Co-volume level set method in subjective surface
based medical image segmentation
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Abstract

We present application of the semi-implicit complementary volume
numerical scheme to solving level set formulation of Riemannian mean
curvature flow of graphs in image segmentation, edge detection, missing
boundary completion and subjective contour extraction. Qur compu-
tational method is robust, efficient and stable without any restriction
on a time step. The computational results related to medical image
segmentation with partly missing boundaries and subjective contour
extraction are presented.

1 Introduction

It is well-known that the so-called level set equation [43, 54, 55, 42]

(1) up = |Vul|V. (;—Z')

for curvature-driven motion as well as its nontrivial generalizations are well
suited for image processing applications and they are often used nowadays.
In this chapter we deal with a specific equation of mean curvature flow type
[48, 49, 50], namely
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where u(t, z) is an unknown (segmentation) function defined in Q7 = [0, 7] x
Q. Q c IR? is a bounded domain with a Lipschitz continuous boundary 99,
[0,7] is a time interval, I’ is a given image and ¢ > 0 is a parameter. The
equation is accompanied with zero Dirichlet boundary conditions and initial
condition

(3) ut,z) = u? in[0,T] x 99,
4) u(0,z) = u’(z) in Q.
Without lost of generality we may assume u” = 0. The Perona-Malik

function g : IR§ — IR' is nonincreasing, g(0) = 1, admitting g(s) — 0
for s — oo [45]. Usually we use the function g(s) = 1/(1 + Ks?), K > 0.
G, € C®(IR%) is a smoothing kernel, e.g. the Gauss function

(5) G*”Z@iwfww“

which is used in pre-smoothing of image gradients by the convolution

©) VG, 1" = [ VG, (a- I,
Re

with I° the extension of I° to IR? given by periodic reflection through the
boundary of image domain. The computational domain €2 is usually a sub-
domain of the image domain, it should include the segmented object. In fact,
in most situations € corresponds to image domain itself. We assume that
an initial state of the segmentation function is bounded, i.e. u® € L., ().
For shortening notations, we will use abbreviation

(7) 9° = g(IVGy + I°)).

Due to smoothing properties of convolution we always have 1 > ¢° > v, > 0
[5, 27].

The equation (2) is a regularization, in the sense |Vu| = |Vul|. =
V2 + [Vul? [19], of the segmentation equation suggested in [7, 8, 9, 30, 31],
namely

Vu
_ 0
(8) up = |Vu|V. (g |Vu|) .

However, while in [19] the e-regularization was used just as a tool to prove
existence of a viscosity solution of the level set equation (see also [10, 12]),



in our work ¢ is a modelling parameter. As we will see later, it can help
in suitable denoising and completing of missing boundaries in images. Such
regularization can be interpreted as a mean curvature flow of graphs with
respect to a specific Riemann metric given by the image features [49].

The idea to use Riemannian mean curvature flow of graphs to com-
pute the so-called subjective contours [29] originates in [48, 49, 50]. The
subjective surfaces method, developed there, has been successfully used to
complete missing boundaries of objects in digital 2D and 3D data sets and
thus it is a powerfull method for segmentation of highly noisy, e.g. medical,
images. In this chapter we follow the same idea.

Initially, a ”point-of-view” surface, given by an observer (user) chosen
fixation point inside the image, is taken as u® (see e.g. Figure 11 top right).
Then this initial state of the segmentation function is evolved by equation
(2), until the so-called subjective surface arises (see e.g. Figure 11 bottom
right or Figure 14 top row). For small ¢, the subjective surface closes gaps in
image object boundaries and is stabilized, i.e. almost unchanging by further
evolution, so it is easy to stop the segmentation process. The idea to follow
evolution of the graph of segmentation function [48, 49, 50] and not to follow
evolution of a particular level set of u is new in comparison with other level
set methods used in image segmentation (cf. [6, 36, 7, 8, 9, 30, 31]). In
standard level set approach, the redistancing [55, 42] is used to keep unit
slope along the level set of interest (e.g. along segmentation curve). In
such approach the evolution of w itself is forgotten at every redistancing
step. Such solution prevents steepening of u and one cannot obtain the
subjective surfaces. In our computational method we do not impose any
specific requirements (e.g., redistancing) to solution of the level set equation,
the numerically computed segmentation function can naturally evolve to a
”piecewise constant steady state” result of the segmentation process.

For numerical solution of the nonlinear diffusion equation (2), governing
Riemannian mean curvature flow of graphs, we use semi-implicit comple-
mentary volume (called also co-volume or finite volume-element) method.
Since (2) is regularization of (8), for the curvature driven level set flow (8)
or for some other form of the level set equation (1), the method can be used
as well (cf. [25, 21]).

For time discretization of nonlinear diffusion equations there are basi-
cally three posibilities — implicit, semi-implicit or explicit schemes. For spa-
tial discretization usually finite differences, finite volumes or finite element
methods are used. The co-volume technique is a combination of finite ele-
ment and finite volume methods. Implicit, i.e. nonlinear, time discretization



and co-volume technique for solution of the level set equation was introduced
in [56]. The efficient co-volume level set method based on semi-implicit, i.e.
linear, time discretization was given and studied in [25]. In [25], the method
was applied to image smoothing nonlinear diffusion level set equation; here
we apply the method to image segmentation and completion of missing
boundaries.

Let us note that equation (8) can be rewritten into an advection-diffusion
form

9) w = ¢°|Vu| V. (

Vu
|Vl

Various finite difference schemes [7, 8, 9, 30, 31, 48, 49, 50] are usually
based on this form using up-winding in advection term and explicit time
stepping. Our co-volume technique relies on discretization of the basic form
(8), or more precisely on its regularization (2), and we use its integral (weak,
variational) formulation. In such a way, the discretization scheme naturally
respects a variational structure of the problem, it gives clear discrete form
of local mass balance, and it naturally fulfills discrete minimum-maximum
principle (Ly-stability). The semi-implicit discretization in time yields such
stability property (i.e. no spurious oscillations appear in our solution) for
any length of discrete time step. This is a main advantage in comparison
with explicit time stepping, where the stability is often achieved only under
severe time step restriction. Since in nonlinear diffusion problems (like the
level set equation) the coefficients depend on the solution itself and thus they
must be recomputed in every discrete time update, an overall CPU time for
explicit scheme can be tremendous. On the other hand, the implicit time
stepping as in [56], altough it is unconditionally stable, leads to solution
of nonlinear systems in every discrete time update. For the level set like
problems there is no guarantee for convergence of a fast Newton solver and
fixed point like iterations are very slow [56]. From this point of view, the
semi-implicit method seems to be optimal regarding stability and efficiency.
In every time update we solve linear system of equations which can be done
efficiently using, e.g., suitable preconditioned iterative linear solvers.

In the next Section 2 we discuss various curve evolution and level set
models leading to segmentation equations (8) and (2). In Section 3 we
introduce our semi-implicit co-volume level set method for solving these
equations and discuss some of its theoretical properties and implementation
aspects. In section 4 we discuss numerical experiments.

