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What is this Lecture About?

Two More “Tensor SVDs”

The CP Representation has “diagonal” aspect like the SVD but there
is no orthogonality.

The Kronecker Product SVD can be used to write a given matrix as
an “optimal” sum of Kronecker products. If the matrix is obtained via
a tensor unfolding, then we obtain yet another SVD-like
representation.
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The CP Representation
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The CP Representation

Definition

The CP representation for an n1 × n2 × n3 tensor A has the form

A =
r∑

k=1

λkF (:, k) ◦ G (:, k) ◦ H(:, k)

where λ’s are real scalars and F ∈ IRn1×r , G ∈ IRn2×r , and H ∈ IRn3×r

Equivalent

A(i1, i2, i3) =
r∑

j=1

λj · F (i1, j) · G (i2, j) · H(i3, j))

vec(A) =
r∑

j=1

λj · H(:, j)⊗ G (:, j)⊗ F (:, j)
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Tucker Vs. CP

The Tucker Representation

A =

r1∑
j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3)

The CP Representation

A =
r∑

j=1

λj · F (:, j) ◦ G (:, j) ◦ H(:, j)

In Tucker the U’s have orthonormal columns. In CP, the matrices F ,
G , and H do not have orthonormal columns.

In CP the core tensor is diagonal while in Tucker it is not.
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A Note on Terminology

The “CP” Decomposition

It also goes by the name of the CANDECOMP/PARAFAC
Decomposition.

CANDECOMP = Canonical Decomposition

PARAFAC = Parallel Factors Decomposition
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A Little More About Tensor Rank
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The CP Representation and Rank

Definition

If

A =
r∑

j=1

λj · F (:, j) ◦ G (:, j) ◦ H(:, j)

is the shortset possible CP representation of A, then

rank(A) = r
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Tensor Rank

Anomaly 1

The largest rank attainable for an n1-by-...-nd tensor is called the
maximum rank. It is not a simple formula that depends on the
dimensions n1, . . . , nd . Indeed, its precise value is only known for
small examples.

Maximum rank does not equal min{n1, . . . , nd} unless d ≤ 2.
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Tensor Rank

Anomaly 2

If the set of rank-k tensors in IRn1×···×nd has positive Lebesgue
measure, then k is a typical rank.

Size Typical Ranks

2× 2× 2 2,3
3× 3× 3 4
3× 3× 4 4,5
3× 3× 5 5,6

For n1-by-n2 matrices, typical rank and maximal rank are both equal to the
smaller of n1 and n2.
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Tensor Rank

Anomaly 3

The rank of a particular tensor over the real field may be different
than its rank over the complex field.

Anomaly 4

A tensor with a given rank may be approximated with arbitrary
precision by a tensor of lower rank. Such a tensor is said to be
degenerate.
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The Nearest CP Problem
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The CP Approximation Problem

Definition

Given: A ∈ IRn1×n2×n3 and r

Determine: λ ∈ IRr and F ∈ IRn1×r , G ∈ IRn2×r , and H ∈ IRn3×r

(with unit 2-norm columns) so that if

X =
r∑

j=1

λj · F (:, j) ◦ G (:, j) ◦ H(:, j)

then
‖ A − X ‖2

F

is minimized.

A multilinear optimization problem.
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The CP Approximation Problem

Equivalent Formulations∥∥∥∥∥∥A−
r∑

j=1

λj · F (:, j) ◦ G (:, j) ◦ H(:, j)

∥∥∥∥∥∥
F

=∥∥∥∥∥∥A(1) −
r∑

j=1

λj · F (:, j) ⊗ ( H(:, j)⊗ G (:, j) )T

∥∥∥∥∥∥
F

=∥∥∥∥∥∥A(2) −
r∑

j=1

λj · G (:, j) ⊗ ( H(:, j)⊗ F (:, j) )T

∥∥∥∥∥∥
F

=∥∥∥∥∥∥A(3) −
r∑

j=1

λj · H(:, j) ⊗ ( G (:, j)⊗ F (:, j) )T

∥∥∥∥∥∥
F
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Introducing the Khatri-Rao Product

Definition

If

B =
[

b1 · · · br

]
∈ IRn1×r

C =
[

c1 · · · cr

]
∈ IRn2×r

then the Khatri-Rao product of B and C is given by

B � C =
[

b1 ⊗ c1 · · · br ⊗ cr

]
.

