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Quasi-birth-death processes

A QBD process, in discrete time, is a bidimensional Markov chain whose transition
probability matrix has the tridiagonal block Toéeplitz structure

Bo By 0
A1 A A
p_ A1 Ay A 7
A_1 A
0

with A;, B ¢ R™*™ (m € NU {+00}) non negative and P stochastic.
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The main problem

Suppose m < oo and let the matrix P be irreducible and nonperiodic.
A problem of interest is to compute the stationary distribution of the QBD,
i.e. an infinite vector 7 such that

#'P=xn", #>0, and [m[l=1.

A crucial step, for computing , consists in finding the minimal non negative
solution G of the quadratic matrix equation:

X=A_1+AX+AX% XeRmM™m

Many numerical methods have been proposed to address the problem and most of
them are designed to deal with the general case where the block coefficients
A_1,Ao and A; have no particular structure.
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Cyclic Reduction

The method on which we are going to focus is the Cyclic Reduction.
Its iterative scheme requires the computation of four sequences of matrices, A,(k),

i=-1,0,1and Ao(k), which follow the recurrence relations:

Angrl) A(k) (- A(k)) A(l )’
AFTD = S L A (1= AGNY T AN AW (- Al AR
AR — A () = Al =1 A%

AAO(k+1) A\O( )

)

+ AR (1= A1 Ak,

with AQ = A, i = ~1,0,1 and 4, = A,.

After each step, an approximation of the matrix G is provided by

(k)

(I— Ay )'A_L.

Under mild hypothesis applicability and quadratic convergence are guaranteed.
The cost of each iteration is O(m?®) because it involves four matrix multiplications
and the resolution of 2m linear systems of size m.
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Cyclic Reduction/ Tridiagonal blocks

Let us consider the case in which A; is tridiagonal

for i = —1,0,1. This happen for example in a m e

random walk on a strip where at each instant we L % Lo

can move at most of a unit horizontally and or < Ll

vertically. R RS
0

The band structure is lost immediately when applying CR due to the inversions in
its iteration scheme. What we can hope to be maintained is the quasiseparable
structure.
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Definition

A € R™" has quasiseparable rank less or equal than k if any off diagonal
submatrix of A has rank at most k.

Properties:

(1) grank(A + B) < Grank(A) + Grank(B)
(i1) Grank(A - B) < Grank(A) + Grank(B)
(ii1) Grank(A) = Grank(A™1)
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Cyclic Reduction/ Tridiagonal blocks

Performing 20 iterations of the algorithm on 500 x 500 random tridiagonal

stochastic matrices provides encouraging results.

=0 A,
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And this is the behavior of g,ank(Ao)
after 20 iterations as the size of the
blocks grows exponentially.

Quasiseparable rank

22
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Cyclic Reduction/ Functional interpretation

We associate at each step of the CR the matrix polynomial
W) (2) := —AY 4 2(1 = ALY — 22410
and the matrix function defined by recurrence

{W(z)- (21O (2))
P (22) = 1R (2) + B (~2))

Theorem (Bini,Meini)

Let z € C~ {0} be such that det(p()(2))) #0Vi=0,...,k and let
det(/ — Ay £0Vi=0,...,k—1 then

©oD(2) =zp0(2)7t, i=0,... k

These tools have been introduced to address applicability and convergence issues.
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Cyclic Reduction/ Functional interpretation

Let us concentrate on the recurrence relation satisfied by the sequence {zp(k)}keN:
1
02 = 5 (v D(2) + v (-2))
2
+
W) =
+

(W—”(z) + k=2 (—2) + p*=2(j . 2) 4 k=D (i z))

FNJ

2k—1
(22 = 2% > O(Gz), ¢ 2*-th root of the unit.
j=0

This bring us to the key formula

-1
2k—1

=2 5 0w | o
j=0

k

pW() = 202
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Cyclic Reduction/ A bound for the tridiagonal case

-1
2"—1

) =2 | 5 Z WO (G2)

When the A; is tridiagonal for i = —1,0, 1 the highlighted object is the inverse of
a tridiagonal matrix, in particular is 1-quasiseparable. Therefore we can claim that
Grank (01 (2)) < 2K Vz € C : det(pk M (3/2)) #0 h=0,..., k.

Combining this with the relations

(k) _ _ (k)
AL = = lim ¢29(2),
(k)
Agk) = Iim Z (z),

z—+00 22

1/ ok k) (—
I_sza(w(ﬂ+@ 2&),

z —

we get: qrank(A(_k%)v qrank(Agk)) S 2k and qrank(AE)k)) S 2k+1-
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onential decay of the singular values

The bounds obtained are not satifactory because they are exponential. Despite
this we observe that the estimates are sharp for early iterations.