) + V¢°.Vu.
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Figure 1: Image corrupted by a structural noise (left), result of filtering by
level set equation after 2 (middle) and 10 (right) discrete scale steps.

Figure 2: Initial image corrupted by salt and pepper noise (left), result of
filtering by level set equation after 2 (middle) and 10 (right) discrete scale
steps.

2 Discussion On Related Mathematical Models

The level set equation (1) has large significance in axiomatization of image
processing and computer vision [1]. It fulfills the so-called morphological
principle: if u is a solution then, for any nondecreasing function ¢, ¢(u) is a
solution as well. It means that level sets of a solution w move independently
of each other, or in other words, they diffuse only intrinsically (in tangential
direction) and there is no diffusion across level sets in the normal direction.
In that sense it provides a directional smoothing of the image along its level
lines. We illustrate the smoothing effect of the level set equation in Figures
1 (removing structural noise) and 2 (removing salt and pepper noise) [25].
In image filtration, the initial condition for the level set equation (1) is
given by the image greylevel intensity I itself, i.e. 4w’ = I, and usually



zero Neumann boundary conditions are used. The solution u(t,z) gives
a family of scaled (filtered, smoothed) versions of I°(z). The parameter
t is understood as scale, and the process of nonlinear selective smoothing
is called image multiscale analysis [1]. In [25], the linear semi-implicit co-
volume method to solve image selective smoothing equation [2]

(10) w = 9(19G, + ) Vul¥. (o)

has been suggested and studied. Equation (10) can be used for edge-
preserving smoothing in a similar way as the so-called Perona-Malik equation
[45, 5, 27, 28, 37, 41, 2, 1, 38, 24, 25, 26, see Figure 3.

Figure 3: Extraction of two chromosomes in a human cell using geometrical
diffusion (10) [24].

The aim of segmentation is to find boundaries of a distinguished object
of an image. In generic situation these boundaries correspond to edges.



Figure 4: A graph of the image intensity function I°(z) corresponding to
a ”"dumb-bell” image (left, see also Figure 5) and a graph of the function
g(|IVI%(z)]) (right) where a narrow valley along the edge can be observed.
(Color Slide).

Figure 5: Image given by the intensity I°(z) from Figure 4 left and the
arrows representing the vector field —Vg(|VI%(z)|). (Color Slide).



Figure 6: An initial ellipse driven by the vector field —Vg(|VI°(x)|) down
to the valley to find the edge in the image I°. (Color Slide).

However, in the presence of a noise or in images with oclusions or subjective
contours these edges can be very irregular or even interrupted. Then the
analysis of the scene and segmentation of objects become a difficult task.

In the so-called active contour models [32] an evolving family of curves
converging to an edge is constructed. A simple approach (similar to various
discrete region growing algorithms) is to put small seed, e.g. small circular
curve, inside the object and then evolve the curve to find automatically the
object boundary. For such moving curves the level set models have been in-
troduced in the last decade. A basic idea is that moving curve corresponds
to a specific level line of the level set function which solves some reasonable
generalization of equation (1). The level set methods have several advan-
tages among which, independence of dimension of the image and topology
of objects are probably the most important. However, a reader can be in-
terested also in the so-called direct (Lagrangian) approaches to curve and
surface evolution (see e.g. [16, 17, 18, 39, 40]).

First simple level set model with the speed of segmentation curve mod-
ulated by g(|VI°(z)|) (or more precisely by g(|VG, * I°|)), where g is a
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Figure 7: The situation is more complicated in case of a ”noisy” image
(middle); we plot also a graph of its intensity I°(z) (left) and corresponding
surface g(|VI°(x)|) (right). (Color Slide).
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Figure 8: The evolution only by advection leads to attracting a curve (ini-
tial ellipse) to spurios edges, the evolution must be stopped without any
reasonable segmentation result (left); by adding regularization term related
to curvature of evolving curve the edge is found smoothly (right).



smooth edge detector function, e.g. g(s) = 1/(1 + Ks?), has been given in
[6] and [36]. In such model, ”steady state” of a particular level set (level line
in 2D image) corresponds to boundary of a segmented object. Due to shape
of the Perona-Malik function g, the moving segmentation curve is strongly
slowed down in a neighbourhood of an edge leading to a segmentation result.
However, if an edge is crossed during evolution (which is not a rare event
in noisy images) there is no mechanism to go back. Moreover, if there is a
missing part of the object boundary, the algorithm is completely unuseful
(as any other simple region growing method).

Later on, the curve evolution and the level set models for segmentation
have been significantly improved by finding a proper driving force in the
form —Vg(|VI°(z)|) [7, 8, 9, 30, 31]. The vector field —Vg(|VI®(z)|) has
the important geometric property: it points towards regions where the norm
of the gradient VI° is large (see Figures 4 and 5). Thus if an initial curve
belongs to a neighborhood of an edge, then it is driven towards this edge by
this proper velocity field. Such motion can be also interpreted as a flow of
the curve on surface g(|VI°(z)|) subject to gravitational like force driving
the curve down to the narrow valley corresponding to the edge (see Figure
6, [40]).

However, as one can see from Figures 7 and 8, the situation is much
more complicated in case of noisy images. The advection process alone is
not sufficient. In a noisy environment, the evolving level set can behave very
irregularly, it can be attracted to spurious edges and no reasonably conver-
gent process can be observed. This phenomenon is documented in Figure 8
left. To prevent such situation one has to regularize the evolution. A help-
ful regularization is to add a curvature dependence to the level set flow. If
evolution of a curve in the normal direction depends on its curvature k, then
the sharp irregularities are smoothed. Such motion can be interpreted as
an intrinsic diffusion of the curve. A reasonable regularization term is given
by ¢°k, where the amount of curve intrinsic diffusion is small in the vicinity
of un-spurious edges. In Figure 8 right, we present initial ellipse evolution
to successfull segmentation result using such advection-(intrinsic)diffusion
model which was computed by the direct method from [40]. The level set
formulation of such curve evolution is given by the equation (9) which is of
course only another form of equation (8).

Altough model (8) behaves very well if we are in a vicinity of an edge, it is
sometimes difficult to drive the segmentation curve there. If we start with a
small circular seed, it has large curvature and diffusion dominates advection
so the seed disappear (curve shrinks to a point [22, 23]). Then some constant
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speed must be added to dominate diffusion at the beginning of the process,
but it is not clear at all when to switch off this driving force to have just
the mechanism of the model (8). Moreover, in case of missing boundaries of
image objects, there is no criterion for such a switch, so the segmentation
curve cannot be well localized to complete the missing boundaries.

An important observation now is that equation (8) moves not only one
particular leveline (segmentation curve) but all levelines by the above men-
tioned advection-diffusion mechanism. So, in spite of all previously men-
tioned segmentation approaches, we may start to think not on evolution of
one particular level set but on evolution of the whole surface composed by
those level sets. This idea to look on the solution u itself, i.e. on a behaviour
of our segmentation function, can help significantly.

