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The essence of the CG method

Consider preconditioned system

Ax=b, AeCV*N HPD matrix and be CV.

CG is the projection method which minimizes the energy
norm of the error

X €X0+1Ck(A, ro), re L ICk(A, ro), k=1,2,...
Kk(A, ro) = span{ro, Arg, A’rg, ..., A" 1ro}

1 = xilla = min{[lx —ylla: y € x0 + Ki(A, o)}

CG is a matrix formulation of the Gauss-Christoffel
quadrature

= The CG method is nonlinear.
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Linear bound for the nonlinear CG method

The error in the CG method satisfies

" 1/2
e =xella =" min, {Z|§j|2>\j¢2(>\j)} < Jmin o max [p(N)lllx = xolla.
deg(p)<k ~/7t deg(y)<k

The error in the Chebyshev semi-iterative (CSI) method satisfies

() -1 .
— < 0 — = A — .
b= xlla < Ix(O)lix = xofla = min = max  Je(A)l]lx = xolla
deg(p)<k

[Flanders, Shortley (1950), Lanczos (1953), Young (1954); Markov (1884)]

Linear bound is relevant for the CSI method and trivially holds for CG

k
k=1
Il < =5 <2 (YET) = sl

[Rutishauser (1959)]
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Idea of composite polynomial convergence bounds

In the case of m large outlying eigenvalues the composite
polynomial

Gm(A)Xk=m(A)/Xk-m(0),  where
gm(A) = (A = An) ... (A = Avemi1),
Xk—m = (k — m)th Chebyshev polynomial shifted on [A1, An—m]

gives for k > m

||X—Xk||A<2(\/Hm—1>k_m
lx = xolla = \v/km+1

)\N—m
Km =

)\1 1

N-m I)‘N»m+1 )‘N

Ay A

[Axelsson (1976), Jennings (1977); cf. van der Sluis, van der Vorst (1986)]
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CG in finite precision arithmetic

delay of convergence
Short recurrences = loss of orthogonality = &
rank deficiency

Failure of the composite polynomial bound
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Points to consider:
I short recurrences — loss of orthogonality.

I |ong recurrences — no CG method

Linear convergence, small condition number — then why CG? The
CSI method.
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Krylov subspaces generated by CG in finite precision
arithmetic
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Idea of shift

We relate: k-th iteration of FP CG <= /-th iteration of exact CG

> k—/
> k—V/

~
~
~
~

We want to study:

X

[x — Xkl
Xk

Kk(A, ro)

X X

CIME School

T. Gergelits

delay of convergence

rank-deficiency of computed Krylov subspace

50

8 45}
©

W W b
o o o

[Ix = xel|a
X¢

ICZ(Aa rO)

rank of the computed Krylov subsp
= = N N
S @ o O

w

rank-deficiency

OO

10

CG in finite precision computations

20 30 40 50
iteration number




Comparison of trajectory of approximation vectors

=
o
©

N
o
&

energy norm

[
N
o

T

=
o

0 5 10 15 20 25

iteration number

10
CIME School T. Gergelits CG in finite precision computations /15‘



Comparison of trajectory of approximation vectors

energy norm
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Comparison of trajectory of approximation vectors

energy norm
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Comparison of trajectory of approximation vect

10° t
c Observation
210° AN ; 1
5 |--lm-nll)
= sl = R ([ Xk — xel|a
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Trajectories of approximation vectors are very similar in space C".
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Comparison of trajectory of approximation vectors

Ax =b cN Az =1b CcN

delay at the k-th step

@ exact computation o ® exact computation
o finite precision computation O finite precision computation

Trajectory of approximations X generated by FP CG computations
follows closely the trajectory of the exact CG approximations x;.
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Comparison of Krylov subspaces

Principal angles and vectors

J; = mi [ *q) = Fq), j=1,2,....¢
g ;rg]r% I,'é'g"j arccos (p*q) = arccos ( p;j*q;), J
Ipl=1 llqll=1
where
_ 1 _ i
Fi=Fn{p,...,pji-1}~,  Gi=Gn{q,...,q-1},
F = Kk(A, I’o), g = IC@(A, ro).

Comparison of principal angles of subspaces K; and K
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Departure of subspaces

For more difficult problems, the subspaces can depart in few
directions.

Comparison of principal angles of subspaces K;, and K
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Summary I

I=5" The convergence rate of finite precision CG and exact CG
typically significantly differs. When there is no delay, then other
methods can be competitive or even outperform CG
computations.

55" The trajectories of computed approximations are enclosed in a
shrinking “cone’”.

5" Apart from the delay, the computed Krylov subspaces do not
depart much from their exact arithmetic counterparts.

Outlook
» properties of principal vectors, relationship to the structure of
invariant subspaces.

» analogous behaviour in other Krylov subspace methods based
on short recurrences?
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