“Column-wise KPs”. Note that B � C ∈ IRn1n2×r .
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The CP Approximation Problem

Equivalent Formulations∥∥∥∥∥∥A−
r∑

j=1

λj · F (:, j) ◦ G (:, j) ◦ H(:, j)

∥∥∥∥∥∥
F

=

‖ A(1) − F · diag(λj) · (H � G )T ‖
F

=

‖ A(2) − G · diag(λj) · (H � F )T ‖
F

=

‖ A(3) − H · diag(λj) · (G � F )T ‖
F
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The CP Approximation Problem

The Alternating LS Solution Framework...

‖ A − X ‖F

=

‖ A(1) − F · diag(λj) · (H � G )T ‖
F

=

‖ A(2) − G · diag(λj) · (H � F )T ‖
F

=

‖ A(3) − H · diag(λj) · (G � F )T ‖
F

⇐ 1. Fix G and H and
improve λ and F .

⇐ 2. Fix F and H and
improve λ and G .

⇐ 3. Fix F and G and
improve λ and H.
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The CP Approximation Problem

The Alternating LS Solution Framework

Repeat:

1. Let F̃ minimize ‖ A(1) − F̃ · (H � G )T ‖
F

and for j = 1:r set

λj = ‖ F̃ (:, j) ‖2 and F (:, j) = F̃ (:, j)/λj .

2. Let G̃ minimize ‖ A(2) − G̃ · (H � F )T ‖
F

and for j = 1:r set

λj = ‖ G̃ (:, j) ‖2 and G (:, j) = G̃ (:, j)/λj .

3. Let H̃ minimize ‖ A(3) − H̃ · (G � F )T ‖
F

and for j = 1:r set

λj = ‖ H̃(:, j) ‖2 and H(:, j) = H̃(:, j)/λj .

These are linear least squares problems. The columns of F , G, and H are
normalized.
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The CP Approximation Problem

Solving the LS Problems

The solution to

min

F̃

‖ A(1) − F̃ · (H � G )T ‖
F

= min

F̃

‖ AT
(1) − (H � G )F̃T ‖

F

can be obtained by solving the normal equation system

(H � G )T (H � G )F̃T = (H � G )TAT
(1)

Can be solved efficiently by exploiting two properties of the Khatri-Rao
product.

Structured Matrix Computations from Structured Tensors Lecture 4. CP and KSVD 19 / 36



The Khatri-Rao Product

“Fast” Property 1.

If B ∈ IRn1×r and C ∈ IRn2×r , then

(B � C )T (B � C ) = (BTB). ∗ (CTC )

where “.∗” denotes pointwise multiplication.
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The Khatri-Rao Product

“Fast” Property 2.

If
B =

[
b1 · · · br

]
∈ IRn1×r

C =
[

c1 · · · cr

]
∈ IRn2×r

z ∈ IRn1n2 , and y = (B � C )T z , then

y =

 cT
1 Zb1

...
cT
r Zbr

 Z = reshape(z , n2, n1)
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Overall: The Khatri-Rao LS Problem

Structure

Given B ∈ IRn1×r , C ∈ IRn2×r , and b ∈ IRn1n2 , minimize

‖ B � C )x − z ‖2

Data Sparse: An n1n2-by-r LS problem defined by O((n1 + n2)r) data.

Solution Procedure

1. Form M = (BTB). ∗ (CTC ). O((n1 + n2)r
2).

2. Cholesky: M = LLT . O(r3).

3. Form y = (B � C )T using Property 2. O(n1n2r).

4. Solve Mx = y . O(r2).

O(n1n2r) vs O((n1n2r
2)
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The Kronecker Product SVD
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The Nearest Kronecker Product Problem

Find B and C so that ‖ A− B ⊗ C ‖F = min

∥∥∥∥∥∥∥∥∥∥∥∥


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

a51 a52 a53 a54

a61 a62 a63 a64

 −

 b11 b12

b21 b22

b31 b32

 ⊗
[

c11 c12

c21 c22

]
∥∥∥∥∥∥∥∥∥∥∥∥

F

=∥∥∥∥∥∥∥∥∥∥∥∥∥



a11 a21 a12 a22

a31 a41 a32 a42

a51 a61 a52 a62

a13 a23 a14 a24

a33 a43 a34 a44

a53 a63 a54 a64


−



b11

b21

b31

b12

b22

b32



[
c11 c21 c12 c22

] ∥∥∥∥∥∥∥∥∥∥∥∥∥
F
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The Nearest Kronecker Product Problem