Figure 9: Image of a solid circle.

Let us look on a simple numerical experiment presented in Figure 10
representing extraction of the solid circle depicted in Figure 9. The starting
point-of-view surface u® is plotted on the top left. The subsequent evolution
is depicted in the next subfigures. First, isolines which are close to the
edge, i.e. in a neighbourhood of the solid circle where the advection term
is nonzero, are atracted from both sides to this edge. A small shock (steep
gradient) is formed due to accumulation of these level lines (see Figure 10
top right). In the regions outside a neighbourhood of the circle the advection
term is vanishing and g° = 1, so only intrinsic diffusion of level sets plays
a role. It means that all inside level sets are shrinking and finally they
disappear. Such process is nothing else than a decreasing of the maximum
of our segmentation function until the upper level of the shock is achieved.
It is clear that a flat region in the profile of segmentation function inside
the circle is formed. Outside of the circle, level sets are also shrinking until
they are attracted by nonzero velocity field and then they contribute to the
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Figure 10: Subjective surface based segmentation of solid circle. We plot
numerically computed time steps 0, 2, 10, 20 and 100. In the bottom right
we see accumulation of level lines of segmentation function on the edges. In
this experiment ¢ = 10719 so we are very close to level set flow equation (8).
(Color Slide).
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Figure 11: Subjective surface based segmentation of a "batman” image. In
the left column we plot the black and white image to be segmented together
with isolines of the segmentation function. In the right column there is a
shape of the segmentation function. The rows correspond to time steps 0,1
and 10 which gives the final result; e = 1. (Color Slide).
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Figure 12: Three testing images. Circle with a smaller (left) and a big
(middle) gap, noisy circle with a gap.

shock. In the bottom left of Figure 10 we see the shape of segmentation
function u after such evolution, in the bottom right there are iso-contours of
such function accumulated on the edges. It is very easy to use one of them,
e.g., (max(u) + min(u))/2, to get the circle.

The situation is not so straightforward for the highly nonconvex image
depicted in Figure 11. Our numerical observation leads to formation of steps
in subsequent evolution of the segmentation function, which is understand-
able, because very different level sets of initial surface u’ are attracted to
different parts of the boundary of ”batman”. Fortunately, we are a bit free
in choosing precise form of diffusion term in the segmentation model. After
expansion of divergence, the equations (2) and (8) give the same advection
term, Vg°.Vu (cf. equation (9)), so important advection mechanism which
accumulates segmentation function along the shock is the same. However,
diffusion mechanisms are a bit different. The equation (2), in case ¢ = 1,
gives diffusion which is known as mean curvature flow of graphs. It means
that, not level sets of segmentation function move in normal direction pro-
portionally to curvature, but the graph of segmentation function moves (as
2D surface in 3D space) in the normal direction proportionally to the mean
curvature. The large variations in the graph of segmentation function are
then smoothed due to large mean curvature. Of course, the smoothing is
applied only outside edges. On edges the advection dominates, since the
mean curvature term is multiplied by a small value of g°. In Figure 11
bottom we may see formation of a piecewise flat profile of the segmentation
function which can be again very simply used for extraction of ”batman”,
altough, due to Dirichlet boundary data and ¢ = 1, this profile moves slowly
downwards in subsequent evolution. In this (academic) example, the only
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goal was to smooth (flatten) the segmentation function inside and outside
the edge, so the choice ¢ = 1 was really satisfactory. In case ¢ = 1, the
equation (2) can be interpreted as a time relaxation for the minimazion of
the weighted area functional

Ago = /5290\/1 + |Vu|?dz,

or as the mean curvature motion of a graph in Riemann space with metric
g%6;; [48].

In the next three testing images plotted in Figure 12 we illustrate the role
of the regularization parameter . The same choice, € = 1, as in the previous
image with complete edge, is clearly not appropriate for image object with
a gap (Figure 12 left), as seen in Figure 13. We see that minimal surface
like diffusion closes the gap with a smoothly varying ”waterfall” like shape.
Altough this shape is in a sense stable (it moves downwards in a ”selfsimilar
form”), it is not appropriate for segmentation purposes. However, decreasing
g, i.e., if we stay closer to the curvature driven level set flow (8), or in other
words, if we stretch the Riemannian metric g%8;; in vertical z direction [49],
we get very good segmentation results as presented in Figure 14. Of course,
smaller ¢ is needed to close larger gaps (see Figure 15).

If there is a noisy image as in Figure 12 right, the motion of level lines to
shock is more irregular, but finally the segmentation function is smoothed
as well (see Figures 16-17). If the regularization parameter ¢ is small, then
piecewise flat profile of the segmentation function is moving very slowly
downwards, so it is easy to stop the evolution and get the result of segmen-
tation process.

By the presented experiments we have seen that solution of equation
(2) is well suited for finding and completing edges in (noisy) images. Its
advection-diffusion mechanism leads to promissing results. In the next sec-
tion we give efficient and robust computational method for its solution.
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Figure 13: Experiment on testing image plotted in Figure 12 left. The
results of evolution of the segmentation function (in the left isolines, in the
right graph) after 10 (top row) and 100 (bottom row) time steps; ¢ = 1.
The shape is stable (in a ”selfsimilar form” moving downwards) but not
well suited as segmentation result. (Color Slide).
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Figure 14: Results of the segmentation process for testing image plotted in
Figure 12 left using ¢ = 1072 (top left) and e = 1073 (top right). The isoline
(max(u) 4+ min(u))/2 well represents the segmented circle (bottom red line).
For large range of ¢ we get satisfactory results. (Color Slide).
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Figure 15: Segmentation of the circle with a big gap (Figure 12 middle)
using ¢ = 1 (top), € = 1072 (middle) and ¢ = 10~® (bottom). For bigger
missing part a smaller € is desirable. In the left collumn we see how closely
to edges the isolines are accumulating and closing the gap, in the right we
see how steep the segmentation function is along the gap. (Color Slide).
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Figure 16: Isolines of the segmentation function in the segmentation of the
noisy circle (Figure 12 right) are shown in time steps 0, 50, 100 and 200.
Since the gap is not so big we have chosen ¢ = 10~!. (Color Slide).
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Figure 17: The graph of the segmentation function and its histograms in
time steps 100 and 200 for the same experiment as presented in Figure 16.
The histograms give a practical advise to shorten the segmentation process in
case of noisy images. For a noisy image a formation of completely piecewise
flat subjective surface takes longer time. However, the gaps in histogram of
the segmentation function are developed soon. It allows to take any level
inside these gaps and to visualize corresponding level line to get desirable
segmentation result. (Color Slide).
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3 Semi-implicit Co-volume Scheme

We present our method in discretization of equation (8), although we always
use its e-regularization (2) with a specific € > 0. The notation is simpler in
case of (8) and it will be clear where regularization appears in the numerical
scheme.

