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What is this Lecture About?

Two More “Tensor SVDs"

The CP Representation has “diagonal” aspect like the SVD but there
is no orthogonality.

The Kronecker Product SVD can be used to write a given matrix as
an “optimal” sum of Kronecker products. If the matrix is obtained via
a tensor unfolding, then we obtain yet another SVD-like
representation.
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The CP Representation
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The CP Representation

The CP representation for an n; X n» X n3 tensor A has the form
A =" MF(:, k) 0 G(:, k) o H(:, k)
k=1

where \'s are real scalars and F € R™*", G € IR™*" and H € R™*"

Equivalent

\ |

Aliy iz, i3) =Y A Flinf) - G(ia, ) - H(ia, j))

vec(A) = ZAJ- H(:, ) ® G(:,4) ® F(:,))

Jj=1
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Tucker Vs. CP
The Tucker Representation

A =33 S S j3) - Ui 1) 0 Us(:o o) © Us(:, )

s1=1 jp=1 jz=1

v

The CP Representation

A = >N F(.j) o G(:) o H(:. )

j=1

\

In Tucker the U’s have orthonormal columns. In CP, the matrices F,
G, and H do not have orthonormal columns.

In CP the core tensor is diagonal while in Tucker it is not.
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A Note on Terminology

The “CP" Decomposition

It also goes by the name of the CANDECOMP /PARAFAC
Decomposition.

CANDECOMP = Canonical Decomposition

PARAFAC = Parallel Factors Decomposition
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A Little More About Tensor Rank
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The CP Representation and Rank

If

A = Z)\J o F(,J) o G(,_/) © H(v./)

j=1

is the shortset possible CP representation of 4, then

rank(A) = r
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The largest rank attainable for an ni-by-...-ng tensor is called the
maximum rank. It is not a simple formula that depends on the
dimensions ny, ..., ny. Indeed, its precise value is only known for
small examples.

Maximum rank does not equal min{ny, ..., ny} unless d < 2.
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Tensor Rank

Anomaly 2

If the set of rank-k tensors in IR™ %" has positive Lebesgue
measure, then k is a typical rank.

Size ‘ Typical Ranks

2X2X2 2,3
3x3x3 4
3x3x4 45
3x3x5 56

For ny-by-n, matrices, typical rank and maximal rank are both equal to the
smaller of ny and n».
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The rank of a particular tensor over the real field may be different
than its rank over the complex field.

Anomaly 4

A tensor with a given rank may be approximated with arbitrary
precision by a tensor of lower rank. Such a tensor is said to be
degenerate.
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The Nearest CP Problem
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The CP Approximation Problem

Definition
Given: A € RM*mXM gnd r

Determine: A € R" and F ¢ R™*", G € R™*", and H € R™*"
(with unit 2-norm columns) so that if

X = Z)\j'F(:,j)OG(:aj)OH(:aj)
=1

then
IA-X |7

is minimized.

A multilinear optimization problem.
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The CP Approximation Problem

Equivalent Formulations

A — Z/\J . F(,J) © G(’J) © H(’J)

Jj=1

_ F
Amy = DN FGJ) © (HE)®6C.0))T
= F
2)7Z>\ Ga./ H(aJ)®F(,J))
F
- ZAJH(’J) ® (G(aj)(g)F(?J))T
Jj=1 =
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Introducing the Khatri-Rao Product

If
B = [bi|-|b ]eR™
C = [cl‘--- ‘c,]e]R”zxr
e e Viand Ree gedlie: of B end € B e by

Bo C = [b1®61‘~~- ‘b,®c,}.

“Column-wise KPs”. Note that B ® C € R™™*".
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The CP Approximation Problem

Equivalent Formulations

A=3" o) o 6(J) o HEs )

J=1 F

I Aqy — F-diag(X) - (HO G)T ||

| Az — G-diag(\;) - (HOF)T |,

I A@) — H-diag();) - (G F)T |
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The CP Approximation Problem

The Alternating LS Solution Framework...

| A=l

) 1. Fix G and H and
H .A(]_) — F- dlag()\j) c (H ® G)T ”F <~

improve A and F.

2. Fix F and H and
||A(2) - G-diag()\j).(H@,:)T”F — ix F an an

improve A and G.

. . T 3. Fix F and G and
| A(3) — H-diag(\;) - (GO F) ”F = improve X\ and H.
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The CP Approximation Problem

The Alternating LS Solution Framework
Repeat:

1. Let F minimize || Aqy — F-(H® G)T | andfor j=1rr set

N=IFCA N, and F(J) = FGA)/A

2. Let G minimize | Ay — G- (H® F)T | andfor j=1rr set

N =1GE) N, and G(.Jj) = G/

3. Let A minimize || Aiy — H (GoF)T | andfor j=1r set

N =IAC) N, and HGJ) = A/

These are linear least squares problems. The columns of F, G, and H are
normalized.
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The CP Approximation Problem

Solving the LS Problems

The solution to

min ||A1)— (H@G)TH = min ||.A(1) (H@G)I:'THF
F F

can be obtained by solving the normal equation system

(HoG)(HoGFT = (Ho G)TAf,

Can be solved efficiently by exploiting two properties of the Khatri-Rao
product.
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The Khatri-Rao Product

“Fast” Property 1.

