik problem (1)-(3) is a
function u € Ly(I,V), V = H'(Q) the Sobolev space, satisfying the identity

/ /u— z,t) ala:alt—i—/Q uo(x )(p(m,O)dm—/OT/ngVGU*u|)VuV<pdxdt:0 (17)

for all ¢ € ¥, where U is the space of smooth test functions
U ={peC®@Qx[0,T)),Ve. ™ =0 on dQ x (0,T), ¢(-,T) = 0}. (18)

2.2 Theorem The sequence Uy given by the sheme (11) converges strongly in Lo(Qr)
to the unique weak solution u of (1)-(3) as h,k — 0.

Proof We will follow the lines of the convergence proof in [12] and outline only differences
which are sufficient to solve in cylindrical case. The structure of the scheme (11) is the
same as in [12] so we get a-priori estimates of the discrete solutions, which are fundamental
for the convergence proof, i.e., that there exists a positive constant C, independent of h
and k, such that

: Y <
) s, 3 (@)mip) <C.

N
(i) Yk X medm@-an)? <C.
n=1 (p,q)€€

In comparison with [12] we do not work with polygonal but curvilinear finite volumes. We
must take this fact into account. Let ¢ € IR? be a given vector. For all (p,q) € &, let
us denote &pq(z) = £/|€].npg(x). For all z € Q¢ = {z € Q,[z,z + &] € Q}, we denote by
E(xz,p,q) the function defined as follows:

1 if the segment [z, + ¢] intersects in a point y,, interface e,q, p

E(z,p,q) = and ¢, and qu(ypq) >0,
0 otherwise.

For any t € (0,7) there exists n € IN such that (n — 1)k < ¢t < nk. Then for almost all
z € ¢ we can see that

Un (T + &, 1) — Unk (T, 1) = Up(pye) — Upy) = Z E(z,p,q)(ug — 1),
(p,9)€€

where p(z) € T, and z € p. By the Cauchy-Schwarz inequality we obtain

(@h i (z + &) — T p(z,1))? <
(up —up)? (19)

qu(iqu) (opq)

< Z E(z,p, 9)¢pq(Tpg)m(0pq) Z E(z,p,q

(p,9)EE (p,g)€E

Using geometrical arguments we get that &pq(2pq)m(0pq) = &/|&] - npg(Tpg)m(opg) = c€/|E|. (24—
zp), where ¢ = 1 if 0y, is straight line and ¢ = - /sin(]>) if 0pq is an arc. Since we have



always at least two intersecting slices in the grid, ny > 4 and ¢ < = (C. Then again

< e
by the Cauchy-Schwarz inequality
§
Z E(x,p, q)gpQ(pr)m(o-pq) < Cm'(wp(m+§) _-'Ep(z)) < Clxp (z+€) — ‘ < C(2h'+ ‘§|)

()€

Now, we integrate the relation (19) on Q¢ x (0,7’)

/ (@i (z + &) — Up (. 1))? da dt
Q¢ x(0,T))
Ch+E) K Z E(z,p,q) dz

n=1 (p,q)€E qu (UPQ) Q§

and again by the geometrical argument

0 E(z,p,q) dz < m(epg)€-1pg(Tpg) = m(epq)%-npq(%q”ﬂ = m(epqg)|€|€pg(Tpq)
3

we obtain

N
/Q (OT)(Hh,k(w‘l‘fat)_ﬂh,k(xat))2d$dt§C(2h+|§m§|2k 3 m(epq) (@ — ).
e XU,

n=1 (p,g)€€ m(7p)
(21)

Finally, using a priori estimate (ii) we get that for any vector ¢ € IR? there exists a
positive constant C' such that

/ (@n,e(z +&,1) = Tni(z,))? dodt < C|E[(I€] + 2). (22)
Qe x(0,T)

Inequality (22) is called the space translate estimate in the finite volume methods. In the
same way as in [12] we get the time translate estimate, i.e. that there exists a positive
constant C such that for all s € (0,7)

/ (@ (st + ) — T p(, 1)) dadt < Cs. (23)
Qx(0,T—s)

Using extension by 0 of @, ;, outside Q and discrete trace inequality (see [5] and [12]), we
can extend (22) in the following way

/ (T (1 + &,1) — Ty (1)) dz dt < CJé]. (24)
Qx(0,T)

The estimates (24) and (23) are sufficient to use following well-known Kolmogorov’s relative
compactness criterion in Lo(Qr) (see e.g. [11]):
The set K C Lo(Qr) is relatively compact if and only if

(i) K is bounded, i.e., there exists C' > 0 such that || f|| < C for every f € K;



(ii) K is mean equicontinous, i.e., for every ¢ > 0 there exists § > 0 such that

/ (Fla+7) - f(2)dz < &
QT

for each f € K and ~ with |y| < 6.