First we choose a uniform discrete time step 7 and a variance o of the
smoothing kernel G,. Then we replace time derivative in (8) by backward
difference. The nonlinear terms of the equation are treated from the previous
time step while the linear ones are considered on the current time level, this
means semi-implicitness of the time discretization. In the last decade, semi-
implicit schemes have become a powerful tool in image processing, we refer
e.g. to [27, 3, 4, 58, 57, 37, 33, 25, 26, 51].

Semi-implicit in time discretization: Let 7 and o be fized numbers, I°
be a given image and u® be a given initial segmentation function. Then, for
n=1,... N, we look for a function u™, solution of the equation

1 u — ! Vu"
11 =V. (" — ).
(11) Va1 7 v (9 |Vu"1|>

A digital image is given on a structure of pixels with rectangular shape,
in general (red rectangles in Figure 18). Since discrete values of I° are
given in pixels and they influence the model, we will relate spatially discrete
approximations of the segmentation function u also to image pixels, more
precisely, to their centers (red points in Figure 18). In every discrete time
step of the method (11) we have to evaluate gradient of the segmentation
function at the previous step |Vu"~!|. For that goal, it is reasonable to
put a triangulation (dashed black lines in Figure 18) inside the pixel struc-
ture and take a piecewise linear approximation of the segmentation function
on this triangulation. Such approach will give a constant value of gradient
per triangles allowing simple and clear construction of fully-discrete system
of equations. It is a main feature of the co-volume [56, 25] and finite ele-
ment [13, 14, 15] methods in solving mean curvature flow in the level set
formulation.

As it can be seen in Figure 18, in our method the centers of pixels are
connected by a new rectangular mesh and every new rectangle is splitted
into four triangles. The centers of pixels will be called degree of freedom
(DF) nodes. By this procedure we get also further nodes (at crossing of red
lines in Figure 18) which, however, will not represent degrees of freedom. We
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Figure 18: The image pixels (red solid lines) corresponding to co-volume
mesh. Triangulation (black dashed lines) for the co-volume method with

degree of freedom nodes (red round points) corresponding to centers of pix-
els. (Color Slide).

will call them non-degree of freedom (NDF) nodes. Let a function u be given
by discrete values in the pixel centers, i.e. in DF nodes. Then in additional
NDF nodes we take the average value of the neighbouring DF nodal values.
By such defined values in NDF nodes a piecewise linear approximation uy
of u on the triangulation can be built. Let us note that we restrict further
considerations in this chapter only to this type of grids. For triangulation
Th, given by the previous construction, we construct a co-volume (dual)
mesh. We modify a basic approach given in [56, 25] in such a way that
our co-volume mesh will consist of cells p associated only with DF nodes p
of Ty, let say p = 1,..., M. Since there will be one-to-one correspondence
between co-volumes and DF nodes, without any confusion, we use the same
notation for them. In this way we have excluded the boundary nodes (due
to Dirichlet boundary data) and NDF nodes.

For each DF node p of 7}, let C, denote the set of all DF nodes ¢ con-
nected to the node p by an edge. This edge will be denoted by o, and its
length by hpg. Then every co-volume p is bounded by the lines (co-edges)
epg that bisect and are perpendicular to the edges o,4,9 € Cp. By this
construction, the co-volume mesh corresponds exactly to the pixel structure
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of the image inside the computational domain {2 where the segmentation
is provided. We denote by &,, the set of triangles having o,, as an edge.
In situation depicted in Figure 18 every &, cosists of two triangles. For
each T € &y, let c be the length of the portion of e,, that is in T, i.e.,

cpg = m(epgNT), where m is measure in IR?"!. Let A, be the set of trlangles
that have DF node p as a vertex. Let uj be a piecewise linear function on
triangulation 7,. We will denote a constant value of |[Vup| on T € T, by

|Vur| and define regularized gradients by

(12) |Vur|. =1/€? + |Vur|?

We will use notation u, = up(z,) where z, is the coordinate of the node p
of triangulation 7p.

With these notations, we are ready to derive co-volume spatial discretiza-
tion. As it is usual in finite volume methods [34, 20, 44], we integrate (11)
over every co-volume p, ¢ =1,..., M. We get

(13) /p|w1nl|un T /V ( 0|v e 1I)

For the right hand side of (13) using divergence theorem we get

Vau™ g’  oum
0 _ gu
/v ( [Vun— 1|) - /ap |Vu”*1| 31/ ds
n
= —ds.
q; /e \Vu" [Vur—1| (91/

So we have an integral formulation of (11)

n

1w =
14 =
(14) /p|Vu"1| T dx Z / |Vu" 1 61/ v

qeCy, €pq

expressing a "local mass balance” property of the scheme. Now the exact
"fluxes” on the right hand side and ”capacity function” m in the left
hand side (see e.g. [34]) will be approximated numerically using piecewise
linear reconstruction of u"~! on trangulation 7. If we denote g2 approxi-
mation of g° on a triangle T' € T}, then for the approximation of the right
hand side of (14) we get

u’ —u

(15) Z (Z P‘”VU? 1‘) qh;q P,

qeCp \T€&pq
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and the left hand side of (14) is approximated by

_an—1
Uu ’U,p

(16) Mym(p) 51

where m(p) is a measure in IR? of co-volume p and either

1 - m(T N p) —1
17 M,=———, |[Vu" 1= — 2|Vl
( ) p |V’U/$_1| | P | Tg{p m(p) ‘ T |
or
(18) M= Y m(TNp) 1
=

ren, ™®) Ve

The averaging of the gradients (17) has been used in [56, 25], the approxima-
tion (18) is new and we have found it very useful regarding good convergence
properties in solving the linear systems (see below) iteratively for e << 1.
Regularizations of both the approximations of the capacity function are as
follows, either
1
(19) M= ———
P Vup e
or (Trp) )
m(l' Np
(20) M= > ® T
TeN, mip IVuT |5

Now we can define coefficients, where the e-regularization is taken into ac-
count, namely

(21) B! = MEm(p)
L1 97
(22) atl=_— P
b hpq T€Epq P |Vfu”711“ 1|€

which together with (15)-(16) give

Fully-discrete semi-implicit co-volume scheme: Let ug,p=1,...,M
be given discrete initial values of the segmentation function. Then, for n =
1,...,N we look for uy,p=1,..., M, satisfying

(23) bz_l Uy + T Z agq_l(ug —ug) = bg_l ug_l.
qeCy
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Theorem. There ezists unique solution (ul,...,u%;) of the scheme (23)
for any 7 >0, € > 0 and for everyn =1,...,N. Moreover, for any T > 0,
€ > 0 the following stability estimate holds

(24) min ug < min u, < max u, < max ug, 1<n<N.
P P P P

Proof. The system (23) can be rewritten into the form

(29) (bz—l Y a:q—l) wp - 3 ag ey =4

qeCp qeCyp

Applying Dirichlet boundary conditions, it gives the system of linear equa-
tions with a matrix, off diagonal elements of which are symmetric and neg-
ative. Diagonal elements are positive and dominate the sum of absolute
values of the nondiagonal elements in every row. Thus, the matrix of the
system is symmetric and diagonally dominant M-matrix which imply that it
always has unique solution. The M-matrix property gives us the minimum-
maximum principle, which can be seen by the following simple trick. We
may temporary rewrite (23) into the equivalent form

T — —
(26) Up ot D Gy (U —ug) =up
p q€Cyp

and let max(uf,...,u%,) be achieved in the node p. Then the whole second
term on the left hand side is nonnegative and thus max(uf, ..., u};) = up <
ug_l < max(ul ... ,u?jl). In the same way we can prove the relation for
minimum and together we have
(27) min v? ! < min u, < max wu, < max ug_l, 1<n<N

2 2 P
which by recursion imply the desired stability estimate (24).