Find B and C so that ‖ A− B ⊗ C ‖F = min

It is a nearest rank-1 problem,

φA(B,C ) =

∥∥∥∥∥∥∥∥∥∥∥∥∥



a11 a21 a12 a22

a31 a41 a32 a42

a51 a61 a52 a62

a13 a23 a14 a24

a33 a43 a34 a44

a53 a63 a54 a64


−



b11

b21

b31

b12

b22

b32



[
c11 c21 c12 c22

] ∥∥∥∥∥∥∥∥∥∥∥∥∥
F

= ‖ Ã− vec(B)vec(C )T ‖F

with SVD solution:
Ã = UΣV T

vec(B) =
√

σ1U(:, 1)

vec(C ) =
√

σ1V (:, 1)
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The Nearest Kronecker Product Problem

The “Tilde Matrix”

A =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

a51 a52 a53 a54

a61 a62 a63 a64

 =

 A11 A12

A21 A22

A31 A32



implies

Ã =



a11 a21 a12 a22

a31 a41 a32 a42

a51 a61 a52 a62

a13 a23 a14 a24

a33 a43 a34 a44

a53 a63 a54 a64


=



vec(A11)
T

vec(A21)
T

vec(A31)
T

vec(A12)
T

vec(A22)
T

vec(A32)
T


.

Structured Matrix Computations from Structured Tensors Lecture 4. CP and KSVD 26 / 36



The Kronecker Product SVD (KPSVD)

Theorem

If

A =

 A11 · · · A1,c2

...
. . .

...
Ar2,1 · · · Ar2,c2

 Ai2,j2 ∈ IRr1×c1

then there exist U1, . . . ,UrKP
∈ IRr2×c2 , V1, . . . ,VrKP

∈ IRr1×c1 , and
scalars σ1 ≥ · · · ≥ σrKP

> 0 such that

A =

rKP∑
k=1

σkUk ⊗ Vk .

The sets {vec(Uk)} and {vec(Vk)} are orthonormal and rKP is the
Kronecker rank of A with respect to the chosen blocking.
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The Kronecker Product SVD (KPSVD)

Constructive Proof

Compute the SVD of Ã:

Ã = UΣV T =

rKP∑
k=1

σkukvT
k

and define the Uk and Vk by

vec(Uk) = uk

vec(Vk) = vk

for k = 1:rKP .

Uk = reshape(uk , r2, c2), Vk = reshape(vk , r1, c1)
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The Kronecker Product SVD (KPSVD)

Nearest rank-r

If r ≤ rKP , then

Ar =
r∑

k=1

σkUk ⊗ Vk

is the nearest matrix to A (in the Frobenius norm) that has Kronecker
rank r .
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Structured Kronecker Product Approximation

minB,C‖ A− B ⊗ C ‖F Problems

If A is symmetric and positive definite, then so are B and C .

If A is a block Toeplitz with Toeplitz blocks, then B and C are
Toeplitz.

If A is a block band matrix with banded blocks, the B and C are
banded.

Can use Lanczos SVD if A is large and sparse.
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A Tensor Approximation Idea

Motivation

Unfold A ∈ IRn×n×n×n into an n2-by-n2 matrix A.

Express A as a sum of Kronecker products:

A =
r∑

k=1

σkBk ⊗ Ck Bk ,Ck ∈ IRn×n

Back to tensor:

A =
r∑

k=1

σkCk ◦ Bk

i.e.,

A(i1, i2, j1, j2) =
r∑

k=1

σkCk(i1, i2)Bk(j1, j2)

Sums of tensor products of matrices instead of vectors.
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The Nearest Kronecker Product Problem

Harder

φA(B,C ,D)

=

‖ A− B ⊗ C ⊗ D ‖F

=√√√√ r1∑
i1=1

c1∑
j1=1

r2∑
i2=1

c2∑
j2=1

r3∑
i3=1

c2∑
j3=1

A(i1, j1, i2, j2, i3, j3)− B(i3, j3)C(i2, j2)D(i1, j1)

Trying to approximate an order-6 tensor with a triplet of order-2
tensors. Would have to apply componentwise optimization.
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Concluding Remarks
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Optional “Fun” Problems

Problem E4. Suppose

A =

"
B11 ⊗ C11 B12 ⊗ C12

B21 ⊗ C21 B22 ⊗ C22

#

and that the Bij and Cij are each m-by-m. (a) Assuming that structure is
fully exploited, how many flops are required to compute y = Ax where

x ∈ IR2m2

? (b) How many flops are required to explicitly form A? (c) How
many flops are required to compute y = Ax assuming that A has been
explicitly formed?

Problem A4. Suppose A is n2-by-n2. How would you compute X ∈ IRn×n

so that ‖ A− X ⊗ X ‖F is minimized?
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