If B IR™*" and C € R™*", then

(BoCO)(BoC) = (B'B).*(CTC)

where “.x" denotes pointwise multiplication.
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The Khatri-Rao Product

“Fast” Property 2.

If

B = [bi|-|b | eR"™
C = J[al|a]eR™
ze€R™™ and y = (B® C)7 z, then
o] Zb
y = ; Z = reshape(z, na, n1)

cZb,

r
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Overall: The Khatri-Rao LS Problem

Given B € R™*" C € R™*" and b € R™"™ minimize

I BOCO)x =z

Data Sparse: An nynmp-by-r LS problem defined by O((n; + np)r) data.

Solution Procedure

1. Form M = (BT B).* (CT (). O((n1 + m)r?).

2. Cholesky: M = LLT. o(r).

3. Form y = (B ® C)T using Property 2. O(ninar).
4. Solve Mx = y. O(r?).

O(mnar) vs  O((nnar?)
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The Kronecker Product SVD
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The Nearest Kronecker Product Problem

Find B and C so that || A— B® C ||z = min

di1  d12 | 913 di4

a1 ax | a3 axn by bin

a31 a3 | a3 ass i1 C2

A1 A4 | A43  Aag B b bz | ® { €1 2 ]

as] as2 | a3 ass by bs

dpl d62 | 963 de4 =
[ @11 axn a2 axn [ b1y ] [c1 a1 a2 o]

a31 as  ax  a b1

as1 a1 ads2 a2 bs1

313 a3 aduu axu b1o

a3 a43 az A bo
| @53 a3 as4 s | | b3 | e
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The Nearest Kronecker Product Problem

Find B and C so that [ A— B® C ||z = min

It is a nearest rank-1 problem,

a1 a1 a2 ax» b1y [ Ci1 €21 Clo Goo ]
a31 as1 43 a bo1
6a(B, C) = 351 d61 52 2 | b3y
ai3 a3 a4 axn bio
333 43 a3 A boo
353 a3 Ads4 364 b3z

= 1A vec(B)vec(C)T |l

with SVD solution: .
A=UxzVT

vec(B) = /a1 U(:, 1)
vec(C) = /o1 V(:,1)
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The Nearest Kronecker Product Problem

The “Tilde Matrix”

di1 412 | 413 di4
ap1 a2 | d23 a4

a31 a3 | a3z A A Arz
A= d41 442 | 43 da4 - An Az
A3r A3

as]1 ds2 | d53 ds4
del d62 | 463 do4

implies
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The Kronecker Product SVD (KPSVD)

If
A o Aig
A= 12,12 c Rixa
Ani - Ane
then there exist Uy, ..., Uy, € R?*%, Vq,...,V,, € R"*%, and
scalars 01 > -+ > 0y, > 0 such that
rkp
= > okl ® Vi
k=1
The sets {vec(Ux)} and {vec(Vk)} are orthonormal and rkp is the
Kronecker rank of A with respect to the chosen blocking.
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The Kronecker Product SVD (KPSVD)

Constructive Proof

Compute the SVD of A:

rkp

A=UsVT = opunv]
k=1

and define the Uy and V/ by

vec(Uk) = Uk
vec(Vk) = Vi

for k = lirkp.

Uk = reshape(uy, r2, ¢2), Vik = reshape(vk, 1, ¢1)
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The Kronecker Product SVD (KPSVD)

Nearest rank-r
If r < rgp, then
r
A=) o Uc® VY
k=1

is the nearest matrix to A (in the Frobenius norm) that has Kronecker
rank r.

v
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Structured Kronecker Product Approximation

ming c||A— B® C || Problems

If A is symmetric and positive definite, then so are B and C.

If Ais a block Toeplitz with Toeplitz blocks, then B and C are
Toeplitz.

If Ais a block band matrix with banded blocks, the B and C are
banded.

Can use Lanczos SVD if A is large and sparse.
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A Tensor Approximation |dea

Unfold A € R™ ™™ into an n-by-n? matrix A.

Express A as a sum of Kronecker products:

A = ZakBk®Ck Bk,CkEIRnXH
k=1

Back to tensor:

A = ZO’kck OBk
k=1

A, iy j1,2) = Y okCiliv, i2) Beljn, J2)
k=1

Sums of tensor products of matrices instead of vectors.
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The Nearest Kronecker Product Problem

¢a(B, C,D)

|A-=B®C®D|,

n C1 r 2 i3 (]

SO NN DD Al s oy issjs) = Bis, js)Clias j2) D, o)

i1=1ji1=1h=1jp=1i3=1j3=1

Trying to approximate an order-6 tensor with a triplet of order-2
tensors. Would have to apply componentwise optimization.
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Concluding Remarks
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Optional “Fun” Problems

Problem E4. Suppose
Bii® Ci Bi® G
B ® G Bn®

A —

and that the Bj and Cj are each m-by-m. (a) Assuming that structure is
fully exploited, how many flops are required to compute y = Ax where

x € R?™? (b) How many flops are required to explicitly form A? (c) How
many flops are required to compute y = Ax assuming that A has been
explicitly formed?

Problem A4. Suppose A is n?-by-n?. How would you compute X € R"*"
so that || A— X ® X || is minimized?
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