So far, we have said nothing about evaluation of g% included in coeffi-
cients (22). Since image is piecewise constant on pixels we may replace the
convolution by the weighted average to get IO := G, * I° (see e.g. [37]) and
then relate discrete values of IO to pixel centers. Then, as above, we may
construct its piecewise linear representation on triangulation and in such
way we get constant value of VIO on every triangle T' € Tj,. Another possi-
bility is to solve numerically a linear heat equation for time ¢ corresponding
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to variance o with initial datum given by I° (see e.g. [3]). The convolution
represents a preliminary smoothing of the data. It is also a theoretical tool
to have bounded gradients and thus a strictly positive weighting coefficient
g°. In practice, the evaluation of gradients on discrete grid (e.g., on triagula-
tion described above) gives always bounded values. So, working on discrete
grid, one can also avoid the convolution, especially if preliminary denoising
is not needed or not desirable. Then it is possible to work directly with
gradients of piecewise linear representation of I° in evaluation of g..

Our co-volume scheme in this paper is designed for the specific mesh
(see Figure 18) given by the rectangular pixel structure of 2D image. For
simplicity of implementation and for reader convenience we will write the
co-volume scheme in a ”finite-difference notation”. As it is usual for 2D
rectangular grids, we associate co-volume p and its corresponding center
(DF node) with a couple (4, j),  will represent vertical direction, j horizontal
direction. If () is a regtangular subdomain of the image domain where n; and
ng are number of pixels in vertical and horizontal directions, respectively,

then 2 = 1,...,mq1, j = 1,...,mg, m; <= n1 — 2, mg <= ng — 2 and
M = mj my. Similarly, the unknown value u;‘ is associated with “Zy
For every co-volume p, the set N, consists of 8 triangles (see Figure 18).
In every discrete time step n = 1,..., N, and for every i = 1,...,mq,
j =1,...,mq, we compute absolute value of gradient on these 8 triangles
denoted by Gf} j»k=1,...,8. For that goal, using discrete values of u from

the previous time step, we use the following expressions (we omit upper
index n — 1 on u)
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2V h h

In the same way, but only in the beginning of the algorithm, we compute

values G Jk,k = 1,...,8, changing u by I in the previous expressions,
where 10 is a smoothed image as explained in the paragraph above. Then
for every i = 1,...,my, j = 1,...,my we construct (north, west, south,

east) coefficients

. '_Tli g(GZ?‘,’f) _TEZ GUk)
1, — -
! 2k:1\/62+(G§,j)2 253\ /e2 + (GF;)?
1 (G‘-”(“) 18 (G”k)
%3 =79 2 k ) D SRTTT
k=5 + (G ) k=7 +(G7;)?

and we use either (cf. (17))

S 1
i = —
Jor (1 5 00)
r (cf. (18)) .
mig =g 2

k=14/€%2 + (Gf,j)2
to define diagonal coefficients
Cij = Mij + Wi + sij + e+ mih’.
If we define right hand sides at the nth discrete time step by

h2n1

Tij = My j i 0

then for DF node corresponding to couple (i, j) we get equation
oy o —
(28)  cijufj — MUy — Wigui i — SijUi—1j — €ijUi i1 = Tij
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Collecting these equations for all DF nodes and taking into account Dirichlet
boundary conditions we get linear system to be solved.

We solve this system by the so-called SOR (Successive Over Relaxation)
iterative method which is a modification of the basic Gauss-Seidel algorithm

(see e.g. [46]). At the nth discrete time step we start the iterations by setting
n(0) n—1

Ui =, t=1...,my, 5 =1,...,ma. Then in every iterationl =1, ...
and for every ¢ = 1,...,m1, j = 1,...,ma, we use the following two step
procedure:
l l -1 -1
Y = (Si,ju?_(f,j + wi,ju?ﬁll + ez',j“i",§+1) + “z',ju?+(1,j) +7ij)/¢ij
l -1 -1
uzg) = uzg ) +w( — “Zg )).

We define squared Lg norm of residuum at current iteration by

(0 _ oo o e on(l) o on(l) o n(l) 2
R —Z(Cmu‘,j MUy 15 — WijU; 51 = SiyjUi—q,5 = GijU; 541 Tij)

2
%]

The iterative process is stopped if R < TOL R, Since the computing of
residuum is time consuming itself, we check it, e.g., after every 10 iterations.
The relaxation parameter w is chosen by user to improve convergence rate
of the method; we have very good experience with w = 1.85 for these type of
problems. Of course the number of iterations depends on the chosen preci-
sion TOL, length of time step 7 and a value of the regularization parameter
¢ also plays a role. If one wants to weaken this dependence, more sofisticated
approaches can be recommended (see e.g. [46, 35, 25] and paragraph below)
but their implementation needs more programming effort. The semi-implicit
co-volume method as presented above can be implemented in tens of lines.

We outline shortly also further approaches for solving the linear sys-
tems given in every discrete time step by (23). The system matrix has
known (penta-diagonal) structure and moreover it is symmetric and diag-
onally dominant M-matrix. One could apply direct methods as Gaussian
elimination, but this approach would lead to an immense storage require-
ments and computational effort. On the contrary, iterative methods can be
applied in a very efficient way. In the previous paragraph we have already
presented one of the most popular iterative methods, namely SOR. This
method does not need additional storage, the matrix elements are used only
to multiply the old solution values and convergence can be guaranteed for
our special structure and properties of the system matrix . However, if the
convergence is slow due to condition number of the system matrix (which

28



increases with number of unknowns and for increasing 7 and decreasing ¢),
faster iterative methods can be used. E.g., the preconditioned conjugate
gradient methods allow fast convergence, altough they need more storage.
If the storage requirements are reduced, then they can be very efficient and
robust [35, 25]. For details of implementation of the efficient preconditioned
iterative solvers for co-volume level set method we refer to [25], cf. also [51].
Also an alternative direct approach based on operating splitting schemes
can be recommended [58, 57].