Since
/ (T (z + &t + ) — T g, )’ da d
QT

< 2/ (ﬂh,k(.’lf—i-f,t-i-s) —ﬂh,k(i,t+8))2d.’1)dt+2/ (ﬂh7k(.’1,',t—|—3) —H;hk(a:,t))Q dz dt
Qr Q

T

using a-priori estimate (i) and estimates (24) and (23), by the Kolmogorov compactness
criterion we have that there exists function u € Lo(Qr) such that for some subsequence
of Up,k

Upk — u In Ly(Qr) as h,k — 0.

Moreover, using (22) we obtain that this limit function is in Lo(I, V) ([5]) and thus it is
a good candidate to be a weak solution of (1)-(3). For that goal, let ¢ € C§°(Qr), € > 0
and ¢(z,t) =0 if |z — 00| < e. Let 0 < |[¢| < e. Then by the Cauchy-Schwarz inequality

Tnae(@ £ 6,8) = T, CRIGE+7)
’ : dpdt < YSRGS T _
/Qx(o,T) €] plz,t) dzdt < €] el 2o (@r)

For the limit function © we have

u(r +¢,t) —ulz,t
/ (z+¢ é' 20 o, 1) dw dt < VClpllnian:
Qx(0,7)

On the other hand, by a changing of the variables y = z + £ we get

/ u(z + &, t) — u(z, t) (o, 1) du dt
Qx(0,T)

€]
- - & t)dydt - dy d
/QX(O,T) |§ (P(y é.,t) ) t /QX(QT) |€| QD(y,t) Y t (25)
— _/ o(y,t) —w(y—f,t)u(y’t) s
Qx(0,7) €]
< CllellLy@r)-

Let £ = we;, where e; is i-th coordinate vector, and let w — 0. Then

9¢(z,t)
[ D dodt < Ol Vo€ CRO).
Qx(0,T) L
Thus u has generalized spatial derivatives in Lo(Q7), so it is in Lo(I, V).
The last step is to prove that u fulfills the weak identity (17) from Definition 2.1, and
thus it is a weak solution of the regularized Perona-Malik problem. Since such a solution

10



is unique due to [3], not only a subsequence of @, but the whole sequence will converge
to u. To get convergence we follow the lines of [12]-Section 3.3, with particular attention
to only one step different in cylindrical case. In the proof of Lemma 3.8 of [12] we should
get an estimate

M ,t - Zz ;t
J = ‘(p( b)) = Vo(2pg, tn)-nipg(pg) | < Ch (26)

m(opq)

for any smooth function ¢ € ¥. It is clearly true if o, is a straight line, so we only
consider case if op4 is an arc. Then

/‘ 9 4s = play) ~ ()

where T' is the unit tangent vector to the curve o,,. By the mean value theorem there
exists a point n € opq such that

@(xqatn) - ‘P(wp’tn)
m(0pq) .

Ve(n).T(n) =
Since T'(zpq) = npg(Tpe) We have

J = |f@tn=elntn) _ o) T(n) + Ve(n).T(n) — Ve(wpg) T (xp)| =

m(opq)
[Vo(n)-(T(n) — T(zpg)) + (Vo(n) — Ve(zpg))-T(2pg)| <
Vo) |T(n) = T(xpqg)| + [Vo(n) — Vo(apg)| IT(2pg)| < Ch

due to smoothness of ¢ and the fact that [T'(n) — T'(zpq)| < ;- < Ch for any n € 0p. O

3 Discussion on numerical experiments

In the first experiment we have computed artificial example where the simple double
valued radially symmetric intensity function is perturbed by high additive noise. Such
initial noisy function and the result after application of 100 scale steps of the scheme (11)
is given in Figure 4. The reconstructed image perfectly corresponds to original data. We
use the function

1

9(8) = T g2 (27)
with some positive constant K; in the previous experiment K = 2.

Next we applied the method to real 3D cylindrical echocardiographic images given by
60 rotating slices with 240 x 200 pixels. It means that we have n; = 120, no = 120,
ng = 200. One can imagine from Figure 5 where we present horizontal 2D cut of data in
the center of cylinder (front view (left) and top view (right)) how noisy are the original
data. In Figure 6 we present results after 2 and 10 steps of the algorithm with K = 1. In
order to not conserve undesirable edges (speckle noise) a smaller K = 0.1 is used for the
diffusivity in the angular direction. Such results are presented in Figure 7 after the same

number of scale steps.

11



N

Figure 4: Horizontal cut of artificially given noisy initial data (left) and its perfect recon-
struction (right).

Figure 5: Horizontal cut of 3D cylindrical echocardiographic data, front view (left), top
view (right).
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Figure 6: Smoothing of the data after 2 (left) and 10 (right) scale steps of the algorithm
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with stronger diffusion in angular direction.
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Figure 8: Ventricular boundary visualized before (left) and after (right) nonlinear image
smoothing.

In Figure 8 we show visualization of the ventricular volume using original noisy data

(left) and data after nonlinear smoothing by our algorithm (right). One can clearly see
necessity of nonlinear filtering to get understanding of 3D ventricular shape.
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