Motivated by this we turn our attention to bound the growth of the numerical
rank.

If we plot the most significant singu-
lar values, over the iterations, of an
offdiagonal sub-matrix in Ay we see
an important clue that an exponen-
tial decay property holds.
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onential decay of the singular values

Exponential decay of the Singular values
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Exponential decay of the singular values

Goal: Prove that 3y, > 0 and g; : N — R increasing function such that VBfk)
offdiagonal submatrix of A,(-k) we have

O'J(Bl(k)) S ry . e_a‘gi(j)
Remark 1: The core issue is to prove the decay property for A(z) := z~1p(¥)(2)

for some points on the unit circle. Then we can retrieve the property on its
. (k) . . L
coefficients A;"’ performing an interpolation, i.e.

(EA(E) +°AE) — A(-1))
(A(z) + A(=2))

UOII—‘MII—‘(_».)II—‘

(EA(E) +EAE) — A(-1))

with & primitive 6-th root of the unity.
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Exponential decay of the singular values

Remark 2: The Inversion Lemma ensures that the exponential decay property is
maintained when we move from (%) to (K.

Lemma (Inversion Lemma)

Let

@)= (2 5 ). @ (

ok(C) < |ID]l2 - |1Spll2 - o« (C)
ok(C) < ||All2 - |1Sall2 - o (C)

(@1
[wRvs]!
N——

then

v

The property can be ruined if the diagonal blocks or their Schur complements are
ill-conditioned. Fortunately this does not happen on S* \ {1} because there
zflgo(k)(z) is a diagonal dominant M-matrix and we manage to get the bound

Uk(C) S 4n~ak(C).
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Exponential decay of the singular values

Theorem

Let 1)©)(z) be analytic and invertible for z in the annulus ryn < |z| < fpas and
quasiseparable of rank t on the unit circle. Then ¥z € S* and for every off
diagonal (n x n)-submatrix B(z) of 1)()(z), we have

M+y/n j—t
aj(B(z)) < - et)(l/: e cemolEm

where N = 2K, M = e [|4©(2)
z|=p

|2, o = |0g(p) and pE [rmin; rmaz‘]-
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Exponential decay of the singular values

Lemma (Bini,Meini)

There existNa rank~ 1 stgchastic matrix Q such that the matrix polynomial
@(Z) = 22A; + zAo + A_1 with

AL=A1-A1Q A=A +AQ A =A,

and o(z) share the same eigenvalues with the only exception of an eigenvalue 1 of
©(z) that is moved to 0 in @(z). Moreover, Q is of the form eu® where e is the
vector of ones and u > 0 is such that ute = 1.

We can apply the CR on the shifted blocks A; and, at each step, obtain again an
approximation for the solution of the original problem given by

(1—AfN 1A,

Obviously one can also consider /(K (z) := z- 3K ()1 .
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Exponential decay of the singular values

Summary of the proof:

9 (z) analytic in an annulus containing S
| Fourier expansion + key formula

©¥)(z) has the exponential decay property for z € S*
| Woodbury

¥ )(z) has the exponential decay property for z € S* ~ {1}

| Inversion Lemma

cp(k)(z) has the exponential decay property for z € S ~ {1}
| Interpolation

A,(k) has the exponential decay property i = —1,0, 1.
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How to exploit the rank structure

We have seen that numerically the submatrices of the blocks A; during the CR

execution mantain a low rank. In order to exploit this property we modify the

original algorithm by implementing a Hierarchical representation.
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Addition  O(nlog(n))
Multiplication ~ O(nlog(n)?)
Lin. System O(nlog(n)?)
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Numerical Results/ Tridiagonal: Size VS Execution Time

Execution time

5 T e
10 —e— CR
—m— Hyjg-1s
—o— Hyo-
10% - fl
@ 10-8
ﬂ)
E
E 10t :
1071 §
Ll Lol Lol Lol Lol
102 10° 10 10°  10°
Size
CR Hyjp—16 Hip—12 Hyp—s
Size Time (s) Residue Time (s) Residue Time (s) Residue Time (s) Residue