In the next Section, comparing CPU times, we will show that semi-
implicit scheme is much more efficient and robust than explicit scheme for
these type of problems. The explicit scheme combined with finite differences
in space is usually based on formulations like (9) [7, 8, 9, 30, 31, 48, 49, 50]
where all derivatives are expanded to get curvature and advection terms.
Then, e.g., equation (2) for ¢ =1 is written in the form

o1+ qu)u:cwl — Uy UgyUgyzp + (1 + ugl)uwzwz

1+u2, +u2,
where u; means partial derivative of a function u with respect to a variable s
and z1 and x5 are spatial coordinates in the plane. In this form, it is not clear
(reader may try) which terms to take from previous and which on the current
time level, having in mind the unconditional stability of the method. Fully
implicit time stepping would lead to a difficult nonlinear system solution,
so the explicit approach is the one straightforwardly utilizable. In spite of
that, the basic formulation (2) leads naturally to convenient semi-implicit
time discretization.

Let us recall the usual criterion on numerical schemes for solving par-
tial differential equations: numerical domain of dependence should contain
physical domain of dependence. In diffusion processes, in spite of advection,
a value of solution at any point is influenced by any other value of solution
in a computational domain. This is naturally fulfilled by the semi-implicit
scheme. We solve linear system of equations at every time step which, at
every discrete point, takes into account contribution of all other discrete
values in computational domain.

up =g + g2 Uz, + G, Uz,

4 Discussion On Numerical Results

This Section is devoted to discussion on further numerical experiments com-
puted by the semi-implicit co-volume level set method. In Section 2 we al-
ready discussed some examples which have been used mainly to illustrate
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the advection-diffusion mechanism of the segmentation equation (2) and the
role of parameter € in closing the gaps. In the sequel we will discuss a role
of further model parameters as well as all aspects of our implementation.
We also compare the method with different approaches to confirm efficiency
of our numerical scheme.

For a given discrete image I° with n1, no, the number of pixels in vertical
and horizontal directions, respectively, we define space discretization step
h = nL It means, we embed the image into a rectangle [—0.572,0.572] x
[—0.5,0.5]. If one wants to use h = 1 (which would correspond to pixel size
equals to 1) all considerations can be changed accordingly. We prefer the
above definition of spatial discretization step, because it is closer to standard
approaches to numerical solution of PDEs.

First we give some CPU times overview of the method. Since we are
interested to find a ”steady state” (see discussion in Section 2) of the evolu-
tion in order to stop the segmentation process, the important property is a
number of time steps needed to come to this ”equilibrium” and a CPU time
for every discrete time step. We discuss CPU times in experiment related to
segmentation of the circle with a gap given in Figure 12 left, computed using
e = 1072 (see Figure 14 top left). The testing image has 200 x 200 pixels
and the computational domain €2 coresponds to the whole image domain.
Since for the boundary nodes we prescribe Dirichlet boundary conditions,
we have M = 198 x 198 degrees of freedom. As the criterion to recognize the
7steady state” we use a change in Ly norm of solution between subsequent
time steps, i.e., we check whether

\/Z B2 (un — 312 < 6
p

with a prescribed threshold §. For the semi-implicit scheme and small &
(then the downwards motion of the ”steady state” is very slow) a good
choice of threshold is § = 107°.

Reasonable time steps for our semi-implicit method are of order (10h)2,
e.g., for the discussed example very good results regarding CPU times and
precision have been obtained for 7 € [0.001,0.01]. Since by a classical crite-
rion the precision of numerical schemes for parabolic equations is optimal for
T =~ h?, we have computed also such case. But, no significant difference due
to precision has been observed, only much longer CPU time was necessary.
In our example 7 = 5% 1073 and 20 time steps yield the segmentation result
(using threshold § = 107%). On 2.4GHz Linux PC, the overall CPU time
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for this segmentation was 4.93 sec. (i.e., aproximately 0.25 sec. for one time
step including construction of coefficients and solving the linear system).
This CPU time was obtained with TOL=1073. Since we are mainly inter-
ested to find an ”equlibrium”, one can also decide that such precision is not
necessary in every discrete time step. With increasing TOL a less number
of SOR iterations are needed. Another way is to prescribe fixed number
(but not too small) of iterations in every time step, e.g., ten prescribed SOR
iterations lead to comparable segmentation with twice faster CPU time as
mentioned above.
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20 20

0.01250.0150.0175 0.02 0.02250.0250.0275 0.015 0.02 0.025 0.03 0.035 0.04
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Figure 19: Histogram of the segmentation result given by semi-implicit
scheme after 20 time steps (top left). Histograms of the segmentation func-
tion given by the explicit scheme after 500 (top right), 1000 (bottom left)
and 5000 (bottom right) time steps. (Color Slide).

Now, let us look to behaviour of the explicit scheme in this example. We
use the explicit version of the scheme (23) where also the whole second term
on the left hand side is taken from the (n — 1)st time step. Then, due to
stability reasons, we have to choose 7 = 5% 1075, Altough one explicit time
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step takes just 0.05 sec. (including construction of coefficients and explicit
time update of the solution), to get a segmentation result comparable with
the semi-implicit scheme we need about 10000 time steps. In Figure 19 we
present histograms of the segmentation function, where plot range [0, 100] in
vertical direction has been chosen for visualization. We compare histograms,
because one cannot use the same treshold ¢ for explicit and semi-implicit
schemes due to very small change on solution between time steps in explicit
scheme. In top left there is histogram of the segmentation result given by
semi-implicit scheme after 20 time steps. The shocks in solution (corre-
sponding to outer and inner edge of the circle) are given by two large gaps
in histogram. In the top right there is a histogram of the segmentation
function given by the explicit scheme after 500 time steps, and then after
1000 (bottom left) and 5000 (bottom right) time steps. We see that, due
to necessity of small time step, the formation of the piecewise flat solution
is very slow for explicit scheme. Altough after 1000 time steps one can see
formation of two gaps which could be already used for detection of ”final”
segmentation result, the CPU time for 1000 steps of explicit scheme is 49.5
sec, which is ten times longer than for semi-implicit scheme. If we would like
to obtain the similar histogram as plotted in top left using explicit scheme,
we would need 100 times longer CPU time as in the case of semi-implicit
scheme.

In all computations presented above, we have used g(s) = H_#KSQ, K=1.
In experiments without noise there is no significant difference by changing
K. We get the same behaviour of the method changing K from 0.1 to 10.
It is understandable, because the function g plays a role only along edges
and its more (K > 1) or less (K < 1) fastly decreasing profile governs
only speed by which level sets of solution are attracted to the edge from a
small neighbourhood. Everywhere else only pure mean curvature motion is
considered (g = 1).

The situation is different for noisy images like, e.g., depicted in Figure 12
right and Figures 16-17. The extraction of the circle in noisy environment
takes a longer time (200 steps with 7 = 0.01 and K = 1) and it is even worse
for K = 10. However, decreasing the parameter K gives stronger weight to
mean curvature flow in noisy regions, so we can fastly extract the circle,
in only 20 steps with the same 7 = 0.01. In case of noisy images also the
convolution plays a role. E.g., if we switch off the convolution, the process
is slower. But decreasing K can again improve the speed of segmentation
process. In our computations we either do not apply convolution to I° or
we use image pre-smoothing by m x m pixel mask with weights given by the
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Gauss function normalized to unit sum.

We start all computations with initial function given as a peak centered
in a ”focus point” inside the segmented object, as plotted, e.g., in Figure 10
top left. Such function can be described at a circle with center s and radius
Rby vl (z) = W, where s is the focus point and 1 gives maximum of u°.
Outside the circle we take value u° equal to R%—u' If one needs zero Dirichlet
boundary data, e.g. due to some theoretical reasons (cf. [49, 11]), the value
R—ll—'u can be subtracted from the peak-like profile. If the computational
domain €2 corresponds to image domain, we use R = 0.5. For small objects
a smaller R can be used to speed up computations. Our choice of peak-like
initial function is motivated by its nearly flat profile near the boundary of
computational domain. However, other choices, e.g., u%(z) = 1 — ‘x;zs‘, are
also possible. If we put the focus point s not too far from a center of the
mass of the segmented object, then we get only slightly different evolution

of the segmentation function and same segmentation result.

< <
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Figure 20: Image with subjective contours - double-Kanizsa triangle (left),
image together with isolines of initial segmentation function (right). (Color
Slide).

Now we will discuss some further segmentation examples. In Figure 20
we present image (234 x 227 pixels) with subjective contours of the classic
triangle of Kanizsa. The phenomenon of contours that appear in the absence
of physical gradients has attracted considerable interest among psychologists
and computer vision scientists. Psychologists suggested a number of images
that strongly requires image completion to detect the objects. In Figure 20
left, two solid triangles appear to have well defined contours, even in com-
pletely homogeneous areas. Kanizsa called the contours without gradient
"subjective contours” [29], because the missed boundaries are provided by
the visual system of the subject. We apply our algorithm in order to extract
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the solid triangle and complete the boundaries. In the next Figures 21-22 we
present evolution of the segmentation function together with plots of level
lines accumulating along edges and closing subjective contours areas. In this
experiment we used € = 107°, K = 1, v = 0.5, 7 = 0.001, TOL= 10—3. For
long time period (from 60th to 300th time step) we can easily detect also
subjective contours of the second triangle. The first one, given by closing
of the solid interrupted lines, is presented in Figure 22 bottom, visualizing
level line (min(u)+max(u))/2. Interestingly, for bigger ¢ the second triangle
has not been detected.
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Figure 21: Level lines (left) and graphs of the segmentation function (right)
in time steps 10, 30 and 60. (Color Slide).
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Figure 22: Level lines and graph of the segmentation function in time step
100 (top row). Then we show graphs of segmentation function after 300
and 800 steps (middle row). In the bottom we plot the segmented Kanizsa
triangle. (Color Slide).
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Figure 23: Echocardiographic image with high level of noise and gaps.

The next examples are related to medical image segmentation. First we
process a 2D echocardiography (165 x 175 pixels) with high level of noise
and gaps in ventricular and atrium boundaries (see Figure 23).

In Figure 24 we present segmentation of the left atrium. We start with
peak-like segmentation function, v = 1, and we use ¢ = 1072, K = 0.1,
7 = 0.001, TOL= 1072 and § = 1075. In top row of the Figure we present
result of segmentation with no pre-smoothing of the given echocardiography.
In such case 68 time steps, with overall CPU time 6.54 sec., were needed for
threshold 6. In top right we see graph of the final segmentation function.
In the middle row we see its histogram (left) and zoom of the histogram
around max(u) (right). By that we take level 0.057 for visualization of the
boundary of segmented object (top left). In the bottom row we present the
result of segmentation using 5 x 5 convolution mask. Such result is a bit
smoother and 59 time steps (CPU time=>5.65 sec.) were used.

For visualization of the segmentation level line in further figures we use
the same strategy as above, i.e. the value of u just below the last peak of
histogram (corresponding to upper ”flat region”) is chosen. In segmentation
of the right atrium, presented in Figure 25, we took the same parameters
as above and no pre-smoothing was applied. CPU time for 79 time steps
was 7.59 sec. In segmentation of the left and right ventricles, with more
destroyed boundaries, we use K = 0.5 and we apply 5 X 5 convolution mask
(other parameters were same as above). Moreover, for the left ventricle we
use double-peak-like initial function (see Figure 26 top) to speed up the
process for such highly irregular object. In that case 150 time steps (CPU
time = 14.5 sec) were used. For the right ventricle 67 time steps (CPU time
= 6.57 sec.) was necessary to get segmentation result, see Figure 27.
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In the last example given in Figure 28 we present segmentation of the
mammography (165 x 307 pixels). Without pre-smoothing of the given image
and with parameters ¢ = 107!, K = 0.1, 7 = 0.0001, v = 1, TOL= 1073
and 6 = 1075 we get the segmentation after 72 time steps. Since there are
no big gaps we take larger £ and since the object is small (found in a shorter
time) we use smaller time step 7.

5 Conclusions

In this chapter we introduced the semi-implicit co-volume level set method
for solving the segmentation equation given by the Riemannian mean curva-
ture flow of graphs. We discussed basic properties of the model, the role of
model parameters and gave all details for computer implementation of the
numerical algorithm. We also showed unconditional stability of our method
and its high efficiency for these type of problems. The computational results
related to medical image segmentation with partly missing boundaries and
subjective contour extraction were discussed. The method was presented for
2D image segmentation. However, as it is common in level set methods, the
extension to 3D case is straightforward and can be done easily using ideas
of this chapter.
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6 Questions and Answers

(Q1) Outline the level set segmentation models used in the last decade.
What is an advection-diffusion mechanism in such models?

(Q2) What is a difference between previous level set segmentation models
and Riemannian mean curvature flow of graphs discussed in this chapter?
(Q3) What are the main principles and advantages of the semi-implicit time
discretization?

(Q4) How the segmentation partial differential equation (2) is discretized
by the co-volume method?

(Q5) What are differences between semi-implicit co-volume method and
explicit finite difference method?

(Q6) What are the properties of the system matrix given by the semi-
implicit co-volume scheme?

(Q7) How can you get the unconditional stability of the semi-implicit co-
volume level set method?

(Q8) What are the efficient methods for solving linear systems arising in
the semi-implicit co-volume level set method?