100 6.04e — 02 1.9le—16 | 2.2le—01 1.79e—15 | 2.04e—01 8.26e—14 | 1.92e —01 7.40e — 10
200 1.88e —01 25le—16 | 5786 —01 1.39e—14 | 5.03e— 01 1.0le—13 | 4.29¢ —01 2.29¢ — 09
400 1.6le+01 2.09e—16 | 3.32e+00 1l.4le—14 | 2.60e+ 00 1.33e—13 | 1.98e+00 1.99e¢ — 09
800 2.63e+01 2.74e—16 | 455e+00 1.94e—14 | 3.49e+00 2.71le—13 | 2.63e+00 2.69e—09
1600 8.12e+01 3.82e—12 | 1.18e+01 3.82e—12 | 8.78e+00 3.82e—12 | 6.24e+00 3.39e —09
3200 6.35e 02 5.46e—08 | 3.12e+01 5.46e—08 | 2.2le+01 5.46e—08 | 1.51e401 5.43e —08
6400 5.03e4+03 3.89e—08 | 7.83e+01 3.89e—08 | 538e+01 3.89e—08 | 3.58e+01 3.87e—08
12800 | 4.06e+04 1.99e—08 | 1.94e+02 1.99e—08 | 1.29e+02 1.99e—08 | 8.37e+01 1.97e—08
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Numerical Results/ Size=1600: Band VS Execution Time

Execution time

IWLNURRRLLL B L B L IR S e
b —e— CR ||
[ —m— Hjg-15 ||
—e— Hyg1 ||
= 10%p —— Hio—s |
o F 1
E I 1
= L 1
10t E
Bl v i i i il

10° 100 10 10° 10* 10° 10°

Band
CR Hyp—16 Hip—12 Hyp—s
Band Time (s) Residue Time (s) Residue Time (s) Residue Time (s) Residue

2 213e+02 2.0le—16 | 1.60e+01 9.57e—15 | 1.16e+01 2.65e—13 | 8.09e+00 2.91e— 09
4 213e+02 1.79e—16 | 2.13e+01 5.22e—15 | 1.54e+01 2.20e—13 | 1.02e +01 2.33e — 09
8 213e+02 1.55e—16 | 2.99e+01 5.32e—15 | 2.28¢+01 233e—13 | 1.4le+01 2.42e—09
16 2.13e+02 132e—16 | 6.05e+01 6.44e—15 | 4.07e+01 2.09e—13 | 2.70e+01 2.10e — 09
32 213e+4+02 1.32e—16 | 9.16e+01 58le—15 | 6.58e+01 2.09e —13 | 4.35e+01 2.06e — 09
64 213e4+02 13le—16 | 1.84e+02 7.00e —15 | 1.27e+02 1.99e—13 | 8.40e+01 2.1le—09
128 2.13e+02 1.24e—16 | 4.03e+02 7.00e—15 | 2.75e+02 2.02e —13 | 1.82e+02 2.10e—09
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Numerical Results/ Size=1600: Q..,x VS Execution Time

Execution time

[ e ey
F —e— CR |
L —m— Hjg-15 [|
t —o— Hyg-12 ||
= 102F —— Hho—s ||
v i ]
E § ]
= [ |
100} ]
:HHH\ ol vl vl vl ol 1 \HH;

100 10! 10 10° 10* 10° 10°
Rank
CR Hig—16 Hyp—12 Hig—s
Rank Time (s) Residue Time (s) Residue Time (s) Residue Time (s) Residue

1 2.15e+02 1.33e—16 | 6.97e+00 1.86e—15 | 5.44e+00 2.23e—13 | 4.55e+00 2.49e — 09
2 2.15e+02 13le—16 | 1.37e+01 5.74e—15 | 9.71e+00 3.88e—13 | 6.59e+00 1.46e — 09
4 214e+02 1.28e—16 | 2.23e+01 4.68e—15 | 1.62e+01 2.17e—13 | 9.69e+00 1.24e —09
8 214e+02 1.27e—16 | 451e+01 4.33e—15 | 3.14e+01 240e—13 | 1.72e+01 4.13e —09
16 2.14e+02 1.22e—16 | 8.74e+01 258e—15 | 5.62e+01 4.03e—13 | 3.51le+ 01 3.78e — 09
32 2.14e+02 1.25e—16 | 1.81le4+02 8.6le—15 | 1.15e4+02 1.83e—13 | 7.67e+01 2.88e — 09
64 2.14e4+02 1.22e—16 | 3.99e+02 1.08e—14 | 2.60e+02 1.34e—13 | 1.75e+02 1.26e —09
128 2.14e4+02 1.22e—16 | 5.83e+02 1.24e—14 | 528e+02 2.14e—13 | 3.26e+02 2.44e—09
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Conclusions

@ Numerical quasiseparable structures in the initial blocks are maintained
during the execution of the CR.

A property of exponential decay can be proved but the bound obtained is not
sharp in pratice.

@ Implementing a Hierarchical representation in the usual algorithm we can get
an almost optimal complexity and a significant speed up.

@ The performance is sensible to the accuracy at which the adaptive arithmetic
is executed and to the dimension of the diagonal blocks.
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