(A1) First level set model with the speed of segmentation curve modulated
by g(|[VG, * I°|), where g is a smooth edge detector function, e.g. g(s) =
1/(1 + s?), has been given by Caselles et al. and Malladi et al. in [6, 36].
Due to shape of the Perona-Malik function g, the moving segmentation
curve is strongly slowed down in a neighbourhood of an edge leading to a
segmentation result. Later on, the curve evolution and the level set models
for segmentation have been significantly improved by finding a driving force
in the form —Vg(|VG, * I°|) by Caselles et al. and Kichenassamy et al.
in [8, 31]. The vector field —Vg(|VG, * I°|) points towards regions where
the norm of the smoothed gradient of I° is large. Thus if an initial curve
belongs to a neighborhood of an edge, then it is driven towards this edge
by this proper velocity field. However, in a noisy environment, the evolving
level set can behave very irregularly, it can be attracted to spurious edges
and no reasonably convergent process can be observed. To prevent such
situation one has to regularize the evolution. If evolution of a curve in the
normal direction depends on its curvature k, then the sharp irregularities
are smoothed. Such motion can be interpreted as an intrinsic diffusion of the
curve. A reasonable regularization term is given by g(|VG, * I°|)k, where
the amount of curve intrinsic diffusion is small in the vicinity of un-spurious
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edges. Such regularization by the intrinsic diffusion is used in all above
mentioned level set segmentation models.

(A2) The main difference is that not the evolution of one particular level
set (segmentation curve) [6, 36, 8, 31] but the evolution of the graph of
segmentation function [48, 49, 50] is used in order to segment an image
object. In the segmentation method presented in this chapter, a ”point-
of-view” surface, given by an observer (user) chosen fixation point inside
the image, is taken as u® and this initial state of the segmentation function
is evolved by equation (2), until the piecewise flat subjective surface arises.
For small ¢, the subjective surface closes gaps in image object boundary and
is stabilized, i.e. is almost unchanging by further evolution, so it is easy to
stop the segmentation process. In standard level set approach following the
evolution of one level set, the redistancing is used to keep unit slope along
the level set of interest (e.g. along segmentation curve). In such approach
the evolution of u itself is forgotten at every redistancing step. Such solution
prevents steepening of u and one cannot obtain the subjective surfaces. In
the co-volume level set method numerically computed segmentation function
can naturally evolve to a ”piecewise constant steady state” result. The
equation (2) is the e-regularization of equation (8) and they have the same
advection term, Vg¢°.Vu, which accumulates segmentation function along
the edge and forms a shock. However, diffusion mechanisms are different.
In equation (8), the diffusion mechanism is given by the mean curvature flow
of level sets of u. In spite of that, the equation (2), e.g. in case € = 1, gives
diffusion which is known as mean curvature flow of graphs. It means that,
not level sets of u move in normal direction proportionally to curvature,
but the graph of segmentation function moves (as 2D surface in 3D space)
in the normal direction proportionally to the mean curvature. Thus, the
large variations in the graph of segmentation function are smoothed due
to large mean curvature. However, such smoothing is applied only outside
edges where advection term dominates. In case ¢ = 1, the equation (2)
can be interpreted as a time relaxation for the minimazion of the weighted
area functional or as the mean curvature motion of a graph in Riemann
space with metric ¢°d;;. By decreasing ¢ the metric is stretched in vertical
z direction and one gets the model presented in this chapter.

(A3) For time discretization of nonlinear diffusion equations there are ba-
sically three posibilities — implicit, semi-implicit or explicit schemes. In all
approaches the time derivative is replaced by time difference. In the ex-
plicit schemes all further differential terms are taken at the old time level,
in implicit schemes all such terms are taken at the new time level, while in
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the semi-implicit method the nonlinear terms are treated from the previ-
ous time step and the linear ones are considered on the current time level.
The semi-implicit discretization in time yields un-conditional stability of
the numerical solution. This is the main advantage in comparison with ex-
plicit time stepping, where the stability is often achieved only under severe
time step restriction. Since in nonlinear diffusion problems (like the level
set equation) the coefficients depend on the solution itself and thus they
must be recomputed in every discrete time update, an overall CPU time for
explicit scheme can be tremendous. On the other hand, the implicit time
stepping, altough it is unconditionally stable, leads to solution of nonlinear
systems in every discrete time update. For the level set like problems there
is no guarantee for convergence of a fast Newton solver and fixed point like
iterations are very slow. From this point of view, the semi-implicit method
seems to be optimal regarding stability and efficiency. In every time update
we solve linear system of equations which can be done efficiently using, e.g.,
suitable preconditioned iterative linear solvers.
(A4) A digital image I° is given on a structure of pixels. Since discrete
values of I” influence the model, in the co-volume scheme an approxima-
tion of the segmentation function u is related to a triangulation which is
derived from the pixel structure. A piecewise linear approximation of the
segmentation function on triangulation gives constant value of its gradient
per triangles, which allow simple and clear construction of fully-discrete sys-
tem of equations. The co-volume mesh is constructed in such a way that it
corresponds exactly to the pixel structure of the image inside the compu-
tational domain 2. Then the equation (2) is integrated in every co-volume
to get the integral formulation (14). Then the exact ”fluxes” and ”capacity
function” are approximated numerically and finally one gets a linear system
of equations to compute the segmentation function at the new time level.
(A5) The explicit scheme combined with finite differences in space is usually
based on formulations like (9) where all derivatives are expanded to get
curvature and advection terms. In such case the equation (2) for e = 1 is
written in the form

o1+ “%g)uaﬂm = 2Ug, Ugy gz, + (1 + U%I)Umzm

0 0
up = + 99, Uy + 99, Uy
1= 1+ ug, +ug, It 7 Gz

In this form, it is not clear which terms to take from previous and which
on the current time level, having in mind the unconditional stability of the
method. In spite of that, the basic formulation (2) leads naturally to conve-
nient semi-implicit time discretization, and the co-volume technique relies on
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its integral formulation. In such a way, the discretization scheme naturally
respects a variational structure of the problem, it gives clear discrete form
of local mass balance, and it naturally fulfills discrete minimum-maximum
principle.

(A6) The matrix of the system is symmetric and diagonally dominant M-
matrix. These properties imply that the linear system has unique solution
and it fulfills the minimum-maximum principle (i.e., no spurious oscillations
appear).

(A7) In fact, there exists unique solution (uf,...,u},) of the semi-implicit
co-volume level set method for any 7 > 0, ¢ > 0 and for every n =1,..., N.
Moreover, un-conditional stability estimate

min u

3—1 < min u, < max u, < max !
P P P P

P

holds for any n, 1 < n < N. To prove it, we may rewrite (23) into the
equivalent form

T -1 _ .n—1
up + T D apg (up —ug) = up

q€Cp
and let max(u?,...,u’;) be achieved in the node p. Then the whole second
term on the left hand side is nonnegative and thus max(uf, ..., u};) = uy <
u;_l < max(u] !, ..., u% ). In the same way we can prove the relation for

minimum and together we have the desired stability estimate.

(A8) The system matrix has known (penta-diagonal) structure and it is
symmetric and diagonally dominant M-matrix. One of the most popular
iterative methods, namely Successive Over Relaxation (SOR) method has
guaranteed convergence for this type of problems. However, if the conver-
gence is slow due to condition number of the system matrix (which increases
with number of unknowns and for increasing 7 and decreasing ¢), faster it-
erative methods can be used. E.g., the preconditioned conjugate gradient
methods allow fast convergence, altough they need more storage. If the

storage requirements are reduced, then they can be very efficient and robust
[25].
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